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Cachexia is a devastating syndrome associated with the end-stage of several

diseases, including cancer, and characterized by body weight loss and severe

muscle and adipose tissue wasting. Although different cancer types are affected

to diverse extents by cachexia, about 80% of all cancer patients experience this

comorbidity, which highly reduces quality of life and response to therapy, and

worsens prognosis, accounting for more than 25% of all cancer deaths.

Cachexia represents an urgent medical need because, despite several

molecular mechanisms have been identified, no effective therapy is currently

available for this devastating syndrome. Most studies focus on skeletal muscle,

which is indeed the main affected and clinically relevant organ, but cancer

cachexia is characterized by a multiorgan failure. In this review, we focus on the

current knowledge on the multiple tissues affected by cachexia and on the

biomarkers with the attempt to define a chronological pathway, whichmight be

useful for the early identification of patients who will undergo cachexia. Indeed,

it is likely that the inefficiency of current therapies might be attributed, at least in

part, to their administration in patients at the late stages of cachexia.
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Introduction

Cancer cachexia is a severe co-morbidity affecting about 50–85% of cancer patients,

according to cancer type and stage.(Argilés et al., 2014; Argilés et al., 2019a; Biswas and

Acharyya, 2020). It is characterized by unintentional weight loss due to skeletal muscle

wasting, and frequently loss of fat mass, leading to death in 20–30% of all cancer patients

(Argilés et al., 2019a). In contrast to malnutrition or starvation, the simply nutritional

supports are largely inefficacious, highlighting the multifactorial aetiology of the

syndrome. Despite the high incidence of cachexia among cancer patients, drugs

directly targeting this syndrome are still lacking, making it an urgent medical need,

and nowadays it is largely accepted that only a multimodal approach will be successful in

the management of cachexia. Over the years, a large knowledge has been obtained but

cancer cachexia remains elusive in many aspects. Although the widespread manifestation
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of this syndrome and its severe impact on quality of life of both

patients and their family, therapeutic opportunities are not

available yet, and clear diagnostic criteria and biomarkers are

still away from clinical practice. Indeed, the main focus

frequently remains to fight only tumor progression, with the

consequence of ruling out sometimes other critical symptoms by

passively accepting them as “epiphenomena,” as cachexia was

considered in the past. However, the clinical scenario is far more

complex, and to distinguish cachexia from age-related muscle

wasting (sarcopenia) and malnutrition is really challenging in the

majority of multi-affected elderly patients. A global effort will be

crucial in the long pathway toward an efficacious management of

cancer cachexia. The goal of this review is to summarize the key

findings in tissues affected by cancer cachexia and to discuss the

temporal evolution of multiple organ dysfunction observed in

this syndrome, with final remarks on critical issues that should be

addressed to counteract cachexia in patients.

Definition of cachexia and
similarities/differences with other
muscle wasting disorders

A clinical consensus (Fearon et al., 2011) describes cachexia as

an unintentional body weight loss of more than 5% over the past

6 months. Although cachexia proceeds continuously, a

chronological path identifying three different subgroups have

been defined: pre-cachexia, cachexia, and refractory cachexia.

The latter stage is associated with no response to anticancer

therapies and a low performance status, with a life-expectancy

of less than 3 months (Fearon et al., 2011). Despite the majority of

studies focus on cachexia and refractory cachexia, the most

intriguing phase is pre-cachexia, in which the advent of

screening of reliable biomarkers, together with an efficacious

therapeutic management, could really make the difference for

patient. In this context, it is evident that a huge effort should be

made to address the diagnosis of pre-cachexia in clinical context,

in particular a general protocol should be established to screen

cancer patients for the risk of developing cachexia.

The global consensus established in 2011 define pre-cachexia as

an early phase in which metabolic derangements, such as impaired

glucose tolerance and anorexia, are already present, but the weight

loss is substantially absent (≤5%) (Fearon et al., 2011). Beside this

clinical consensus, other classifications have been proposed (Argilés

et al., 2017; Vigano et al., 2017; Argilés et al., 2019a). All these

classifications discriminate between cachexia severity, but Argilés

and collaborators proposed a Cachexia Score (CASCO) as a

numerical score obtained from 5 different components (body

weight loss and composition, inflammation/metabolic

disturbances/immunosuppression, physical performance,

anorexia, and quality of life), rendering the patient assignment to

each class more feasible (Argilés et al., 2011; Argilés et al., 2017;

Argilés et al., 2019b). Pre-cachexia, as defined before, is characterized

by early cachexia-related derangement without weight loss.

Therefore, pre-cachexia is diagnosed in CASCO approach by

reaching a score >35 considering all the parameters but

excluding the component of weight loss (Argilés et al., 2017). In

amore recent paper, cancer patients without cachexia were stratified

in different classes according to different risk to undergo cachexia

(Vagnildhaug et al., 2019). The authors divided patients affected

from different tumor types in five classes of increasing risk to

undergo cachexia, according to clinical parameters, and were able

to distinguish risk-level 1 patients, who did not reach the median

time for cachexia onset, from risk-level 5 patients, who had 51 days

as median time for cachexia manifestation. The latter class

represents patients with 3–5% weight loss in the last 6 months,

therefore very closed to the diagnosis of cachexia, consistent with

short timemeasured for syndrome development (Vagnildhaug et al.,

2019). Hence, this study uncovers interesting characteristics of the

pre-cachexia phase, highlighting important predictors of cachexia

development, such as cancer type, appetite, and initial weight loss.

In addition to the precise diagnosis of pre-cachexia phase,

another critical issue is to distinguish between cachexia and other

muscle wasting syndromes, such as sarcopenia and malnutrition,

which have different molecular mechanisms and therefore

therapeutic managements. The European Working Group on

Sarcopenia in Older People 2 (EWGSOP2) defines sarcopenia as

a muscle disease rooted in adverse muscle changes accruing

across a lifetime, while malnutrition is the involuntary weight

loss resulting from lack of nutrient intake or uptake (Meza-

Valderrama et al., 2021). These three muscle wasting conditions

share characteristics and unfortunately can also be present

simultaneously. Sarcopenia, typically associated with aging, is

a global and progressive muscle wasting disorder, which can be

manifested alone (primary sarcopenia) or in association or not

with inflammation and/or other diseases (secondary sarcopenia).

In contrast, the underlyingmechanism of malnutrition relies on a

negative energy balance due to an inappropriate nutrient uptake

and it strongly predicts severe sarcopenia. Cachexia is

characterized by muscle wasting and negative energy balance

and it is always associated with an inflammatory disorder but, in

contrast to malnutrition and sarcopenia, cachexia cannot be

reversed by simply nutritional or lifestyle supports (Meza-

Valderrama et al., 2021).

It is crucial to note that, despite all tumors need substrates to

grow and induce a systemic inflammation, not all the tumor types

provoke muscle wasting, ranging from the most associated with

cachexia, such as pancreatic cancer, to the only marginally

affected, such as prostate and breast cancer (Baracos et al.,

2018). Therefore, cachexia must be the result of a plethora of

stimuli, produced by tumor cells and/or multiple tissues/organs,

which act simultaneously and are not common to all cancer

types. Finally, cancer refers to hundreds of different diseases and

in the same way, cachexia has common characteristics but

display specific manifestations according to patient

background and tumor type. Due to the multifactoriality of
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cancer cachexia syndrome, in vitro studies are not sufficient to

understand the global puzzle, although useful in certain

conditions such as for the identification of catabolic pathways

acting on skeletal muscle. Therefore, the majority of our

knowledge on cancer cachexia rely on mouse pre-clinical

models, which we discuss in the next section (for a complete

review on the topic please refer to (Ballarò, Costelli and Penna,

2016; Penna, Busquets and Argilés, 2016).

