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Genome-wide association studies (GWAS) have identified a vast number of

variants associated with various complex human diseases and traits. However,

most of these GWAS variants reside in non-coding regions producing no

proteins, making the interpretation of these variants a daunting challenge.

Prior evidence indicates that a subset of non-coding variants detected

within or near cis-regulatory elements (e.g., promoters, enhancers, silencers,

and insulators) might play a key role in disease etiology by regulating gene

expression. Advanced sequencing- and imaging-based technologies, together

with powerful computational methods, enabling comprehensive

characterization of regulatory DNA interactions, have substantially improved

our understanding of the three-dimensional (3D) genome architecture. Recent

literature witnesses plenty of examples where using chromosome

conformation capture (3C)-based technologies successfully links non-

coding variants to their target genes and prioritizes relevant tissues or cell

types. These examples illustrate the critical capability of 3D genome

organization in annotating non-coding GWAS variants. This review discusses

how 3D genome organization information contributes to elucidating the

potential roles of non-coding GWAS variants in disease etiology.
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Introduction

Genome-wide association studies (GWAS) have achieved great success during the last

two decades, reproducibly identifying hundreds of thousands of genetic variants

associated with complex human diseases and traits (Buniello et al., 2019). However,

only a small proportion (<10%) of GWAS variants alter the coding sequence of the human
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genome, where relatively straightforward hypotheses can be

formed to link these variants to organism-level phenotypes

directly. The remaining vast majority (i.e.,>90%) of GWAS

variants reside in non-coding regions, making the

interpretation of these variants a daunting challenge in the

post-GWAS era (Hindorff et al., 2009; Sun et al., 2022).

To better understand the functional roles of non-coding

GWAS variants, it is essential to annotate the non-coding

regions, which account for ~97% of the human genome. In

recent years, the ENCODE consortium (ENCODE Project

Consortium, 20l2; ENCODE Project Consortium et al., 2020)

and the Roadmap Epigenomics Consortium (Roadmap

Epigenomics Consortium et al., 2015) have identified millions

of cis-regulatory elements (CREs) (including enhancers,

promoters, silencers, and insulators) across a large number of

human tissues and cell types. These CREs play critical roles in

regulating the expression of their target genes in a cell-type-

specific manner. Intriguingly, many studies have demonstrated

significant enrichment of non-coding GWAS variants within

CREs (Degner et al., 2012; Trynka et al., 2013; Zhang and Lupski,

2015), suggesting an indirect yet crucial role of these non-coding

GWAS variants. Instead of directly changing the protein-coding

DNA sequences, these non-coding variants may disrupt the

functional roles of CREs, resulting in dysregulation of relevant

genes.

The comprehensive annotation of CREs is a substantial step

forward in understanding the non-coding GWAS variants.

However, it remains challenging to assign non-coding GWAS

variants-overlapped CREs to their target genes in disease-

relevant tissues and cell types. How CREs regulate the

expression of their target genes is still an open question in the

genomics field. The difficulties lie in at least four aspects. First of

all, the same CRE, such as a super-enhancer, may regulate

multiple genes simultaneously. In addition, genes with critical

functional roles, such as cell-type-marker genes, may be

regulated by multiple CREs simultaneously to allow for some

buffer in the presence of disrupted CREs. Along the line, we have

recently reported super interactive promoters (SIPs) that interact

with a more significant number of CREs than non-SIPs (Wen

et al., 2022). Moreover, both the function of CREs and the

relationship between CREs and their target gene(s) are highly

tissue- or cell-type-specific. Last but not least, the majority of

genes are not regulated merely by CREs in a close one-

dimensional (1D) vicinity. Instead, CREs can form DNA

loops with the promoter of their target gene(s) and regulate

the expression of gene(s) from hundreds of kilobase (Kb) away

(Dekker et al., 2013) or even over 1 Mb away (Fulco et al., 2016).

Thus, a deep understanding of chromatin spatial organization

can shed novel insights on gene regulation mechanisms and

disease etiology.

Recently developed genomics and high-resolution imaging

technologies (Jerkovic and Cavalli, 2021) provide revolutionary

tools to map the nucleus’s three-dimensional (3D) genome.

Coupling with powerful genome or epigenome editing tools

such as CRISPR/Cas9, CRISPRi, and CRISPRa (Yin et al.,

2017; Nakamura et al., 2021), researchers can not only

measure the spatial proximity between non-coding GWAS

variants-overlapped CREs and their putative target gene(s) but

also functionally validate the role of CREs in disease-relevant cell

types. For example, recent studies have shown that non-coding

GWAS variants can alter the 3D chromatin structure and

contribute to the risk of various disorders, including cancer,

asthma, thalassemia, sex reversal, and limb malformation (Benko

et al., 2011; Lupiáñez et al., 2015; Lupiáñez et al., 2016; Franke

et al., 2016; Krijger and de Laat, 2016; Schmiedel et al., 2016;

Schmitt et al., 2016b; Yu and Ren, 2017; Li et al., 2018; Liu et al.,

2022b). Thus, characterizing 3D chromatin structure has the

potential to prioritize disease causal genes, particularly those

spatially close but far away in 1D genomic distance from their

CREs, and reveal mechanistic insights underlying non-coding

GWAS variants.

