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For the male genetic materials to reach and fertilize the egg, spermatozoa must

contend with numerous environmental changes in a complex and highly

sophisticated process from generation in the testis, and maturation in the

epididymis to capacitation and fertilization. Taste is an ancient chemical

sense that has an essential role in the animal’s response to carbohydrates in

the external environment and is involved in the body’s energy perception. In

recent years, numerous studies have confirmed that taste signaling factors

(taste receptor families 1, 2 and their downstreammolecules, Gα and PLCβ2) are
distributed in testes and epididymis tissues outside the oral cavity. Their

functions are directly linked to spermatogenesis, maturation, and

fertilization, which are potential targets for regulating male reproduction.

However, the specific signaling mechanisms of the taste receptors during

these processes remain unknown. Herein, we review published literature and

experimental results from our group to establish the underlying signaling

mechanism in which the taste receptor factors influence testosterone

synthesis in the male reproduction.
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Introduction

The rapid spread of the COVID-19 disease quickly evolved into a global pandemic. As

a result, knowledge of the COVID-19 symptoms in patients is key in the COVID-19

treatment. Among these symptoms is the gustatory dysfunction present in 38.2% of

8438 patients from 13 countries and regions infected with COVID-19 (Agyeman et al.,

2020). In addition, COVID-19 patients have characteristic pathological changes in

testicular histology, including the varying degree of damage to the seminiferous

tubules, a significant decrease in Leydig cells, and severe injury to Sertoli cells (Yang

et al., 2020). COVID-19 infection also down-regulates five proteins associated with

cholesterol synthesis in the testicular tissue, lowering the cholesterol levels, a precursor for

steroid hormone synthesis (Nie et al., 2021). Recent studies have established that besides
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the tongue, taste receptors are also expressed in the digestive

tract, liver, respiratory tract, ovaries, and testes (Damak et al.,

2003; Li et al., 2005; Yang et al., 2021). However, the association

between taste disturbance and testicular lesions in COVID-19

patients and whether the two are linked through taste receptors

remains unknown.

Taste receptors are sensory receptors in the oral cavity

expressed in type II taste cells in the oral taste buds (Lee et al.,

2017; Ryo et al., 2017). Taste receptors (T1Rs, T2Rs) perceive

sweet (T1R2+T1R3), umami (T1R1+T1R3), and bitter (T2Rs)

tastes, which they signal through their associated signaling

molecules such as α-gustducin (Gα), and phospholipase C

subunit 2 (PLCβ2) (Fehr et al., 2007; Nobuhumi et al., 2015;

Roper and Chaudhari, 2017; Tian et al., 2019). However,

recent studies have found that these taste receptors are also

expressed in tissues other than the tongue, such as the

digestive tract, liver, respiratory tract, ovaries, and testes

(Damak et al., 2003; Li et al., 2005; Yang et al., 2021).

Given the importance of reproduction, an increasing

number of researchers have focused on the relationship

between taste receptors and mammalian testes. Using

knockout models, Mosinger et al. established that the

double knockout (Tas1r3 and Gnat3) male mice had

inactive epididymal sperm and testicular lesions. Besides,

the double knockout female mice were fertile but the male

mice were sterile (Mosinger et al., 2013). Further investigation

on the molecular mechanism of specific male sterility due to

taste receptor deletion in mice, researchers found that a

selective blockade of the Tas1r3 gene affecting sperm

development and maturation leads to male sterility.

However, the male mice could regain normal fertility after

withdrawing the inhibitors selectively blocking the Tas1r3

gene (Mosinger et al., 2013). To the best of our knowledge,

male reproduction is regulated by sex hormones, and we

hypothesize that the mechanism is due to the changes in

steroid hormones. Evidence to support this hypothesis is

that, in vivo, our study found that T1r3 activation by

sodium saccharin increased the expression of steroid-

related factors in mice, and we observed similar

phenomena in both female and male rats (Gong et al.,

2016a; Jiang et al., 2018).

The testis is the male reproductive organ responsible for

sperm production and androgen secretion. Sperm production

occurs in the seminiferous tubules, while androgen secretion

is mediated by Leydig cells (Staub and Johnson, 2018).

Spermatogenesis is a complex developmental process that

ensures the formation of millions of spermatozoa per day

through mitosis, meiosis and complex morphological changes

in spermatogonia (Linn et al., 2021). Various testicular

somatic cells play a role in spermatogenesis, including

Sertoli cells, which provide nutrition and protection to

developing sperms, and Leydig cells, which secrete

androgen (Neto et al., 2016).