Cancer cachexia preclinical models

The widely employed subcutaneous transplantation of cancer

cells, such as colon cancer C26 and Lewis lung carcinoma (LLC)

cells, is a fast and practical model of cancer cachexia that

generated most of our knowledge in the field.

In the C26 model, Balb/c or CD2F1 mice undergo body

weight loss and muscle wasting, mainly through increased levels

of circulating Interleukin-6 (IL-6), with premature death by

14–30 days from cell inoculation, according to the individual

cell clones (Aulino et al., 2010; Talbert et al., 2014; Bonetto et al.,

2016; Petruzzelli et al., 2022). Due to the high velocity and

penetrance of cachexia induction in C26-bearing mice, this

model is suitable for studies on cachexia per se. However, it is

less suitable for the study of cachexia progression over time

especially in case of very aggressive clones.

The other largely employed model is transplantation of Lewis

Lung Carcinoma (LLC) cells in C57Bl/6 mice, the most suitable

(almost unique) model for all the studies in genetically modified

mice, such as knock-out and knock-in mice. LLC-derived tumors

grow very fast and induce a systemic upregulation of Tumor

Necrosis Factor-α (TNF-α). It takes more time to induce cachexia

in LLC-bearing mice, and mice need to be euthanized by

35–40 days from tumor injection. There are other cancer cells

inducing cachexia, such as melanoma B16 and adenocarcinoma

MAC16, but they have been far less explored (Ballarò, Costelli

and Penna, 2016). Finally, the use of human cells should be

employed with care due to the necessity of transplantation in

immunocompromised animals, thus lacking a complete immune

response, one of the major components of cachexia. Beside

models in mice, cancer cachexia has been also investigated in

similar models in rat, such as Walker 256 carcinosarcoma and

Yoshida ascites hepatoma 130 (AH130) (Ballarò, Costelli and

Penna, 2016).

Compared to cancer cell inoculation, genetic models, such as

APCMin/+ and KPP (K-Ras; p53; Cre pancreatic cancer) (Mehl

et al., 2005; Talbert et al., 2019), are closer to human scenario,

making them more suitable for translational research, but due to

time, costs, and low penetrance, these models are far less

employed. ApcMin/+ mice carry out a heterologous mutation in

the Apc tumor suppressor gene, predisposing them to intestinal

and colon tumor development (Rapaich Moser et al., 1990). So

far, it is the most widely used genetic engineered mouse model to

study cancer cachexia. These mice develop intestinal polyps by

~4 weeks of age and loses body weight gradually between ~14 and

~20 weeks of age, reaching the peak of mortality at 20–24 weeks

of age (Mehl et al., 2005).

The lack of valid therapeutic interventions after years of

studies on cancer cachexia suggests that these pre-clinical models

are essentially inadequate to recapitulate the human syndrome.

Besides the kinetics of cachexia development, these models

typically employ young mice, whereas in humans, cancer and

cachexia are mainly associated with elderly patients. The age of

mice seems to affect or not cachexia development according to

the preclinical models, with no effect in C26-bearing mice

(Talbert et al., 2014), while an influence of age has been

reported in LLC model (Geppert et al., 2021), enforcing the

concept that more attention should be paid to the age of the

animals employed in preclinical models. However, the

implementation of preclinical models is not obvious, due to

the complexity of cachexia. Indeed, other comorbidities are

often present simultaneously with cachexia in elderly patients

affected by cancer, influencing its progression and generating

confounding effects, as in the case of sarcopenia. Finally, cancer

treatments (chemotherapy and radiotherapy) can lead to muscle

wasting, worsening and confounding the scenario. For the latter

reason, some investigators explored the molecular mechanisms

underlying chemotherapy-induced cachexia (Le Bricon et al.,

1995; Gilliam and Clair, 2011; Garcia et al., 2013; Chen et al.,

2015; Damrauer et al., 2018; Breen et al., 2020; Conte et al., 2020),

but these findings should be considered as a small piece of

information in the complex puzzle of cancer cachexia.

In the next sections, we summarize some key findings on the

deregulation of different tissues in cachexia. However, it is crucial

to keep in mind that most of this knowledge is coming from

studies performed in these preclinical models and in overt

cachexia conditions. The lack of efficacious therapies against

cachexia suggest that these approaches have been only partially

helpful and that our comprehension of cachexia is still too

fragmented (Roeland, 2021).

Skeletal muscle: Amain target but not
the first affected tissue

Skeletal muscle is the biggest tissue in human body,

accounting for about 40% of total body weight. Therefore,

severe loss of muscle mass, as observed in cachexia, highly

affects total body weight. In addition, muscle mass loss is

coupled with reduced functionality, resulting in significant

worsening of life quality and survival and, at the end-stage of

disease, can lead to sudden death due to respiratory and/or

cardiac failure (Argilés et al., 2019a). Most studies focus their

attention on the molecular mechanisms leading to this

unintentional muscle weight loss and numerous reviews

have summarized the knowledge on this process (Fearon,
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Glass and Guttridge, 2012; Argilés et al., 2014; Cohen, Nathan

and Goldberg, 2014; Baracos et al., 2018; Sartori, Romanello

and Sandri, 2021). In brief, the loss of protein content in

skeletal muscle is the result not only of the activation of several

pro-catabolic stimuli (such as Interleukin-6, Interleukin-1,

Tumor Necrosis Factor-α, Myostatin etc.) but also of the

absence or reduction of pro-anabolic signals (such as

Growth Hormone, Insulin, Insulin-like Growth Factor-1,

sexual hormones etc.). Collectively, these stimuli lead to the

activation of three main catabolic pathways: ubiquitin-

proteasome system, autophagy and cathepsins (Porporato,

2016), finally resulting in an excess of protein degradation

and thus loss of muscle mass. In this context, the availability of

energetic substrates, such as aminoacids from muscles, fuels

tumor growth both directly by acting on cancer cells and

indirectly by sustaining gluconeogenesis in the liver

(Porporato, 2016).

Among the common characteristics, muscle wasting is by

definition the crucial issue of cachexia. In the clinical context, it is

reasonable to hypothesize that pre-cachexia phase, which is the

most associated with positive therapeutic options, display no

muscle wasting. Indeed, patients with non-small cell lung cancer

(NSCLC) at stages I-III display pre-cachexia as no changes in fat

and lean body mass and any activation of ubiquitin-proteasome

system are observed, despite the presence of systemic

inflammation and a reduction in muscle performance (Op

den Kamp et al., 2012). Lung cancer patients display elevated

plasma levels of soluble TNF receptor 1 (sTNF-R1), fibrinogen,

and C-reactive protein (CRP), as well as reduced albumin,

highlighting sustained pro-inflammatory conditions. However,

no inflammatory and catabolic pathways are activated in skeletal

muscle at early stages, suggesting that only a prolonged exposure

to a pro-inflammatory status and/or additional elements are

required to induce muscle wasting (Op den Kamp et al.,

2012). Accordingly, other studies reported similar results in

lung and gastric cancer patients (Jagoe et al., 2002; Smith

et al., 2011). Although pre-clinical models are distant from

human scenario, the observation that inflammation and other

derangements precede muscle wasting has been recapitulated in

C26-bearing mice (Petruzzelli et al., 2022), in which spleen

enlargement and adipose tissue loss occur before skeletal

muscle atrophy. Similarly, splenomegaly precedes of at least

2 months muscle wasting in APCMin/+ mice (You et al., 2006).

Collectively, the studies on mouse models of cancer cachexia

allow us to extract information and to understand when muscles

start to break down. In murine models of tumor cells

transplantation, it varies depending on cancer cells: at

~15–18 days after LLC transplantion; at ~10 or ~21 days after

C26 inoculation, according to different subclones. In the case of

APCMin/+ mice, muscle wasting is evident starting from ~16 to

18 weeks of age. In patients, the timeframe between tumor

development and muscle wasting is obviously challenging to

determine, due to multiple variabilities that cannot be taken into

account.