This review paper will describe the state-of-the-art

experimental technologies, including sequencing-based and

imaging-based approaches, to map chromatin spatial

organization. In addition, we will summarize advanced

computational methods to integrate transcriptome, epigenome,

and 3D genome data to achieve a deep understanding of the

functional roles of non-coding GWAS variants. We highlight

recent breakthroughs in predicting and validating disease causal

genes of non-coding GWAS variants and discuss challenges and

opportunities for future endeavors.

Experimental methods for detecting
regulatory DNA interactions

There are three major approaches for examining 3D genome

structure: microscopy (imaging)-based techniques, sequencing-

based approaches, and integrative methods (Figure 1).

Microscopy-based approaches quantify cell-to-cell variability

in chromatin architecture at certain genomic regions by

visualizing the relative placement of these genomic regions in

single cells (Jerkovic and Cavalli, 2021). In contrast, sequencing-

based approaches measure chromatin contacts by crosslinking

spatially close DNA segments and then applying deep sequencing

to these crosslinked segments (Jerkovic and Cavalli, 2021).

Integrative methods simultaneously leverage both sequencing-

and microscopy-based methods, applying these two techniques

to the same cell (Boninsegna et al., 2022).

Microscopy-based methods, including fluorescence in situ

hybridization (FISH) and more advanced FISH-based

techniques, estimate the relative distance by hybridizing DNA

probes of specific genomic regions and then using a microscope

for visualization (Su et al., 2020; Jerkovic and Cavalli, 2021;

Zhuang, 2021). The earlier FISH-based methods were limited by

the resolution and coverage of the genome. In terms of
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resolution, FISH-based methods have been significantly

improved via the super-resolution microscopy technology that

has increased spatial resolution. Regarding genome coverage,

oligopaints-based FISH methods have been developed, where the

oligopaints are fluorescently-labeled DNA oligonucleotides

designed for imaging genomic regions (Beliveau et al., 2012,

2014). These methods include multiplex FISH (Zhuang, 2021)

and OligoSTORM (Beliveau et al., 2017). Multiplex FISH can

detect a larger number of loci by running multiple rounds of

imaging fluorophore-labeled oligo probes—within each round,

using different fluorophores for different regions to detect

chromatin interactions. OligoSTORM is coupled with the

STORM imaging technology for super-resolution imaging and

can be further combined with other methods to increase

coverage. Oligopaint barcode-based methods have been

developed to increase further the efficiency of detecting

chromatin interactions. These methods include the FISH-

based ORCA method (Mateo et al., 2019) and OligoFISSEQ

(Nguyen et al., 2020). ORCA partitions the target region into

consecutive short regions with unique barcodes, where the

barcodes are connected to probes carrying a common

fluorophore-labeled oligo for imaging, avoiding the use of

different fluorophores. OligoFISSEQ uses the FISSEQ

technology (Lee et al., 2015) to read the oligopaints barcode

for imaging and image multiple target regions for thousands of

cells to estimate cell-to-cell variability. OligoFISSEQ can also be

combined with OligoSTORM to image hundreds of target

regions (Nguyen et al., 2020).

Sequencing-based methods can be categorized based on

whether they can estimate chromatin interactions across the

whole genome and implement proximity ligation to process

crosslinked segments (Jerkovic and Cavalli, 2021). Under the

former classification, methods covering the entire genome are

non-enrichment methods, while methods covering specific types

of interactions are enrichment methods. With the latter

taxonomy, proximity ligation methods are C-based and

otherwise non-C-based. Among non-enrichment methods,

C-based methods such as Hi-C (Lieberman-Aiden et al., 2009)

and its variants [e.g., Micro-C (Hsieh et al., 2016)] can generate

all possible pairwise interactions of the whole genome. Unbiased

TABLE 1 Review papers and collections of computational approaches for chromatin interactions and domains.

Title Category Description Year References

A critical assessment of topologically associating
domain prediction tools

TADs Compared seven TAD calling methods 2017 Dali & Blanchette,
(2017)

Comparison of computational methods for Hi-C data
analysis

TADs and
chromatin
interactions

Compared seven TAD calling methods and six
chromatin interaction callers

2017 Forcato et al. (2017)

Comparison of computational methods for the
identification of topologically associating domains

TADs Compared 20 TAD calling methods 2018 Zufferey et al. (2018)

Computational methods for analyzing genome-wide
chromosome conformation capture data

General pipeline Reviewed pipelines and methods for 3C-based
data

2018 Nicoletti et al. (2018)

Computational methods for assessing chromatin
hierarchy

General pipeline Reviewed computational tools for assessing
chromatin hierarchy

2018 Chang et al. (2018)

Computational methods for analyzing and modeling
genome structure and organization