T1R3 and its downstream protein Gα in late spermatogenic cells

and Leydig cells have been observed in mice and pigs (Spinaci et al.,

2014; Gong et al., 2016b; Gong et al., 2021). Besides, T2Rs has

ectopic expression during spermatogenesis in human (Governini

et al., 2020). Besides, T1r1 and T1r3 are present in the spermatozoa

during the immotile to motile phases when spermatozoa are

transported to the epididymis for maturation and storage

(Frolikova et al., 2020). Moreover, T2Rs are expressed in

cumulus and granulosa cells, essential for oocyte development

and fertilization (Semplici et al., 2021). T2Rs are also highly

expressed in the mouse haploid sperm cells, where the sperm

cells respond to bitter-tasting substances possibly through Ca2+

(Xu et al., 2013). In addition, the epididymal T1R1 and T1R3 are

expressed in the epithelium cells and epididymal spermatozoa in a

segment-specific manner (Meng et al., 2020). Sperms undergo

capacitation and acrosomal secretion to complete fertilization,

which regulated by Ca2+ and cyclic adenosine monophosphate

(cAMP) signals. However, Ca2+ and cAMP concentrations are

changed by the activation or absence of Tas1r1/Tas1r3 (Meyer

et al., 2012). Overall, taste receptors are highly expressed during

the postnatal development of male reproductive organs, thus, they

may be involved in regulating sperm production, maturation,

storage and fertilization, all of which are regulated by sex

hormones. Therefore, this review synthesizes evidence of the

influence of taste receptors on spermatogenesis, maturation,

storage and fertilization by regulating steroid synthesis and an

outlook on the corresponding signaling pathways (Figure 1).

Testosterone synthesis

The classical hypothalamus-pituitary portal system

regulates the synthesis of testosterone. Precisely,

FIGURE 1
Molecular mechanisms in steroid synthesis regulated by taste
receptors in testicular Leydig cells.
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gonadotropin-releasing hormone (GnRH) is released from

the hypothalamus, which acts on the pituitary gland,

releasing follicle-stimulating hormone (FSH) and

luteinizing hormone (LH). Next, LH binds receptors on

Leydig cells membranes, activating adenylate cyclase (AC)

and promoting intracellular cAMP production. It is well

known that cAMP and protein kinase A (PKA) are crucial

synthesizing testicular steroids. For example, in our previous

experiments, mice after saccharin sodium injection caused

an elevation in taste signaling factors (T1r3, Gα) and also

detected an elevation in cAMP concentration, which in turn

increased the expression of steroidogenic enzymes (StAR,

CYP11A1, 3β-HSD and CYP17A1 (Gong et al., 2021). In

addition, the taste receptor T1r1 is linked to cAMP (Meyer

et al., 2012). Thus, cAMP activates PKA inducing the

phosphorylation of cAMP-response element-binding

protein (CREB). Activated CREB up-regulates

steroidogenic acute regulatory protein (StAR), which

accelerates cholesterol transport from the outer

mitochondrial membrane to the inner mitochondrial

membrane by binding the translocator protein (TSPO) on

the outer mitochondrial membrane. Subsequently,

cholesterol is converted to pregnenolone by cytochrome

P450 cholesterol side-chain lyase (CYP11A1) in the inner

mitochondrial membrane, which is transported to the

endoplasmic reticulum, where it is converted to

pregnenolone by 3β-hydroxysteroid dehydrogenase (3β-
HSD). Progesterone is converted to androstenedione in

action catalyzed by CYP17A1. Finally, 17β-hydroxysteroid
dehydrogenase (17β-HSD) catalyzes the formation of

testosterone from androstenedione (Riccetti et al., 2017).

Spermatogenesis

In mammals, spermatogenesis is a long physiological

process consisting of four stages. First, spermatogonia are

transformed into primary spermatocytes through mitosis

and secondary spermatocytes after the first phase of meiosis.

The haploid spermatozoa are then developed in the second

phase of meiosis. Finally, round spermatids are transformed

into spermatozoa through complex morphological changes,

including chromatin remodeling and compaction (Guercio

et al., 2020). The formed spermatozoa are transported to the

epididymis for maturation and storage, where they gaining

motility and acrosomal function for subsequent capacitation

and fertilization in the female reproductive tract (Mahe

et al., 2021). Spermatogenesis is regulated by hormones,

local regulators, and miRNAs, which ensures the correct

genetic and epigenetic information, is transmitted to the

offspring.