In the context of muscle wasting, heart proteins can also be

affected. Indeed, death in cachectic patients frequently occurs for

respiratory failure or cardiac arrest, due to protein loss in

diaphragm or heart, respectively (Nichols, Saunders and

Knollmann, 2012). Symptoms frequently observed in patients

with cachexia are fatigue, impaired exercise tolerance, short

breath, all indicators of heart failure (Argilés et al., 2019a). It

has been assumed that cardiac proteins were initially preserved

and that their breakdown determines heart atrophy and failure

only at late timepoints, worsening patients’ quality of life.

However, heart weight has been correlated with Body Mass

Index (BMI) in a retrospective analysis on patients affected by

different cancer types (Barkhudaryan et al., 2017), suggesting that

heart protein loss cannot be considered only an end-stage of

cachexia development. Consistently, heart weight loss is

frequently present when cachexia is fully established in pre-

clinical models (Tian et al., 2011; Olivan et al., 2012). The

underlying mechanisms seem to be related to the increase of

both ubiquitin-proteasome and authophagy pathways in heart,

resulting in cardiac derangements that finally lead to an increase

in oxygen consumption and consequently energy expenditure,

contributing to the negative energy balance, one of the hallmarks

of cachexia syndrome (Argilés et al., 2019a).

In conclusion, skeletal muscle wasting, including heart

weight loss, is not the first sign of cachexia development,

although it is one of the main hallmarks. Indeed, cachexia

represents a global tissue deregulation, beyond musle wasting

(Wyart et al., 2020) and other tissues are affected before skeletal

muscle, such as the immune system.

Immune system: Friend and foe

The immune system is central in the cachectic process as it

links tumor masses and all tissues and organs directly implicated

in the progression of cachexia, such as adipose tissue, brain, liver,

gut, or heart. It is now well established that systemic

inflammation is a key driver of cancer cachexia, through

circulating molecules released by immune cells that have

direct effects on skeletal muscle (Baracos et al., 2018), and

through the induction of other systemic disruptions that can

in turn modulate skeletal muscle mass, such as the control of

central nervous system, appetite, energy intake and expenditure,

insulin resistance and hypogonadism (Laird and Fallon, 2017;

Wu and Ballantyne, 2017; Baracos et al., 2018). Accordingly,

preclinical and clinical studies have been conducted to evaluate

whether physical exercise might improve muscle performance in

patients with lung cancer, and they evidenced an interplay

between physical exercise, the immune system and also the

intestinal microbiota (Cortiula et al., 2022).
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Tumor necrosis factor-α, also known as “cachectin”, has been
the first cytokine identified to trigger cachexia mainly through its

direct catabolic effect on skeletal muscle (Tracey, Lowry and

Cerami, 1988). Interleukin-1β (IL-1β) and IL-6 have also been

reported to be associated with the cachectic phenotype both in

animal models and patients (Strassmann et al., 1993; Graziano

et al., 2005; Zhang et al., 2007; Scheede-Bergdahl et al., 2012;

Narsale and Carson, 2014; Pettersen et al., 2017).

Neuroinflammation mediated by IL-1β results in increased

muscle proteolysis and adipose lipolysis, which in turn leads

to loss of appetite and increase of resting energy expenditure

(Laird et al., 2021). In the skeletal muscle, IL-6 induces

proteasome and autophagy protein degradation pathways that

lead to wasting (Baltgalvis et al., 2008). In addition, IL-6 can also

target adipose tissue, gut, and liver, evidencing its central role in

cachexia (Narsale and Carson, 2014; Zimmers, Fishel and

Bonetto, 2016). Beside their individual effects, these cytokines

can cooperate to trigger several pathological mechanisms such as

systolic heart failure (Lavine and Sierra, 2017), liver dysfunction

(Seelaender et al., 1998; Jones et al., 2012; Gonçalves et al., 2019),

bone loss (Mahon and Dunne, 2018) or mucosal damage and gut

permeability (Costa et al., 2019). More recently, other cytokines

have been identified as mediators of cancer-induced muscle

wasting such as TNF-like inducer of apoptosis (TWEAK),

TNF receptor (TNFR)-associated factor 6 (TRAF6), interferon

gamma (IFN-γ), and leukemia inhibitory factor (LIF) (Smith

et al., 2007; Kumar, Bhatnagar and Paul, 2012; Johnston et al.,

2015; Kandarian et al., 2018). Interestingly, single nucleotide

polymorphisms in the IL-1, IL-6 and IL-10 genes have been

associated with cachexia in gastrointestinal cancers (Hishida

et al., 2019). These findings suggest that genetic variation in

immunity might be responsible for the predisposition of patients

affected by the same cancer type to develop or not cachexia.

The identification of these cytokines as central players in

cachexia led to the development of therapeutic strategies focusing

on their targeting (Argilés, López-Soriano and Busquets, 2012).

Clinical trials have been conducted to evaluate the therapeutic

properties of thalidomide (a-N-phthalimidoglutaramide),

etanercept and infliximab as TNF-α production suppressors

(Gordon et al., 2005; Monk et al., 2006; Wiedenmann et al.,

2008), and of monoclonal antibodies blocking IL-6 pathway

(Rigas et al., 2010; Ando et al., 2014). Broad-spectrum peptide

immunomodulator drugs have also been evaluated in clinical

trials on cachectic patients, resulting in a good safety profile and

improvement of body weight and physical performance (Argilés,

et al., 2019b). Although these clinical trials have evidenced some

therapeutic properties of these cytokine-directed strategies, the

results were largely unsatisfactory for the management of cancer

cachexia patients. Hence, a better understanding of the roles

played by the different tissues and organs, including the immune

system, and the inter-tissue crosstalk is essential for the

development of effective therapeutic strategies. An example of

this crosstalk in the context of cancer cachexia is the contribution

of neutrophils infiltration and microglia activation to brain

dysfunction (Burfeind et al., 2020; Kashihara et al., 2020).

Related to this, little is known on the role of the different

leukocyte populations in the progression of cancer cachexia. A

study reported a reduced number of macrophages and

neutrophils in cachectic muscles of C26-bearing mice (Inaba

et al., 2018). Conversely, a recent article reported that

neutrophilia appears to be an early systemic event upon

tumor growth and, notably, the number of neutrophils is also

increased in lung and liver at early timepoint (Petruzzelli et al.,

2022). The authors suggested that the systemic neutrophilia

might originate from the spleen as increased spleen size and

high number of splenic neutrophils progenitors were observed

prior to the onset of the cachectic phenotype. Beside neutrophils

number, their metabolism was affected in tumor-bearing mice

with an overall increase in metabolism and dependence on

glycolysis (Petruzzelli et al., 2022). Targeting of neutrophilia

or aerobic glycolysis worsens the cachectic phenotype and the

survival, indicating that neutrophilia might represent an

adaptative response to preserve the systemic metabolic

homeostasis during cancer progression (Petruzzelli et al.,

2022). In addition, another study reported an early infiltration

of neutrophils into regions of the brain that influence feeding

behavior and/or energy metabolism, such as the hypothalamus,

which contributes to anorexia and muscle atrophy in a mouse

model of pancreatic ductal adenocarcinoma (Burfeind et al.,

2020). Accordingly, it has been suggested that microglial cells

in the brain might have a protective effect against severe cachexia

by mediating depletion of neutrophils (Baazim, Antonio-Herrera

and Bergthaler, 2022).