General pipeline Reviewed analytic and modeling techniques for
3C-based methods

2018 Lin et al. (2019)

Hi-C analysis: from data generation to integration General pipeline Reviewed methods for Hi-C data analysis 2019 Pal et al. (2019)

Comparison of computational methods for 3D
genome analysis at single-cell Hi-C level

General pipeline Compared the performance of Hi-C methods on
ultra-sparse Hi-C data

2020 Li et al. (2020)

Computational methods for the prediction of
chromatin interaction and organization using
sequence and epigenomic profiles

Prediction Summarized 48 computational methods for
predicting chromatin interactions and spatial
organization features

2021 Tao et al. (2021)

A comparison of topologically associating domain
callers over mammals at high resolution

TADs Compared 27 TAD calling methods 2022 Sefer (2022)

A comparison of topologically associating domain
callers based on Hi-C data

TADs Compared 26 TAD calling methods 2022 Liu et al. (2022a)

Bacon: a comprehensive computational
benchmarking framework for evaluating targeted
chromatin conformation capture-specific
methodologies

Chromatin
interactions

Benchmarked 12 computational pipelines for
HiChIP/PLAC-seq and/or ChIA-PET data

2022 Tang et al. (2022)

Hi-C data analysis tools and papers General pipeline A collection of Hi-C tools and papers Accessed on
05/27/2022

https://github.com/
mdozmorov/HiC_tools

4DN Software General pipeline A collection of data analysis and visualization
tools for studying the 3D genome

Accessed on
05/27/2022

https://www.
4dnucleome.org/
software.html
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Hi-C approaches require ultra deep sequencing depth for high

resolution inference, which can be cost prohibitive. For example,

we typically need several billion raw reads to detect chromatin

interactions at Kb resolution. Non-C-based methods such as

SPRITE (Quinodoz et al., 2018) and GAM (Beagrie et al., 2017)

were developed using ligation-free technologies that allow for

multi-way interactions. SPRITE quantifies higher-order

chromatin interactions by adopting a split-pool approach to

barcode the crosslinked DNA segments. In contrast, GAM

maps spatial proximity of multiple DNA segment by

determining the extent of co-segregation in the same cryo-

sectioned and laser-microdissected compartment. While non-

enrichment-based methods provide an unbiased view of the

entire genome, enrichment methods have been proposed to

empower closer and finer-resolution interrogation at

interactions enriched in specific genomic regions or associated

with particular proteins or epigenomic marks. The most

commonly used C-based enrichment methods that do not

involve probe design include ChIA-PET (Fullwood et al.,

2009), HiChIP (Mumbach et al., 2016) and PLAC-seq (Fang

et al., 2016). ChIA-PET (chromatin interaction analysis by

paired-end tag) estimates interactions mediated by a protein

of interest by first applying immuno-precipitation to enrich

fragments with the protein of interest, and then the regular

Hi-C proximity ligation before sequencing ligation products.

In contrast, HiChIP and PLAC-seq technologies apply

segmentation and proximity ligation first and then use protein

immunoprecipitation for the enrichment of the desired ligation

products. Capture-C (Hughes et al., 2014; Davies et al., 2016) and

capture Hi-C (Mifsud et al., 2015) are also C-based enrichment

methods. Compared to HiChIP and PLAC-seq, Capture-C and

capture Hi-C require designing probes for a given set of

sequences of interest (e.g., promoters or GWAS loci) to enrich

ligation products in local regions. Among non-C-based

enrichment methods, adapted-DamID (Cléard et al., 2006)

first tethers DNA adenine methyltransferase (Dam) to a

specific region and then detects DNA methylation patterns for

this region and distant regions to identify chromatin interactions

(Aughey et al., 2019).

Imaging-based and sequencing-based methods, as two

orthogonal types of experimental approaches, have their own

unique strengths and weaknesses. The key advantage of the

FIGURE 1
Illustrations of sequencing- and microscopy-based methods. (A) [Adapted from Figure 1A in (Fang et al., 2016)] Sequencing-based PLAC-seq
method captures chromatin interactions mediated by a protein of interest; (B) [Adapted from Figure 1A in (Su et al., 2020)] Microscopy-based DNA
MERFISH method allows multiplexed genome-scale imaging. Each square on the left of the arrow represents one round of imaging where each
circle represents one locus imaged. In each round, multiple loci are simultaneously imaged. After many rounds of imaging, genome-scale
imaging can be obtained. Note that the number of rounds required to image the same number of loci is inversely proportional to the number of loci
imaged simultaneously, with substantially reduced number of rounds compared to the sequencing imaging strategy where only one locus is imaged
in each round.
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imaging-based methods is to record 3D coordinates of each

genomic locus, and directly measure spatial distance among

genomic loci. In addition, imaging-based methods can achieve

single cell resolution, facilitating the characterization of cell-to-

cell variability in chromatin spatial organization. However,

currently available imaging-based methods cannot yet

simultaneously achieve Kb resolution and genome-wide

coverage: existing methods either measure the whole genome

at megabase (Mb) resolution (Takei et al., 2021a; 2021b), an

entire chromosome or several Mb regions at 25–50 Kb resolution

(Su et al., 2020; Takei et al., 2021a, 2021b), or a small region

(~210 Kb containing TSS of a gene of interest and its interacting

enhancers) at 5 Kb resolution (Huang et al., 2021). It is still

technically challenging to image the whole genome at Kb

resolution, limiting its utility for genome-wide high resolution

mapping of enhancer-promoter interactions in mammalian

genomes.