Effect of hormones on spermatogenesis

Spermatogenesis is mediated by the endocrine and testicular

autocrine/paracrine factors, such as FSH, LH, and testosterone in

the Leydig and Sertoli cells (Roper andChaudhari, 2017; Lara et al.,

2020; Sawaied et al., 2020). Other hormones are also involved in

regulating spermatogenesis, such as insulin and thyroid hormone

(de Kretser et al., 1998). The nerve axis initiates spermatogenesis in

the hypothalamus, which triggers the release of GnRH, GnRH acts

on the pituitary gland releasing FSH and LH. Each substance has

its specific physiological role in this complex process. FSH

promotes the growth and spermatogenesis of the seminiferous

tubules the transformation of primary spermatocytes into

secondary spermatocytes (Spaliviero et al., 2004). On the other

hand, LH mediates steroid production by stimulating Leydig cells

and promoting the completion of meiosis and morphological

changes in sperm. Leydig cells release androgen, which

regulates the function of myoid cells including the secretion of

active substances that regulate the function of Sertoli cells affecting

spermatogenesis of testis and achieving local network regulation of

the spermatogenic environment (Li et al., 2020; Pan et al., 2020).

Taste receptors are present in spermatogenic cells during

spermatogenesis. They reduce T1r3 expression in Tas1r3

knockout mice and mice fed on high doses of sodium

saccharin, reducing sperm viability and causing abnormal

sperm morphology. Decrease T1r3 expression subsequently

reduced the testosterone and cAMP levels. However, sodium

saccharin injection into mouse testes activates T1r3 and Gα
while the steroid synthase, testosterone and cAMP levels

significantly increase. Nonetheless, the effects and mechanisms

of taste receptors during spermatogenesis remain unclear, thus,

more research on the influence of taste receptors on

spermatogenesis is crucial.

Androgen receptor (AR) regulates spermatogenesis by

modulating Ca2+ concentrations and downstream protein

kinases during meiosis in germ cells. At the same time, cAMP

response progenitor regulators control the expression of critical

genes such as CREB following meiosis in germ cells. For example,

the cAMP response element modulator (CREM), a major

transcription factor regulated by cAMP, and spermatogenesis

is wholly blocked in Crem-deficient male (Blendy et al., 1996;

Nantel et al., 1996). Crem knockout mice exhibit similar

morphological characteristics to our mice fed on high-dose

sodium saccharin, while protamine 1 (Prm1), transition

protein 1 (Tnp1) and other CREM-regulated genes are down-

regulated in Tas1r3/Gnat three double knockout mice (Blendy

et al., 1996; Nantel et al., 1996; Mosinger et al., 2013; Gong et al.,

2016a). Besides, TATA and TATA-box binding protein (TBP)

activates the spermatogenesis process (Jing et al., 2016; Wu et al.,

2016; Murovets et al., 2019). These reports provide insights to

explore the mechanism of spermatogenesis further.
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Signal transduction of taste receptors

Sweet, umami and bitterG protein-coupled receptor taste families

conduct signal transduction functions through a similar pathway in

type II taste bud cells (Liman et al., 2014). The sweeteners and umami

agents bind their corresponding receptors, activating the heterotrimer

G protein α-gustducin is activated, which releases the Gβγ subunit (a
trimericGprotein composed ofα-gustducin and a complex consisting

of Gβ and Gγ), stimulating PLCβ2 activation. PLCβ2 hydrolyzes the
membrane lipid phosphatidylinositol 4, 5-bisphosphate (PIP2)

releasing inositol 1, 4, 5-triphosphate (IP3) and diacylglycerol

(DAG). The IP3 messenger opens the type 3 ion channel of

IP3 receptors (IP3R3) in the endoplasmic reticulum, which

initiates the release of Ca2+ stored in the endoplasmic reticulum

into the cytoplasm. This activates the Ca2+-dependent univalent

selective cation channel-transient receptor potential channel M5

(TRPM5), depolarizing cytomembranes, which generates an action

potential. Simultaneously, α-gustducin activates phosphodiesterase

(PDE), which catalyzes the hydrolysis of cAMP to adenosine

monophosphate (AMP) (Yan et al., 2001; Zhang et al., 2007;

Kinnamon, 2012). Activation of bitter receptors initiates a similar

signaling cascade as sweet and umami receptors. However, the bitter

taste receptors mainly activate the Ca2⁺ signaling pathway and reduce

the cAMP level. For example, the cytosolic Ca2⁺ and cAMP levels in

Tas1r1-deficient sperm are significantly elevated (Meyer et al., 2012).