According to macrophages, it has been reported that in

adipose tissue they contribute to the regulation of fat loss in a

model of hepatocellular carcinoma (HCC)-associated cachexia

(Erdem et al., 2019). Similarly, CD163+ macrophage muscle

infiltration correlates with skeletal muscles atrophy in patients

with pancreatic cancer and macrophage depletion leads to

reduced systemic inflammation and muscle wasting in

pancreatic tumor-bearing mice, indicating that both

macrophage number and polarization might play a role in the

progression of cancer cachexia (Shukla et al., 2020). A high

number of Myeloid-derived suppressor cells (MDSCs), a

heterogeneous population of myeloid cells with

immunosuppressive functions, have been reported in tumours

of patients affected by gastric and pancreatic cancers (Ohki et al.,

2012; Khaled et al., 2014) and in several mouse models of cancer

cachexia, such as C26 and LLC-bearing mice (Cuenca et al.,

2014). MDSCs expansion in the tumour, bone marrow and

spleen has been correlated with total body weight loss and

modulation in energy metabolism, but the underlying

mechanism remains to be defined (Cuenca et al., 2014).

The contribution of T-cells to the cachectic syndrome is also

largely unknown. A study reported a positive relationship

between the total number of T-cells, granulocyte/phagocytes,
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and CD3−CD4+ cells with muscle mass status in cancer patients,

and gene correlation analyses indicate that the presence of CD8+

T-cells appears to be negatively correlated with the expression of

key genes within muscle catabolism (Anoveros-Barrera et al.,

2019). Similarly, significant correlations between frequencies of

circulating T-cell populations and muscle strength, performance,

and body mass have been reported in a small cohort of patients

with gastrointestinal cancer (Narsale et al., 2019). In addition, the

maintenance of body weight upon infection-associated cachexia

in CD8+ T-cell null mice strongly suggest that CD8+ T-cells

contribute to skeletal muscle wasting (Baazim et al., 2019). In a

mouse model of cancer cachexia, the adoptive transfer of

CD4+CD44Low naïve T-cells reduces muscle atrophy, muscle

protein and DNA loss, even when inoculated after the onset of

cachexia, associated with a protection from CD4+ T-cell

lymphopenia (Wang et al., 2008). Hence, further investigation

is required to fully characterize the role of T-cells subpopulations

in cancer cachexia.

Metabolic and molecular alterations in skeletal muscle,

related to immune dysfunction and systemic inflammation,

can occur in patients prior body weight loss (Baracos et al.,

2018). Notably, a decline in contact hypersensitivity, a parameter

for cell-mediated immunity, has been reported in tumor-bearing

pre-cachectic mice, evidencing dysfunction of the immune

system preceding weight loss (Faber et al., 2009). Accordingly,

the weights of immune-related organs, such as the thymus and

spleen, are significantly altered in pre-cachectic mice, with a

decrease in the thymus weight and an increase in spleen weight

(Eun Ju et al., 2019). The abundance of T-cell populations in

spleen is dramatically reduced while cytokines associated to

cachexia, such as IL-6, consistently increase in a time-

dependent manner starting from 3 days after C26 tumor cells

inoculation (Eun Ju et al., 2019).

Collectively, these findings demonstrate that immunological

changes are observed prior to weight loss during the pre-cachexia

stage, indicating that immunological factors might be promising

biomarkers for an early detection of cachexia. Indeed, the

immune system seems to be one of the first tissue affected

during cancer cachexia and systemic inflammation appears to

be a main driver of cancer cachexia. For these reasons, the

immune system should receive much more attention in the

field of cancer cachexia. By deciphering its role, we might

pave the way for innovative therapeutic strategies to

counteract both tumor and cachexia progression.

The adipose tissue: A privileged target
in cachexia

The official definition of cancer cachexia states: “a

multifactorial syndrome characterised by an ongoing loss of

skeletal muscle mass (with or without loss of fat mass) that

cannot be fully reversed by conventional nutritional support and

leads to progressive functional impairment. The pathophysiology

is characterised by a negative protein and energy balance driven

by a variable combination of reduced food intake and abnormal

metabolism” (Fearon et al., 2011).

Based on this definition, adipose tissue can be unaffected, but

most cancer patients and animal models experience loss of fat

body mass (Ebadi and Mazurak, 2014). Interestingly, adipose

tissue abnormalities precede skeletal muscle wasting (Das et al.,

2011; Kir et al., 2014, 2016; Petruzzelli et al., 2022). Indeed, Das

et al. (2011) demonstrated that functional lipolysis is essential for

the induction of muscle wasting and that knocking-out adipose

triglyceride lipase (ATGL) or hormone-sensitive lipase (HSL) is

sufficient to totally or partially impair muscle breakdown,

respectively. Therefore, adipose tissue and skeletal muscle

establish a crosstalk in cachexia development. Lipolysis is

triggered by different stimuli, such as pro-inflammatory

cytokines and tumor-derived Zinc-α2-glycoprotein (ZAG)

(Ebadi and Mazurak, 2015), inducing the release of free-fatty

acids in circulation. The excessive oxidation of free-fatty acids in

skeletal muscle, induced by several tumor-derived factors, seems

to be among the earliest events in prompting muscle wasting

(Fukawa et al., 2016), supporting a functional and chronological

link between lipolysis and muscle breakdown.

Adipose tissue, in particular the white compartment (WAT),

is affected in cachexia also the browning process that is mediated

by the upregulation of mitochondria content (Porporato, 2016).

During cachexia progression, WAT browning is associated with

lipid mobilization and increase of the expression of Uncoupling

protein 1 (UCP-1), also called thermogenin, contributing in this

way to the dissipation of energy through heat production

(Petruzzelli et al., 2014). Therefore, WAT browning massively

contributes to resting energy expenditure (REE), worsening

negative energy balance and body wasting during cachexia

development. Evidences from mouse model of pancreatic

cancer suggest that adipose browning precedes adipose tissue

wasting (Kordes et al., 2021) and, consistently, expression of

UCP1 and body temperature are both increased in pancreatic

cancer patients before cachexia manifestation (Kordes et al.,

2021). Interestingly, Spiegelman lab demonstrated that the

tumor-derived parathyroid-hormone-related protein (PTHrP)

induces adipose tissue browning and muscle wasting (Kir

et al., 2014) and that the knocking-out of PTH-receptor only

in adipose tissue results not only in impaired browning process

but also in preserved muscle mass (Kir et al., 2016).

Adipose tissue can contribute to cachexia development also

through the release of adipokines. Adiponectin is upregulated in

cancer patients, irrespectively of cachexia manifestation, and

resistin does not display differences between non-cachectic or

cachectic patients. In contrast, leptin appears to be the most

interesting adipokine in the context of cachexia. Leptin is a

hormone released by adipocytes and enterocytes in small

intestine impairing hunger feeling. The circulating level of

leptin has been reported to be reduced in cachectic patients,

Frontiers in Cell and Developmental Biology frontiersin.org06

Ferrara et al. 10.3389/fcell.2022.960341

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.960341


with a direct association with appetite and insulin resistance,

which are two other hallmarks of cachexia syndrome

(Smiechowska et al., 2010). In cachexia, the appetite

regulation by leptin is impaired, and its role in insulin

resistance can be important in worsening catabolic status of

skeletal muscle.

In conclusion, these observations indicate that adipose tissue

abnormalities functionally and temporally precede skeletal

muscle wasting, leading to depict a hypothetical timeline in

which, starting from pro-inflammatory environment,

browning anticipates lipolysis that, in turn, precedes muscle

wasting.