In contrast, sequencing-based methods can generate Kb

(Rao et al., 2014a; Bonev et al., 2017) or even nucleosome

resolution (Krietenstein et al., 2020) map of mammalian 3D

genomes, as long as the sequencing depth is sufficiently high.

They usually enjoy higher sensitivity than imaging-based

methods in terms of detecting genome-wide regulatory

DNA interactions. One key weakness of sequencing-based

methods is that they do not directly measure the spatial

distance between genomic loci of interest, but rather gauge

the frequency of the loci coming in spatial proximity, which is

an indirect measure of 3D distance. Moreover, most widely

used sequencing-based methods are designed for bulk samples

containing 105–106 cells. Single-cell-based sequencing

methods, including single-cell Hi-C (scHi-C) (Nagano

et al., 2013), sci-Hi-C (Kim et al., 2020), sc-m3c-seq (Lee

et al., 2019) and Dip-C (Tan et al., 2018), all suffer from

limited capture efficiency per cell, making the quantification of

cell-to-cell variability extremely challenging.

Taken together, investigators need to balance the pros and

cons of different experimental methods, based on their specific

scientific questions. For example, we would recommend

imaging-based methods when the primary interest is to

understand cell-to-cell variability in regulatory DNA

interactions near a specific gene or element of interest. While

for another example, when the primary goal is to

comprehensively characterize genome-wide enhancer-

promoter interactions, sequencing-based methods would be a

better choice.

Integrative approaches have been developed to combine the

advantages of imaging- and sequencing-based methods for better

genome coverage and higher resolution. For example, in situ

genome sequencing (IGS) was designed to jointly conduct

sequencing and imaging simultaneously for intact genomes

and directly link DNA sequence to 3D spatial proximity

(Payne et al., 2021). However, IGS does not allow an adequate

evaluation of enhancer-promoter interactions due to the limited

resolution. Other integrative methods are comprehensively

reviewed by Boninsegna et al. (2022).

Utilizing 3D genome architecture to
interpret disease-related genetic
variants

Advanced technologies for studying 3D genome organization

have generated an increasing amount of useful data.

Accompanying advances in computational methods have

enabled detection and quantification of various layers of

chromatin spatial organization, including topologically

associating domains (TADs) (Dixon et al., 2012; Crane et al.,

2015; Rocha et al., 2015; Dali and Blanchette, 2017; Forcato et al.,

2017; Zufferey et al., 2018; Liu et al., 2022a; Sefer, 2022),

frequently interacting regions (FIREs) (Schmitt et al., 2016a;

Crowley et al., 2021), and chromatin interactions (Ay et al.,

2014; Rao et al., 2014b; Xu et al., 2016a, 2016b; Carty et al., 2017;

Forcato et al., 2017; Cao et al., 2020; Kaul et al., 2020; Roayaei

Ardakany et al., 2020; Rowley et al., 2020; Lagler et al., 2021;

Sahin et al., 2021; Yu et al., 2021) (Table 1). These valuable pieces

of 3D genome architecture information have been widely used to

identify candidate risk genes for non-coding GWAS variants

associated with complex diseases (Smemo et al., 2014; Giorgio

et al., 2015; Schmitt et al., 2016a; Lupiáñez et al., 2016; Won et al.,

2016; Martin et al., 2017; Fulco et al., 2019; Crowley et al., 2021;

Yu et al., 2021). For instance, disarrangement of TAD boundaries

can disrupt normal regulatory architecture and possibly form

new loops, resulting in gene dysregulation, eventually leading to

phenotypic aberrations (Lupiáñez et al., 2015; Krijger and de

Laat, 2016). At the FIRE level, overlapping GWAS variants with

FIREs can help to prioritize causal variants among many of their

linkage disequilibrium (LD) tags (Huang et al., 2022a) and

subsequently prioritize the putative effector genes in the

neighborhood of FIREs in a tissue- or cell-type-specific

manner (Schmitt et al., 2016a). At the most refined chromatin

loop/interaction level, interruption of enhancer-promoter

interactions can alter gene expression to cause diseases

(Smemo et al., 2014; Krijger and de Laat, 2016). Finally,

integrative approaches combine data from multiple resources

to interpret non-coding variants, such as integrating chromatin

structure information with other omics data to identify

significant chromatin interactions, ensembling sequencing-

and imaging-based data to simulate 3D genome structures, as

reviewed in Liu et al. (2022b) and Boninsegna et al. (2022).