In addition, the expression of Tas1r3 is associated with regulating

insulin secretion through apoptosis (Murovets et al., 2019).

Role of taste receptors in the regulation of
male reproduction via sex hormones

Genetic variation in taste receptors regulatesmale fertility. Given

the diversity of taste receptors identified in different species, taste

receptors may play different physiological roles in different species

through different signaling pathways (Li et al., 2010; Zhao et al.,

2010; Jiang et al., 2012). Recent advances show that single nucleotide

polymorphisms (SNPs) of homozygous carriers of the G allele of

TAS2R14-rs3741843 of taste receptor genes are linked to a decreased

sperm progressive motility than that in the homozygous carriers.

Moreover, the SNPs of homozygous carriers of the T allele of

TAS2R3-rs11763979 have fewer normal acrosomes than the

heterozygous and homozygous carriers of the G allele. The A/G

heterozygosis in the SNP of TAS1R2-rs4920566 is associated with a

decreased number of sperm cells compared to the homozygous

carriers of the A allele (Gentiluomo et al., 2017). However, there is

no significant difference in the SNP of TAS2R38 between infertile

and fertile men (Siasi and Aleyasin., 2016). Besides, the TAS1Rs

polymorphisms are linked to food intake, overweight and gastric

cancer in humans. For example, the SNP of T allele of TAS1R1-

TABLE 1 Related literature on the effect of taste receptors in male reproduction.

Common
name

Publication
time

Species Results

Fehr J 2007 Mouse and rat The expression of α-gustducin is highest in differentiated spermatozoa, and it was mainly located in
mitochondria of sperm and axoneme

Meyer D 2012 Mouse Deletion of Tas1r1 gene, abnormal spermatogenesis↓, concentration of Ca2+ and cAMP↑, acrosome
reaction↑

Li F 2013 None Reviewed the research progress of taste receptors in spermatogenesis

Mosinger B 2013 Mouse Deletion of Tas1r3 and Gnat3, abnormal sperm↑ and selective blocking Tas1r3 lead to infertility in male
mice

Gong T 2016 Mouse The expression patterns of T1r3 and its associated heterotrimeric Gα in the testis are the same. T1r3 and
Gα are highly expressed in the Leydig cells and elongated spermatids after puberty

Gong T 2016 Mouse Taste signaling molecules (T1r3, Gα) activated by sodium saccharin, steroid synthase ↑, and cAMP ↑
Gentiluomo M 2017 Human The genetic homozygosis of TAS2R14- rs3741843, abnormal sperm↑, while the genetic homozygosis of

TAS2R3-rs11763979 and normal acrosome↓
Jiang J 2018 Rat Saccharin sodium-treated and steroidogenesis-related factors ↑ and progesterone↑
Luddi A 2019 None Reviewed the mechanism of taste receptors in male reproduction

Frolikova M 2020 Mouse Selectively blocked mTas1r3, chemotaxis of spermatozoa ↓
Governini L 2020 Human TAS2R14 is the most frequently expressed bitterness receptor in testes and spermatozoa

Farinella R 2021 Human The genetic homozygosis of the TAS1R1- rs4908932, birth weight↑
Jiang J 2021 Rat Taste receptors (T1r2, T2r31) areactivated by sodium saccharin, steroid synthase ↓ and progesterone ↓
Gong T 2021 Congjiang

Xiang pig
T1R3 and PLCβ2 are strongly expressed in the cytoplasm of elongated spermatids and interstitial cells,
T1R3 and PLCβ2 are highest during puberty

Tas1r1, taste receptor type 1 subunit 1, cAMP, cyclic Adenosine monophosphate, Tas1r3, taste receptor type 1 subunit 3, Gα (Gnat3), G protein α-subunit, T1r3, taste receptor type
1 subunit 3, TAS2R14, taste receptor type 2 subunit 14, TAS2R3, taste receptor type 2 subunit 3, T1r2, taste receptor type 1 subunit 2, T2r31, taste receptor type 2 subunit 31, PLCβ2,
phospholipase Cβ2, SNPs: single nucleotide polymorphisms, T1R1, taste receptor type 1 subunit 1, ↑, positive regulation; ↓: negative regulation.
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rs4908932 SNPs caused increased birth weights compared to the GG

homozygotes (Farinella et al., 2021) Table 1.