Pancreas: Dual effects in cachexia
progression

Pancreatic cancer is the most associated with cachexia

development, reaching over 80% of patients (Fearon, Glass

and Guttridge, 2012; Baracos et al., 2018). This close

association suggest a key role of pancreas in the molecular

mechanisms underlying cachexia syndrome. Physiologically,

pancreas exerts both endocrine and exocrine functions: on

one hand it regulates glucose homeostasis through insulin and

glucagon (endocrine pancreas), on the other hand it secretes

enzymes necessary to nutrient digestion and uptake in the gut

(exocrine pancreas). Up to 90% of patients with tumor at the

head of pancreas experience an insufficiency of exocrine

compartment during the progression of disease, negatively

influencing nutrient uptake and thus resulting in malnutrition

and several deficiencies (Kordes et al., 2021). Concerning the

endocrine functions, about 75% of patients with pancreatic

cancer experience glucose intolerance or diabetes (Muniraj

and Chari, 2012). Interestingly, an impaired glucose tolerance

is frequent in general in cancer patients, representing one of the

first metabolic derangement upon tumor growth. Indeed, the

high glucose demand of cancer cells induces a general adaptation

of tissues, in particular skeletal muscle and liver, to finally

increase glucose production. The elevation of glucose in the

circulation leads to insulin synthesis that, when overproduced,

finally results in peripheral insulin resistance, affecting adipose

and muscle mass (Masi and Patel, 2021). Consistently, insulin

resistance is a common feature in cachectic patients and animals

(Tisdale, 2009; Honors and Kinzig, 2012). However, insulin

resistance often improves after surgery in patients affected by

pancreatic cancer, but not the exocrine insufficiency, strongly

highlighting pancreatic exocrine function as a crucial clinical

issue (Wu et al., 2013; Kang et al., 2016; Maignan et al., 2018).

Finally, heterotopic transplantation of pancreatic cancer cells

does not induce cachexia, while orthotopic pancreatic cancer

triggers cachexia that can be reduced with enzymes replacement,

enforcing the crucial role of exocrine pancreas functions in

pancreatic cachexia development (Kordes et al., 2021).

Although the insulin resistance results to be necessary and

sufficient to induce body wasting in Drosophila (Figueroa-

Clarevega and Bilder, 2015; Kwon et al., 2015), its role in

cachexia development appears controversial in mammalians.

Indeed, insulin deregulation is a common host adaptation to

cancer growth, but cachexia significantly interests only a

variety of cancer types. It is important to note that insulin

resistance observed in cancer is different to what is observed

in type-2 diabetes, being characterized by normal fasting

glucose level associated with any insulin level (Dev, Bruera

and Dalal, 2018). Moreover, the weight loss consequence of

metabolic changes due to type-2 diabetes often normalize

glucose control, in contrast to what observed in cancer

patients (Sah et al., 2013). In C26-bearing mice, cancer

cells transplantation is sufficient to trigger insulin

resistance before cachexia onset, and its improvement with

rosiglitazone results in reduction of cachexia early markers

(Asp et al., 2010). Accordingly, insulin administration

relieves cachexia symptoms in cancer patients (Lundholm

et al., 2007). Similarly, administration of metformin, the main

first-line medication for the treatment of type 2 diabetes,

reduces muscle wasting in tumor-bearing rats (Oliveira and

Gomes-Marcondes, 2016), but metformin induced opposite

results in a phase-2 trial (Kordes et al., 2015). The differences

related to insulin sensitivity in cancer patients with or

without cachexia might rely on degree of peripheral

resistance as additional mechanisms in cancer cachexia,

such as adipose tissue alterations and hormonal

deregulations (glucagon, GLP-1, ghrelin, vitamin D,

testosterone, apelin), in turn enforce it (Bartlett, Charland

and Torosian, 1995; Burney et al., 2012; Guillory, 2013;

Borner et al., 2018; Dev, Bruera and Dalal, 2018; Cecconi

et al., 2022). Therefore, the establishment of insulin resistance

seems to be an important contributor to cachexia

development.

In conclusion, a crucial role of both endocrine and

exocrine functions of pancreas in cachexia development

has been evidenced in patients affected by pancreatic

cancer. However, if endocrine functions seem to be a

contributor/enhancer of cachexia in pancreatic cancer and

other tumors, the role of digestive enzymes seems to exert a

more prominent role in this syndrome. Indeed, their

deregulations have a direct impact on nutrients uptake,

gut functionality, and microbiome, and, importantly,

pancreatic enzymes alterations are directly associated to

adipose tissue wasting, making it an early event in

pancreatic cancer-associated cachexia (Danai et al., 2018).

Collectively, pancreatic cancer unveils important indications

on key steps of cachexia development. Interestingly, the

pancreas can be severely affected also by oral and gut

microbiota dysbiosis and, conversely, pancreatic exocrine

functions largely influence gut microbiota (Kordes et al.,

2021).
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Gut and stomach: Bad allies in cancer
cachexia

Gastrointestinal tumors, including the already depicted

pancreatic cancer, are the most associated with cachexia

development (Baracos et al., 2018), suggesting a strong

correlation between the tissues and organs of the

gastrointestinal tract and cachexia pathogenesis. However,

data about the gastrointestinal tract regulation during cachexia

is largely unrepresented. Gut and stomach exert key functions

potentially crucial in cachexia development, from nutrient

uptake to metabolic regulation, and different abnormalities

can occur in the gastrointestinal tissues during the progression

of cachexia, such as digestive impairment, gut microbiota

dysbiosis and barrier dysfunction. Moreover, both stomach-

and gut-released factors can be deregulated, further worsening

this complex scenario. All these perturbations can deeply affect

cachexia development, inducing poor nutrients uptake, systemic

inflammation, and metabolic alterations (Delzenne et al., 2015;

Bindels and Thissen, 2016).

The stomach is an important regulator of feeding through the

release of the hunger hormone called ghrelin. Anorexia is a

crucial contributor to the reduction in nutrient uptake, in

addition to gastrointestinal dysfunction, having deep impact

on the establishment of the negative energy balance observed

in cachexia. Food intake is regulated by specific pathways in

central nervous system (CNS) and different hormones and

cytokines affect them. Among others, leptin, released by

adipose tissue in response to adiposity, inhibits food intake,

whereas ghrelin stimulates appetite. In cancer cachexia, leptin

levels are reduced while ghrelin levels are increased, most

probably as a compensatory mechanism, but both are unable

to exert their function, suggesting the establishment of a

resistance to these hormones (Engineer and Garcia, 2012;

Argilés et al., 2014). However, ghrelin is a hormone with

multiple functions in addition to orexigenic activity that are of

therapeutic interest for the management of cachexia, including

increase of adiposity, induction of positive energy balance, and

impairment of muscle wasting through a direct action on skeletal

muscle (Porporato et al., 2013; Khatib et al., 2018). Indeed,

pharmacological administration of ghrelin or mimetic

(Anamorelin) have been demonstrated to counteract cachexia

with promising results (Khatib et al., 2018). Although regulatory

agencies approved Anamorelin for cachexia syndrome in Japan

(Wakabayashi, Arai and Inui, 2020), the Phase-III ROMANA

trial unfortunately failed to reach one of its primary endpoints in

Europe. Indeed, Anamorelin administration resulted in

improvement of skeletal muscle mass but not function (Temel

et al., 2016; Prommer, 2017). Beside this failure, Anamorelin

remains one of the more promising drug for cancer cachexia

so far.

In addition to the stomach, the gut plays key roles in cachexia

progression. As model of intestinal cancer-related cachexia,

ApcMin/+ mice carry a nonsense point mutation in the Apc

gene, leading to multiple intestinal polyps and tumors

development. ApcMin/+ mice display increased gut barrier

permeability, whom onset correlates with IL-6 blood levels

and cancer cachexia manifestation (Puppa et al., 2011).

Similarly, C26-bearing mice display augmented intestinal

permeability due to increased claudin proteins, that is

consistent with what observed in gastric cancer patients, in

which high level of claudin and decreased amount of occludin

proteins correlate with gut barrier dysfunction (Jiang et al., 2014;

Bindels et al., 2018). The increase in gut permeability leads to

bacterial translocation and endotoxemia in severely affected

mice, worsening systemic inflammation, which has been also

confirmed in cachectic patients (Zhang et al., 2012; Klein et al.,

2013). Indeed, lipopolysaccharide-binding protein (LBP), a

marker of bacterial translocation, is increased in C26-bearing

mice and correlates with cachexia manifestation, whereas it is a

predictor of overall survival, appetite, anorexia, and cachexia

manifestation in lung and colon cancer patients (Bindels et al.,

2018). Interestingly, these alterations are independent of

anorexia in the C26 model, and the blocking of IL-6 not only

counteracts cachexia progression but also restores microbiota

dysfunction (Bindels et al., 2018).