We first review some examples using chromatin interactions

to prioritize putative target genes. One of the earliest and most

renowned examples was reported by Smemo et al. (2014), where

the authors elegantly elucidated molecular mechanisms

underlying the noncoding obesity-associated GWAS variants

at the FTO locus with chromatin interactions identified from

4C-seq (van de Werken et al., 2012), a C-based method that
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quantifies chromatin spatial proximity between a specific region

of interest and all genomic loci in its neighborhood. Specifically,

long-range chromatin interactions link FTO intronic variants to

their target gene IRX3 (Smemo et al., 2014). Simultaneously

considering long-range chromatin interactions, epigenetic

annotations, and eQTL data, we can identify and prioritize

causal variants and target genes for various human diseases

and traits. Studies have shown that the majority of noncoding

variants interact with distal genes based on Hi-C (Song et al.,

2019; Sey et al., 2020), highlighting the importance of chromatin

3D organization in prioritization and functional follow-up of

GWAS variants.

As the number and size of GWAS continue to grow rapidly,

increasing evidence shows that regulatory variants function in a

tissue- or cell-type-specific manner (Schmitt et al., 2016a;

Barbeira et al., 2018; Gallagher and Chen-Plotkin, 2018; Sun

et al., 2022). Literature in the past decade has accumulated many

examples where long-range chromatin interactions have aided

the prioritization and establishment of target genes for GWAS

variants in disease-relevant tissues and cell types. For example,

SnapHiC (Yu et al., 2021), the first computational method

developed to identify chromatin interactions from single cell

Hi-C data, reported long-range chromatin interactions between

two GWAS variants (rs112481437 and rs138137383) associated

with Alzheimer’s disease and APOE, specifically in astrocytes but

not in other brain cell types. Other examples include a

schizophrenia (SCZ) GWAS variant (rs1191551) forming a

long-range (~760 Kb away) interaction with the promoter of

FOXG1 revealed by fetal brain Hi-C data (Won et al., 2016); a

long-range (>500 Kb away) interaction in liver between the

promoter of FST and a type 2 diabetes (T2D)-associated SNP

rs6450176, which is an intronic variant in ARL15 (Martin et al.,

2017); an interaction between the promoter of BACH2 and

rs72928038 (~30 Kb away), an intronic variant in BACH2

associated with various diseases including multiple sclerosis

and type 1 diabetes, detected using promoter capture Hi-C

data in naive CD4+ T cells (Kundu et al., 2022), and an

interaction between the promoter of GATA3 and rs3824662

(~7 Kb), a GATA3 intronic variant associated with

Philadelphia chromosome-like childhood acute lymphoblastic

leukemia (Yang et al., 2022). Such tissue- or cell-type-specific

long-range chromatin interactions will greatly facilitate

functional experiments, accelerating the uncovery of molecular

mechanisms and new therapeutic targets.

Next, we will review examples where TAD boundaries are

disrupted by non-coding variations, which result in enhancer-

promoter interaction changes. Specifically, impacts of non-

coding variants on TADs include removing, inverting, and

duplicating TAD boundaries. These changes can break regular

links between enhancers and promoters present in wild type and

create new links that do not exist otherwise (Figure 2A) (Yu and

Ren, 2017). One example is at the LMNB1 locus, where the

deletion of a TAD boundary leads to an autosomal dominant,

slowly progressive, and yet fatal adult-onset demyelinating

leukodystrophy (ADLD) disorder. Specifically, the LMNB1

gene becomes highly expressed due to the missing boundary

FIGURE 2
Different types of TAD boundary alteration and the EPHA4 example. (A)Wild type (WT), removal, inversion, and duplication of TAD boundary. (B)
The normal status of TAD boundaries at the EPHA4 locus. (C) With an inversion genetic variant, aberrant TAD boundaries at the EPHA4 locus were
observed in F-syndrome patients. The enhancer and TAD boundary to the left of EPHA4 are inverted, resulting in repression of EPHA4 expression and
activation of WNT6 expression.
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leading to new chromatin interactions between the promoter of

the LMNB1 gene and several other enhancers (Giorgio et al.,

2015; Yu and Ren, 2017). In another example, duplication and

inversion of TAD boundaries near EPHA4 and WNT6 genes

cause limb malformation. Specifically, as illustrated in Figure 2,

disrupted TAD boundaries lead to significantly increasedWNT6

gene expression and decreased EPHA4 gene expression (Figures

2B,C), resulting in syndactyly (Lupiáñez et al., 2015; Angier,

2017). Yu and Ren (2017) provide an excellent review, covering

multiple examples where aberrations in TAD boundaries lead to

phenotypic abnormalities. These studies demonstrate that

genetic variations around TAD boundaries can modify

expression patterns of nearby genes and illustrate the

importance of studying alternations in the regulatory

landscape through 3D genome structure (Figures 2B,C).