There exists a relationship between age-related regulation of

testosterone synthesis and the expression patterns of T1r3 andGα at
different developmental stages in mice may provide us with a new

research idea. For example, in mice treated with a high dose of

saccharin sodium, T1r3 and Gα expression in the testis, and the

expression of StAR, CYP11Al, 3β-HSD and 17β-HSD are

significantly decreased, which corresponds to decline sperm

quality and impaired testicular morphology. Interestingly,

T1r3 also mediates testicular steroid synthesis in mice by

increasing the cAMP levels (Gong et al., 2016a; Gong et al.,

2016b). This is consistent with Meyer’s findings, which elaborate

on themechanismof steroidogenesis and spermatogenesis via a taste

receptors-mediated signal (Meyer et al., 2012).

The influence of taste receptors on male reproduction goes

beyond spermatogenesis to fertilization. Specifically, spontaneous

acrosomal reaction is significantly increased in Tas1r1-deficient

mice, and Ca2+ levels is significantly higher in the cytoplasm of

freshly isolated sperm than in wild-type sperm. In addition, cAMP

concentrations were significantly elevated in Tas1r1-deficient

epididymal spermatozoa. Since Ca2+ and cAMP control the basic

processes during continuous fertilization, the effect of Tas1r1 on

fertilization is predictable (Meyer et al., 2012). The acrosome

response of spermatozoa occurs in the female reproductive tract,

where L-glutamate is present as a physiological ligand for T1r3. In

vitro chemotaxis experiments showed that acrosome responsive

spermatozoa are significantly attracted to L-glutamate, which

provides a new perspective to resolve the complex fertilization

process (Frolikova et al., 2020).

Taste receptors also play a role in the reproductive regulation of

females. For example, cAMP regulates both spermatogenesis and

fertilization. For example, progesterone regulates sperm fertilization

through the cAMP-PKA signaling pathway (Jiang et al., 2020).

Although no changes in sex hormones (testosterone and estradiol)

were observed in Saccharin sodium and rebaudioside A-fed male

guinea pigs in another study, high doses of high saccharin sodium

caused damage to testicular and epididymal morphology (Shen and

Li, 2021). Furthermore, our recent project found that taste receptors

(T1r2, T2r31) and their downstream signaling molecules (Plcb2)

and heterotrimeric G proteins (G protein subunit α-gustducin 3,

Gnat3; and G protein subunit beta 3, Gnb3) expressed in the corpus

luteum of rats affect apoptosis by activating NO/cGMP signaling

(reducs the cAMP level). In contrast, activation of the taste receptors

reduced the expression of steroid hormone synthase, leading to

lower progesterone levels. (Jiang et al., 2021). Similarly, feeding

sodium saccharin to female rats caused steroid changes and

apoptosis of oocyte and granulosa cells (Kavita et al., 2019).

From the available evidence, it appears that the same sweetener

can bind to different taste receptors in different species thus causing

different effects on steroid hormones. However, in general, the

activation of these taste receptors is associated with cAMP,

steroid synthase and steroid hormones. Another of our previous

results showed that activation of T1r3 in female rats following

saccharin sodium treatment caused an abnormal increase in the

estrus cycles, ovarian cysts, and serum progesterone levels, all of

which were associated with steroids, which was confirmed by the

detection of steroid hormone-producing factors (Jiang et al., 2018).

Taste receptors affect male and female reproduction differently,

perhaps due to differences in taste sensitivity between the two, with

testosterone and estrogen modulating the taste-directed behavior

and preferences (Martin and Sollars, 2017; Dahir et al., 2021).

Although the relationship between taste receptors and

hormones has been demonstrated, the mechanism by which

the taste receptors influence spermatogenesis remains unclear.

Besides, the current experiments assessing the influence of taste

receptors on reproduction have mostly focused on rats and mice

model animals, which lack a broad spectrum. Overall, the taste

receptors regulate the male reproductive activity by affecting

steroid hormone synthesis, mediated through the cAMP

signaling pathway, thereby affecting spermatogenesis (Li, 2013;

Luddi et al., 2019) (Figure 1).

Conclusion

The non-taste function of the taste signaling molecules in the

testis is associated with steroidogenesis-related factors and

intracellular cAMP level. Futher work for clarifying the

regulation mechanism of taste receptors in testicular Leydig

cells through cAMP-mediated steroidogenic pathway, would

help uncover the role of taste receptors in regulation male

reproduction.
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