In addition to alterations in gut permeability, a disruption of

the intestinal microbiota homeostasis called dysbiosis also occurs

in cancer cachexia, affecting its development (Herremans et al.,

2019). A direct link between microbiota and skeletal muscle

function has been highlighted by treating mice with broad-

spectrum antibiotics, which results in reduced muscle

endurance and increased fatigue, with no changes in muscle

mass or composition, that were restored after natural bacterial

repopulation (Nay et al., 2019). Gut microbiota dysbiosis highly

affect blood metabolome (Oliphant and Allen-Vercoe, 2019),

and, accordingly, restoration of gut microbiota reduces systemic

levels of inflammatory cytokines and relieves muscle wasting in

mice (Bindels et al., 2012; Varian et al., 2016; Huang et al., 2017).

An important question is to understand whether dysbiosis is

related to cancer or more specifically to cachexia. To address this

issue, Pekkala et al. (2019) demonstrated that C26 cancer alters

gut microbiota, but Activin receptor blocker, used as anti-

cachectic agent (Zhou et al., 2010), has only marginal effects

on microbiota composition.

In summary, alterations in gastrointestinal district plays a

key role in cachexia development, as suggested by high

frequency of this syndrome in patients with tumors in the

gastrointestinal tract, with high impact in nutrient uptake and

systemic inflammation. However, it is not clear in which phase

of the cachectic syndrome gut dysfunctions occur, despite

evidences suggest that alterations in the gut appear at the

onset of cachexia. Beside pancreas and gut, liver as component

of the gastrointestinal tract has also been reported to be

affected in cancer cachexia as described in the following

section.
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Liver: Key modulator of energy
expenditure

The liver is a metabolic factory serving as both storage and

synthesis site for energy substrates such as glucose, aminoacids,

fatty acids, but also hormones, Insulin-like Growth Factor-1, and

acute phase proteins. Liver mass is a significant predictor of

energy expenditure and cachectic patients frequently show an

inflamed fatty liver. A retrospective study on patients with

colorectal cancer unraveled an increase in liver mass

concomitant to elevation of resting energy expenditure (REE)

and loss of skeletal muscle and adipose tissue (Lieffers et al.,

2009). The largest changes in body composition are

predominantly in liver and muscle and occurred between

4.2 and 1.2 months prior to death in the retrospective cohort.

Similarly, the activation of the liver acute phase response has

been correlated with increased REE in patients affected by

pancreatic cancer (Falconer et al., 1994) and it has been

suggested that the liver acute phase response can lead to the

shift in the priority of protein metabolism between skeletal

muscle and liver that might in turn contribute to muscle

wasting in these patients (Fearon et al., 1999). The increased

production of acute phase proteins by liver contributes to

inflammation in patients with cancer and the C-reactive

protein (CRP) appears to be an important parameter for

prognosis (Proctor et al., 2011). Beside systemic inflammation,

it is also important to point out that the number of liver-

infiltrating macrophages has been reported to be higher in

cachectic patients affected by pancreatic cancer at stages 3 and

4, and to be negatively correlated with nutritional status

(Martignoni et al., 2005). Defects in hepatobiliary secretion,

mainly due to a process termed “inflammation-induced

cholestasis”, and in bile acid metabolism, which in turn fuel

hepatic inflammation, have also been reported in cachectic mice

(Thibaut et al., 2020, 2021). Accordingly, targeting bile acid

metabolism relieves cancer cachexia manifestations in C26-

bearing mice (Feng et al., 2021). Overall, these findings point

toward an interaction between tumor, immune cells and liver

that might play key roles in the progression of cancer cachexia.

Liver accumulates fat and releases low amounts of very low

density lipoprotein (VLDL) in tumor-bearing mice (Jones et al.,

2012). It has been demonstrated that deregulation in hepatic lipid

metabolism results in worsening of cachexia (Seelaender et al.,

1998; Jones et al., 2012; Gonçalves et al., 2019). These reductions

in fatty acid mobilization and circulating lipids appears to shift

liver metabolism towards a more glycolytic phenotype. Indeed, a

marked depletion in hepatic glycogen content has been reported

in different preclinical models of cancer cachexia (Narsale et al.,

2015; Rosa-Caldwell et al., 2019), suggesting a conserved

mechanism for alterations in hepatic metabolism across

different cancer types. Cachectic liver also shows

mitochondrial alterations in mouse models (Rosa-Caldwell

et al., 2020), which precede a fibrotic phenotype during the

progression of cancer-cachexia also observed in patients

(Pinter et al., 2016; Judge et al., 2019). Similarly, it has been

reported that liver mitochondria from tumor-bearing rats

request a higher amount of nutrients to sustain the ATP

production (Dumas et al., 2011). The authors identified

alterations in the content and fatty acid composition of

cardiolipin as a possible mechanism to explain the

hypermetabolism observed during cancer cachexia.

Collectively, these data indicate that mitochondrial

dysfunction in the liver appears to contribute to alteration in

energy metabolism associated with cancer cachexia.

It is now evident that liver dysfunction contributes to cancer

cachexia progression, but the underlying mechanisms remain

not fully understood. A couple of studies indicate that

alterations in liver might intervene very early after tumor

growth. Indeed, a decrease in HMG-CoA reductase (HMGR)

expression has been observed at 1 week after tumor inoculation

in mice (Rosa-Caldwell et al., 2019). HMGR is an enzyme

highly expressed in the liver that catalyses the rate-

controlling step in cholesterol production, and it is subjected

to extensive hormonal and dietary regulation. Accordingly, a

study showed that levels of LDL cholesterol and total

cholesterol appear to be relevant indicators of cachexia

stages irrespective of the presence of metabolic syndrome or

lipid-lowering medication (Zwickl et al., 2020). These

observations indicate that markers of metabolic

dysregulation might be exploited for early detection of

cachexia progression. In this context, lipoproteins are

promising candidates as these macromolecules circulating in

blood can be easily measured in a clinical laboratory.

Beside modulation in HMGR expression, the authors also

found a decreased expression of Peroxisome proliferator-

activated receptor-γ coactivator-1α (PGC-1α) at 1 week

after tumor inoculation (Rosa-Caldwell et al., 2019). PGC-

1α is a transcription cofactor that has been shown to be a

potent activator of mitochondrial biogenesis. Hence,

mitochondrial dysfunction might be an early event in liver

upon tumor progression as previously suggested (Dumas

et al., 2011; Rosa-Caldwell et al., 2019). Another study has

reported alterations in liver prior to the induction of cachexia

in ApcMin/+ mouse. The authors found that the expression of

ER-stress markers is modulated in liver both before and after

cachexia onset (Narsale et al., 2015). More specifically,

progression of cachexia reduces the expression of upstream

ER-stress markers such as BiP and IRE-1α in liver, while

induces its downstream target CHOP (DNA-damage

inducible transcript 3).

Altogether, these data unravel that alterations in liver

homeostasis can occur before the onset of the cachectic

phenotype defined as body and muscle weight loss. Further

investigations are warranted to decipher the early alterations

in liver homeostasis upon tumor growth and before the onset of

the cachectic phenotype to both identify novel biomarkers to
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predict cachexia and to find novel insights into the mechanisms

triggering the cachectic phenotype.

Brain: Victim or culprit?