Furthermore, we will introduce several examples using FIREs

to prioritize causal variants and the tissues or cell types where the

causal variants exert their effects. For instance, when overlapping

triglycerides-GWAS variants (Willer et al., 2013) on

chromosome 11 with FIREs across 14 human primary tissues

and seven cell types, a liver-specific FIRE overlapped the region

harboring GWAS variants (Figure 3) (Schmitt et al., 2016a). This

observation suggested that liver is likely the tissue where the

GWAS variants play functional roles. Although in this case liver

was known to be highly relevant for lipidmetabolism, this finding

serves as a successful proof-of-concept where tissue- or cell-type-

specific FIREs can help prioritize the most pertinent tissues or

cell types. Other examples include an asthma-GWAS variant

(rs755023315) (Han et al., 2020) residing in a GM12878-specific

FIRE that overlaps with an immune-related gene CD70 (Schmitt

et al., 2016a) and a SCZ-GWAS variant (rs9960767) residing in a

hippocampus super-FIRE overlapping with the

neurodevelopment related gene TCF4 (Crowley et al., 2021).

Although more recently developed, FIREs have been recognized

for their roles in annotating functions of non-coding variants due

to their high tissue- or cell-type specificity.

In addition, target genes for GWAS variants can also be

predicted from integrative analysis. For example, the Activity-by-

Contact (ABC) model, combining chromatin activity and

interaction information, assigns rs12740374, a GWAS variant

associated with low-density lipoprotein cholesterol (LDL) to the

SORT1 gene. The authors additionally reported that this variant

is a liver-eQTL for SORT1 and further validated its impact on

SORT1 gene expression via CRISPR genome editing in primary

hepatocytes (Fulco et al., 2019). We visualize the example in

Figure 4A. Consistent with predictions by the ABC model, this

chromatin interaction is also detected from liver Hi-C data

(Schmitt et al., 2016a) with a significant interaction between

the anchor bin (the gray highlighted region) including the GWAS

variant rs12740374 and the bin containing the promoter of the

SORT1 gene (green highlight) (Figure 4B). The ABC model

shows the possibility of using non-liver Hi-C data (K562 Hi-C

data) with liver enhancer activity data (H3K27ac ChIP-seq data

in liver tissue) to prioritize enhancer-promoter interactions in

the liver (Fulco et al., 2019).

In addition to the specific examples we described, many

other studies have been conducted to understand whether and

how non-coding variations exert their functions. For example,

Figure 4B shows a virtual 4C plot using the HUGIn tool (Martin

et al., 2017), which was developed to visualize chromatin

interactions anchored at GWAS variants or regulatory

regions of interest based on a compendium of Hi-C data

FIGURE 3
Triglycerides-GWAS signals near a liver-specific FIRE region.
(A) Locuszoom plot of GWAS results for triglycerides (Willer et al.,
2013). (B) FIRE scores across 21 human cell lines and primary
tissues examined in Schmitt et al. Each color represents a
tissue or cell line. GM12878: the GM12878 lymphoblastoid cell line
(LCL), H1: the H1 human embryonic stem cell line, IMR90: the
IMR90 human lung fibroblast cell line, MES: the human
mesendoderm cell line, MSC: the human mesenchymal stem cell
lines, NPC: the human neural progenitor cell line, TRO: the human
trophoblasts-like cell line, AD: the human adrenal gland tissue, AO:
the human aorta tissue, BL: the human bladder tissue, CO: the
human dorsolateral prefrontal cortex tissue, HC: the human
hippocampus tissue, LG: the human lung tissue, LI: the human liver
tissue, LV: the human left ventricle tissue, OV: the human ovary
tissue, PA: the human pancreas tissue, PO: the human psoas
muscle tissue, RV: the human right ventricle tissue, SB: the human
small bowel tissue, SX: the human spleen tissue.
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from 14 primary human tissues and seven human cell lines.

HUGIn tool also visualizes gene expression and epigenomic

data, which can further facilitate researchers to prioritize target

genes at GWAS loci. For another example, the E + G + Methyl

(Wu and Pan, 2019) method performs a gene-based aggregation

association test by integrating enhancer-promoter interactions

and methylation QTLs with GWAS summary statistics. E + G +

Methyl gains statistical power to detect target genes for GWAS

FIGURE 4
(A) Chromatin interaction between rs12740374, an LDL GWAS variant, and promoter of the SORT1 gene, reported by Fulco et al. (2019); (B)
Virtual 4C plot from HUGIn (Martin et al., 2017), for the same region in Panel A, shows a significant chromatin interaction between the anchor bin
harbor rs12740374 (the gray highlighted region) the and the promoter of the SORT1 gene (green highlight), in human liver tissue. The top panel shows
gene expression levels and the bottom panel includes three lines quantifying chromatin interactions between the anchor bin and all other bins
in the region: black line denotes the observed counts, red line denotes the expected counts, and blue line denotes the -log10 (p value).

FIGURE 5
eSCANworkflow. (A) eSCAN takes genotype and phenotype as well as a list of predefined enhancer (En1-En6 in the illustration) regions as input.
(B) Aggregation-based association tests are performed in the enhancer-screening step to identify significant enhancer(s). In this illustration, En2
(green), En3 (yellow), and En6 (turquoise) are deemed significant. (C) eSCAN performs dynamic sliding window scanning within the significant
enhancer region(s) to further narrow down the associated region. For example, En2* is the associated sub-region within En2 after narrowing
down via dynamic scanning. Similar for En3* and En6*.
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variants by jointly modeling these two pieces of complementary

information but the availability of both

(i.e., enhancer–promoter interaction data and methylation

QTL data) would limit the application of E + G + Methyl.

In addition, because single-variant GWAS summary statistics

are used for integration, rare variants would be under-

represented in E + G + Methyl analysis. Applying E + G +

Methyl to study SCZ, the authors identified several novel genes

associated with SCZ, which standard GWAS missed. Along the

same line, Yang et al. present the eSCAN method (Yang et al.,

2022) (illustrated in Figure 5), an aggregation-based association

testing framework that integrates various functional

annotations, including chromatin accessibility, histone

marks, and chromatin spatial organization. eSCAN uses

these functional annotations to define “enhancers”, or more

precisely, putative regulatory elements, and performs scanning

across these putative enhancer regions. The scanning approach

adopted by eSCAN allows simultaneous search and refinement

of associated regions within the putative enhancers, using both

genotype and phenotype data, rather than testing on a priori

defined genes or region units. The eSCAN method focuses on

variants residing in putative enhancer regions, which can

increase statistical power by reducing the search space

among non-coding regions. Furthermore, with its scan

feature, eSCAN tends to identify associated regions that are

shorter in size, effectively achieving fine-mapping of causal

variants and regions. Integration with chromatin conformation

data also makes easier biological interpretation of detected

regions. As an aggregation method that tests a set of

variants, eSCAN may not be able to narrow down to single

variant level. With higher resolution (Kb or finer) chromatin

conformation data, eSCAN can potentially pinpoint individual

variants. When applied to hematological traits, eSCAN

pinpointed multiplied regulatory regions associated with

various blood cell indices. These regions were either missed

by alternative methods or in much coarser resolution. Among

them, a regulator region (chr6:90, 423, 754–90,425,200) was

associated with platelet count, a signal missed by standard

GWAS. The gene it regulates, the BACH2 gene, is an

essential immune cell regulatory factor and plays a critical

role in maintaining regulatory T-cell function and B-cell

maturation (Afzali et al., 2017). These methods, integrating

epigenomic information, including chromatin conformation

data in genetic association testing, allow discovery,

refinement, and interpretation of regulatory regions

associated with complex diseases and traits. We anticipate

that these methods will lead to more exciting findings in the

near future, particularly given chromatin conformation data

accumulated in more tissues and cell types relevant to various

diseases and traits.

Discussion

Knowledge of genome-wide chromatin spatial

organization has been significantly advanced, particularly

since 2009, with the advent of Hi-C (Lieberman-Aiden

et al., 2009) and Hi-C-derived technologies. We anticipate

more rapid advancement and increasingly diverse data

generated with the constantly evolving sequencing- and

imaging-based technologies to study 3D chromatin

structure (Liu et al., 2022b). These technologies enhance

our understanding of chromatin 3D organization in general

and arrive timely to help interpret GWAS findings, which have

successfully identified hundreds of thousands of genetic

variants associated with various diseases and traits

(Buniello et al., 2019). These GWAS variants, easily

reaching millions when including variants that are in LD

(Huang et al., 2022a) with the index variants initially

detected, reside predominantly in non-coding regions of

FIGURE 6
Cell deconvolution methods take bulk Hi-C contact matrices as input to infer cell-type proportion in each sample and cell-type-specific
profiles.
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the genome (Zhang and Lupski, 2015; Martin et al., 2017) with

functional mechanisms remaining elusive. There is a pressing

need to link GWAS variants to their target genes in disease-

relevant tissues or cell types to advance these GWAS findings

from variants to function (Sullivan and Susztak, 2020;

Rowland et al., 2022b; Sun et al., 2022), to improved

understanding of disease etiology, to the development of

new drugs, and ultimately to personalized medicine.

Despite tremendous advances in both experimental

technologies and computational methods to study chromatin

spatial organization, multiple challenges and gaps remain before

we can fully leverage DNA 3D organization information for the

interpretation of GWAS results.

First, multiple layers of biases are buried in data generated

from Hi-C and other C-based technologies. For Hi-C data,

both explicit and implicit normalization methods have been

developed to mitigate such biases. Explicit normalization

assumes that systematic biases, due to restriction enzyme

cutting frequency, GC content or sequence uniqueness

(Yaffe and Tanay, 2011), are known a priori, and can be

removed by explicit model-based approaches (Yaffe and

Tanay, 2011; Hu et al., 2012). In contrast, implicit

normalization methods such as ICE, VC and KRnorm

(Imakaev et al., 2012; Rao et al., 2014b) assume the

presence of unknown biases and perform normalization

based on equal visibility assumption (Imakaev et al., 2012).