The crucial role of anorexia in the progression of cachexia

suggests an important contribution of brain in the establishment

of cachexia, despite the investigations in this field are very

limited. Several reports indicate that appetite loss is an early

event in cachexia progression, occurring before muscle wasting

(Yeom et al., 2021; Yeom and Yu, 2022). The cause of anorexia is

elusive but inflammatory mediators and tumor-derived factors

appear to play a key role in the loss of appetite (Argilés et al.,

2019a). In particular, systemic inflammation is also associated

with inflammation in the hypothalamus, whom nuclei exert a

profound effect on energy homeostasis regulation, resulting in

the activation of anorexigenic neurons (proopiomelanocortin,

POMC, and cocaine-and-amphetamine regulated transcript,

CART) and inhibition of orexigenic neurons (neuropeptide Y,

NPY, and the agouti-related protein, AgRP) (Argilés et al.,

2019a). Pro-inflammatory cytokines induce illness behaviours

and are acquired and amplified near the CNS nuclei linked to

energy homeostasis regulation (Olson, et al., 2021b). The IL-1β is
the main cytokine produced both peripherally and centrally in

response to tumor development, but its genetic deletion does not

alleviate fatigue signs in different preclinical models, suggesting

that IL-1β might be the initial driver or regulator of some

symptoms but not the unique therapeutic target (Olson, et al.,

2021b). Indeed, other cytokines are highly expressed in the brain,

such as IL-6, TNF-α and LIF. For example, TNFα is a strong

mediator of CNS inflammation and is likely implicated in the

brain-fat axis activation that triggers adipose tissue wasting in

cachexia. However, targeting inflammatory cytokines in cachexia

fails to properly counteracts the syndrome, suggesting that

systemic inflammation might be crucial in the induction of

cachexia but not essential for its maintenance (Olson, et al.,

2021b).

In addition to inflammation, other factors contribute to

anorexia. Beside the already mentioned ghrelin and leptin,

also Glucagon-like peptide 1 (GLP-1), Lipocalin 2 (LCN2),

Insulin-like 3 (INSL3), and Growth differentiation factor 15

(GDF15) can induce anorexia in cancer cachexia by directly

acting on the brain centres of appetite regulation (Argilés et al.,

2019a; Olson, et al., 2021b). The latter three factors have been

recently reported to act on CNS circuitry to drive cachexia

(Olson, et al., 2021b). The stress factor GDF15 is frequently

upregulated in cachexia, in both patients and preclinical models,

and is implicated in anorexia, adipose and muscle wasting,

making it a promising therapeutic target for cachexia

syndrome (Sohail Ahmed et al., 2021). Recently, it has been

demonstrated that inhibition of GDF15 counteracts cachexia by

reducing activation of sympathetic nervous system on adipose

triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL)

in WAT, highlighting its major contribution in cachexia

development besides appetite regulation (Suriben et al., 2020).

In contrast, LCN2 deletion improves fat and muscle mass mainly

through appetite regulation, whereas INSL3 elevation induces

anorexia that precedes adipose tissue wasting that, in turn,

anticipates muscle atrophy (Olson, et al., 2021a; Yeom et al.,

2021). Finally, anorexia is influenced by several other aspects,

such as adverse events related to chemo/radiotherapy,

gastrointestinal dysfunctions, alteration in taste perception,

reduced motor activity, psychological distress tending to

depression (Argilés et al., 2019a). Despite the depicted crucial

role of anorexia and nutrient intake in cachexia development, the

total parenteral nutrition is largely ineffective in cancer patients

(Evans et al., 1985), unveiling the great complexity of this

syndrome.

Both human and animals undergoing cachexia display

hallmarks of stress such as elevated glucorticoid circulating

levels. Stress response induces the evolutionarily conserved

fight-or-flight program in CNS, which results in increased

metabolic rate and elevated energy expenditure through the

upregulation of sympathetic nervous system tone (Olson,

et al., 2021b). The activating stressors range from fasting

and malnutrition to acute illness and fear, all of them

implicated in cachexia at different levels (Olson, et al.,

2021b). The glucocorticoid release is mediated by the

activation of the hypothalamic-pituitary-adrenal axis by,

among others, IL-1β and GDF15 (Argilés et al., 2019a;

Cimino et al., 2021). Elevated glucocorticoid levels induce

skeletal muscle wasting, increase cardiac contractility, alter

liver metabolism, and enforce IL-6-mediated browning of

WAT (Argilés et al., 2019a; Kordes et al., 2021; Martin et al.,

2022). Indeed, impairing glucocorticoid signalling results in

skeletal muscle mass preservation in different cachexia

models (Braun et al., 2011, 2013, 2014). Finally, another

contributor to cachexia relies on alterations of

hypothalamic-pituitary-gonadal axis, which results in

decreased testosterone levels in male, reaching to affect

40%–90% of cancer patients (Olson, et al., 2021b).

A last aspect to emphasize in relation to brain

involvement in cachexia development is the psychosocial

impact related to tumor diagnosis. Depression and anxiety

are more prevalent in cancer patients than in global

population, and it has been highlighted a positive

correlation between pro-inflammatory cytokines and

depression (Seruga et al., 2008; Kordes et al., 2021).

Cachectic patients are even more associated with

depression and anxiety (Sun et al., 2020), further

worsening the general scenario of this devastating

syndrome. Indeed, depression is in turn a crucial risk

factor for anorexia and loss of weight (Kordes et al., 2021).

Despite the temporal aspect of brain involvement in cachexia

development is still unknown, the knowledge obtained so far
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suggests that central activation of stress and anorectic circuitries

is an early event, largely dependent on pro-inflammatory

cytokines, which anticipates adipose tissue dysfunctions and,

in turn, skeletal muscle wasting.

Biomarkers for cancer cachexia: An
unmet medical need

As already depicted, the lack of a consensus for an early

diagnosis and management results in inefficacious therapeutic

opportunities for cachectic patients. In this sense, identification of

early biomarkers could be a breakthrough in the field. Investigating

cachexia biology, several molecules have been suggested as possible

biomarker candidates, such as inflammatory mediators, circulating

factors, metabolites, and microRNAs. The inflammatory mediators

can be released both from tumor and host cells and are frequently

elevated in cancer cachexia. Among them, IL-6, TNF-α, IL-1β, CRP,
and albumin are the most investigated, but the correlation between

them and cancer cachexia is elusive in humans (Cao et al., 2021).

The Glasgow Prognostic Score, an inflammation-based cancer-

prognostic marker composed of serum elevation of CRP and

decrease in albumin concentration, predicts patients with

systemic inflammation as part of cancer cachexia and has been

shown to have independent prognostic value (Laird et al., 2013).

Other factors related to the immune system have been proposed as

biomarkers such as the neutrophil-to-lymphocyte ratio, which is a

prognostic indicator in cancer, and has been recently associated with

weight loss and cachexia in a retrospective study in advanced colon,

lung, and prostate cancer patients (Barker et al., 2020). Beside

inflammatory factors, several other circulating proteins have been

linked to cachexia development and thus proposed as potential

biomarkers: ZAG is a lipid mobilizing factor promoting WAT

browning and lipolysis; Activin A, Myostatin, and GDF15 are

TGFβ-family members involved in skeletal muscle atrophy

(Activin A and Myostatin) and anorexia and lipolysis (GDF15);