Data generated from other C-based methods suffer from

additional biases. For example, capture Hi-C data suffers

from probe capture efficiency bias, while HiChIP and

PLAC-seq data contain bias from immunoprecipitation

efficiency. Reducing or removing biases from C-based as

well as imaging data remains an active research area.

Second, we still need efficient and innovative methods to

integrate chromatin interaction information with

complementary pieces of information. Although we review

multiple approaches and methods that leverage chromatin

conformation data with various other sources of data (e.g.,

methylation QTL for E + G + Methyl, chromatin accessibility

and histonemarks for eSCAN), methods that integrate additional

omics data at either bulk tissue or single cell level will further

enhance power to prioritize and pinpoint important functional

variants, regions and genes, and potentially in tissue- or cell-type-

specific manner.

Third, studying of chromatin spatial organization can further

benefit from advanced machine learning or deep learning

methods. Deep learning-based methods have been used for

chromatin interaction prediction or Hi-C and alike data

enhancement. For example, Akita (Fudenberg et al., 2020)

adopts a convolutional neural network (CNN) to predict

chromatin interactions using DNA sequences alone, which can

be leveraged to predict the regulatory potential of GWAS variants

by assessing their impact on chromatin spatial organization. For

another example, HiCPlus (Zhang et al., 2018) and HiCNN (Liu

and Wang, 2019), both also CNN-based, have been proposed for

the enhancement of Hi-C data and show promising results when

applied to enhance HiChIP and PLAC-seq data (Huang et al.,

2022b). With increasing scale and complexity of the data, we

anticipate deep learning-based methods can further manifest their

advantages to extract non-linear and complex relationships among

high-dimensional features.

Finally, as a community, we need to generate high quality, high

resolution data from complementary technologies in diverse

biosamples. First, we need more comprehensive compendia of

chromatin conformation data. Such data holds and has been

delivering on the promise of helping to fulfill the crucial

variant-to-function task. Future efforts should encompass

diverse tissues and cell types across developmental stages,

multiple disease progression time-points, and under various

natural and perturbed conditions, as provided by recent

publications (Schmitt et al., 2016a; Jung et al., 2019; Song et al.,

2019, 2020) and efforts within the 4D Nucleome Project (Dekker

et al., 2017). Second, we need more single-cell data. Recent single-

cell technologies (Zhou et al., 2021; Yu et al., 2022) have further

enhanced our capabilities to characterize cell-type-specific profiles

as well as to potentially reveal cell-to-cell variability, which will

additionally facilitate our interpretation and understanding of

GWAS results (Yu et al., 2021; Li et al., 2022). In addition,

chromatin interactome profiles in population samples will also

be essential to understanding the variation across individuals, the

genetics behind the variation (Gorkin et al., 2019), and the

consequence of such variation for the inference of the

molecular causal paths via causal inference or mediation

analysis (Zhong et al., 2019, 2022). Such multi-sample

chromatin conformation data have emerged at the bulk level

encompassing many cells (Gorkin et al., 2019; Chandra et al.,

2021). Cell type deconvolution can be essential when analyzing

multi-sample data from tissue samples to ensure valid inference

and gain insights in a cell-type-specific manner (Figure 6) (Sefer

et al., 2016; Rowland et al., 2022a). We anticipate future studies

involving single-cell data, similar tomulti-sample single-cell RNA-

sequencing data (Ren et al., 2021; Zheng et al., 2021), which can

provide insights into disease etiology at an even more refined

resolution (van Buren et al., 2021, 2022; Zhang et al., 2022).

Interpretation of GWAS results has received extensive attention

in the past two decades, withmany alternative approaches proposed

and employed to achieve the variant-to-function goal. For example,

eQTL and co-localization with GWAS signals (GTEx Consortium,

2020; Kundu et al., 2022), transcriptome-wide association studies

(Gamazon et al., 2015; Zhou et al., 2020; Wen et al., 2021; Tapia

et al., 2022), and correlation between the epigenetic profile and

expression of nearby gene(s) (Sheffield et al., 2013) are among the

commonly adopted methods to identify target genes and relevant

tissues and cell types for GWAS variants. Chromatin conformation

data offers complementary information and has been found to

enhance our capabilities in generating and prioritizing potential

functional mechanisms when integrated with alternative
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approaches (Fulco et al., 2019; Marsha Wheeler et al., 2021; Sun

et al., 2022). In addition, DNA 3D organization help us gain insights

in the orchestration of different regulatory elements, revealing

enhancer-enhancer networks (Beytebiere et al., 2019; di

Giammartino et al., 2019), super enhancers that regulate multiple

genes (Huang et al., 2018; Zhang et al., 2021), and super interactive

promoters (Song et al., 2020; Wen et al., 2022) that tend to have

higher extent of enhancer redundancy. We urge future studies to

increasingly generate and leverage relevant chromatin 3D

organization information, which will significantly facilitate

advancing GWAS findings to ultimate clinical transformation.
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