PTHrP inducesWAT browning and correlates with lower lean body

mass in lung and colorectal cancer patients; Angiotensin II induces

muscle wasting and is upregulated in cancer patients in both pre-

cachexia and cachexia conditions; LPS-binding protein is a marker

FIGURE 1
Hypothetical temporal model for cachexia progression by integrating findings from preclinical models and patients. Based on the data reported
in literature, we suggest a timeline of organs/tissues derangement upon cachexia progression, highlighting that skeletal muscle wasting, considered
as one of themain pathological processes in cachexia, appears to be a late event. In response to tumor growth, the first affected tissue is the immune
system, which is a central player in the cachectic process and in the establishment of systemic inflammation. Similarly, several reports indicate
that appetite loss is an early event in cachexia progression and although the cause of anorexia is still elusive, inflammatory mediators and tumor-
derived factors appear to play key roles in the loss of appetite. Another early event in host adaptation to tumor development is the derangements of
both endocrine (insulin resistance) and exocrine functions of pancreas, affecting both tumor growth and cachexia development. Accordingly,
pancreatic enzymes alterations have been directly associated to adipose tissue wasting, evidencing that it can be an early event in cancer-associated
cachexia. A couple of studies indicate that some alterations in liver, such as mitochondrial dysfunctions and acute phase response, might also
intervene early after tumor initiation while steatosis and fibrosis appear later. The most investigated tissues in cachexia, adipose tissue and skeletal
muscle, engage a tight crosstalk, with alterations in adipose tissue preceding skeletal muscle wasting. Lipolysis triggered by different stimuli, such as
pro-inflammatory cytokines, induces the release of free-fatty acids in circulation. The excessive oxidation of free-fatty acids in skeletal muscle seems
to be among the earliest events in prompting muscle wasting, supporting a functional and chronological link between lipolysis and muscle
breakdown. Finally, alterations in gut homeostasis have been reported to deeply contribute to cachexia development, but it is not known in which
phase of the cachectic syndrome gut dysfunctions occur, despite evidence suggests that alterations in the gutmight appear at the onset of cachexia.
The Figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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of gut barrier dysfunction and shows interesting prognostic value for

cachexia development and overall survival in patients; Lipocalin

2 regulates food intake and correlates with neutrophil expansion,

muscle wasting and survival in pancreatic cancer patients;

INSL3 promotes anorexia and its plasma levels correlate with

anorexia severity in pancreatic cancer patients (Sanders, Russell

and Tisdale, 2005; Fearon, Glass andGuttridge, 2012; Kir et al., 2014;

Ebadi and Mazurak, 2015; Loumaye et al., 2017; Loumaye and

Thissen, 2017; Bindels et al., 2018; Olson, et al., 2021a; Cao et al.,

2021; Sohail Ahmed et al., 2021; Yeom et al., 2021; Talbert and

Guttridge, 2022).

Cachexia, being associated with muscle and adipose tissue

wasting, displays elevated metabolites deriving from these

catabolic processes, such as amino acids, collagen and titin

fragments, carnosine dipeptidase 1, glycerol and free-fatty

acids (Loumaye and Thissen, 2017). Other metabolites have

been recently identified, such as sphingolipids (Morigny et al.,

2020) and lipoproteins (O’Connell et al., 2021). Both

sphingolipids, lipoproteins, and amino acids seem to be early

markers in cachexia development, enforcing the importance of

their measurement. Finally, microRNAs and other non-coding

RNAs are emerging as novel markers of cachexia with clinical

interest (Donzelli et al., 2020; Santos et al., 2020).

The novel omics studies are deepening our knowledge about

cancer cachexia (Loumaye and Thissen, 2017; Paccielli Freire et al.,

2020; Cui et al., 2022), increasing the list of potential biomarkers

for an early diagnosis. By focalizing on both general and cancer-

specific cachexia inducing factors, these approaches will allow the

development of novel targeted therapies depending on the cancer

types (Paccielli Freire et al., 2020). More specifically, metabolomics

studies allow to identify non-invasive markers of cachexia such as

the already mentioned microRNAs (Donzelli et al., 2020),

sphingolipids (Morigny et al., 2020), lipoprotein and amino

acids changes (O’Connell et al., 2021), highlighting the crucial

role of new technologies in this context (Loumaye and Thissen,

2017; Paccielli Freire et al., 2020; Cui et al., 2022).

Until now, although many potential candidates have been

studied, none of these have been validated as an effective clinical

biomarker, rendering cancer cachexia even more complex to

manage in a clinical context. Many issues need to be addressed

and, due to the multifactorial condition of cancer cachexia, a

combination of approaches should be considered. Moreover, it is

likely not only that cachexia diagnosis will need a combination of

different biomarkers and clinical signs, but also that different

tumor types will present variable markers, as highlighted by

preclinical models. As example, anorexia is present in C26-

bearing animals but not in LLC ones, although both tumors

induce cachexia (Yeom et al., 2021). Therefore, the mechanisms

are multiple and the identification of one ideal biomarker useful

for all cancer patients seems to be extremely implausible. Among

the cited biomarkers, great attention is currently focused on

GDF15, which, in addition to its diagnostic value, is actively

under investigation as therapeutic target (Lerner et al., 2015;

Suriben et al., 2020; Sohail Ahmed et al., 2021). Hence, much

work has still to be done and, until a clear temporal line will not

be clarified, the identification of biomarkers able to change the

paradigm for cancer patients and their management will be

extremely challenging.

Concluding remarks

Despite the large amount of data collected about cachexia over

the years, this devastating syndrome remains elusive, and there are

still no drug or therapeutic opportunity available for cachectic

patients. The parable recently mentioned by Dr. Roeland about

the blind men and the elephant, in which each blind person

describes the aspect of elephant based on the personal and

limited experience by touching the animal (Roeland, 2021),

perfectly fits with our knowledge on cancer cachexia. The

multifactoriality and complexity of cachexia cannot be addressed

by in vitro models as they do not reproduce the multiorgan

dysfunctions of cachexia and allow to identify only a partial and

uncomplete piece of the puzzle. To better understand cancer

cachexia, preclinical models are mandatory, but a huge effort

should be employed to implement animal models to accurately

recapitulate the human phenotype. Indeed, preclinical models have

limitations such as the difference of age, with young and health

animals employed in the preclinical studies versus the majority of

patients in the clinic that are aged and multi-diseased (Talbert et al.,

2014; Geppert et al., 2021). Moreover, cachexia should be studied

over time, taking in consideration the early signs of cachexia

manifestation, to identify the most favourable time window for

therapeutic intervention. Indeed, mice or patients prior to weight

loss are defined as pre-cachectic, and it is now evident that cachexia

starts in other tissues than skeletal muscle or adipose tissues, which

appear to be affected at late stage (Figure 1). Therefore, although

skeletal muscle wasting, including heart weight loss, is one of the

main hallmarks of cancer cachexia, it is not the first tissue affected

that might explain the failure of therapeutic approaches targeting

muscle wasting as it might represent a point of no return. Cachexia

and tumor onsets might be concomitant sometimes, and it is also

possible that, in some cases, tumor progression might halt due to

failure in cachexia establishment. Hence, more attention should be

paid to cancer models without development of cachexia, to rule out

all the host adaptions to cancer growth unrelated to cachexia

syndrome, and to the different types of cachexia (e.g., cancer

cachexia versus septic cachexia) to decipher common and

distinct cellular and molecular mechanisms. Concomitantly,

measurements of multiple parameters associated with cachexia

should be evaluated more deeply in the clinical context, with two

main goals: to identify early signs and biomarkers of cachexia to

intervene as soon as possible and to collect observations that can

be further investigated in preclinical studies to develop animal

models closer to human patients. As described in this review,

cachexia is a global derangement of multiple tissues, often
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resulting in a general resistance to multiple factors (such as

insulin, leptin, ghrelin, etc.). When multiple circuitries break

down, patients come close to a point-of-no-return in which

health appears definitely lost and therapeutic interventions

appear likely impossible (López-Otín and Kroemer, 2021).

The main goal is to direct all efforts to avoid the

achievement of this state, focusing on the earliest signs.

In conclusion, many actions are needed to better

understand cancer cachexia (Garcia et al., 2022).

Clinicians should better take into consideration, beside

tumor fighting, also lean and fat body mass, nutritional

and psychological status of their patients, and multimodal

therapeutic approaches should be considered to counteract

this syndrome. A large amount of data stratifying patients is

necessary to understand other possible variables in cachexia

development, such as age and sex of patients, and to identify

early biomarkers. The future in the field of cancer cachexia

will be challenging but only a global effort will unveil the

underlying mechanism of this devastating syndrome and

will allow the identification of therapeutic strategies to

improve quality of life and survival of patients.
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