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Cells require major physical changes to induce a proper repartition of the DNA.

Nuclear envelope breakdown, DNA condensation and spindle formation are

promoted at mitotic entry by massive protein phosphorylation and reversed at

mitotic exit by the timely and ordered dephosphorylation of mitotic substrates.

This phosphorylation results from the balance between the activity of kinases

and phosphatases. The role of kinases in the control of mitosis has been largely

studied, however, the impact of phosphatases has long been underestimated.

Recent data have now established that the regulation of phosphatases is crucial

to confer timely and ordered cellular events required for cell division. Onemajor

phosphatase involved in this process is the phosphatase holoenzyme PP2A-

B55. This review will be focused in the latest structural, biochemical and

enzymatic insights provided for PP2A-B55 phosphatase as well as its

regulators and mechanisms of action.
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Introduction

Protein phosphorylation is a post-translational modification used by the cell to

modify protein properties. This modification is essential for the control of cellular

processes including mitosis. Entry into mitosis is triggered by the activation of the

kinase Cyclin B/Cdk1 that phosphorylates a myriad of proteins and promotes profound

physical cellular remodeling. Together with kinases including Plk1, Aurora A, Aurora B,

Haspin, Mps1 or Bub1, Cylcin B/Cdk1 specifically and timely phosphorylate different

substrates, modify their function/localization and promote essential cellular changes such

as nuclear envelope breakdown, chromatin condensation and spindle formation (Nigg,

2001; Lindqvist et al., 2009). These kinases further modulate kinetochore-microtubule

attachment and activate a checkpoint mechanism called the Spindle Assembly

Checkpoint (SAC) (Lara-Gonzalez et al., 2012; Musacchio, 2015). The SAC prevents

chromosome segregation before kinetochores are correctly attached to the microtubules

of the spindle and its satisfaction defines a point of no-return from which cells are forced

to exit mitosis. This commitment point is marked by the activation of the E3 ubiquitin
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ligase Anaphase Promoting Complex (APC) that ubiquitinates,

among others, the protein Cyclin B and induces its degradation,

definitively inactivating Cyclin B/Cdk1 and making mitotic exit

irreversible. Cyclin B degradation triggers a specific and

progressive program of protein dephosphorylation that will

establish the correct temporal pattern of events required for

the reformation of a G1 cell (McCloy et al., 2015; Cundell et al.,

2016; Swaffer et al., 2018; Touati et al., 2018). Besides Cyclin B

proteolysis, the establishment of a fine-tuned program of

dephosphorylation requires the activity of several

phosphatases that will be sequentially turned on as Cyclin B/

Cdk1 becomes inactivated.

Unlike kinases, protein phosphatases have been considered

for a long time as housekeeping enzymes with constant activity.

However, data from the last years have established the prominent

role of the modulation of these enzymes in the control of protein

function and cell signaling. Phosphatases such as PP1, PP2A,

PP4 or PP6 have been shown to play a primordial role in the

control of mitotic progression (Mayer-Jaekel et al., 1994; Chen

et al., 2007; Schmitz et al., 2010; Wurzenberger et al., 2012).

In this review, we will focus on one major phosphatase,

PP2A. We will first report the major structural features, catalytic

mechanisms and substrate recognition of all PP2A holoenzymes.

We will next focus on PP2A-B55, the main PP2A holoenzyme

responsible for the dephosphorylation of Cyclin B/

Cdk1 substrates and key to promote mitotic exit.

PP2A holoenzymes: Structure and
substrate recognition

PP2A is a serine/threonine phosphatase. Serine/Threonine

phosphatases are composed of three different families: (1)

PhosphoProtein Phosphatases (PPP), (2) Protein Phosphatase

Metal-depending (PPM) and (3) FCP/SCP aspartate-dependent

phosphatases. The two first families display two metal ions in the

catalytic center required for the activation of a water molecule

that will mount a nucleophilic attack in the phosphate group and

will catalyze dephosphorylation in a single step (Barford et al.,

1998). The third family uses an aspartate-based catalysis

mechanism and depends on the formation of a

phosphoaspartate intermediate (Kamenski et al., 2004).

The PPP are the most abundant phosphatases in the cell.

This family includes PP1, PP2A, PP2B (or calcineurin), PP4,

PP5, PP6, and PP7 (Shi, 2009). PP2A is the most abundant and

represents 1% of the total protein in the cell. This enzyme is

composed of three different subunits, a catalytic subunit or

PP2A-C, a scaffold subunit or PP2A-A and a regulatory

subunit or PP2A-B, the last one conferring substrate

specificity. Two different α and β isoforms exist for the

PP2A-A and PP2A-C subunits whereas the PP2A-B

subunits comprise four groups: (1) B or B55, (2) B′ or B56,
(3) B″ or PR48/PR70/PR72/PR130 and (4) B’’’ or Striatins.

Each group displays different isoforms and/or members, with

isoforms α, β, γ and δ for the B subunit (Mayer et al., 1991;

Strack et al., 1999), α, β, γ, δ and ε for the B’ (McCright and

Virshup, 1995; Csortos et al., 1996), α (PR130/PR72), β (PR48/
PR70), and γ (G5PR) for B’’ (Hendrix et al., 1993; Yan et al.,

2000; Zwaenepoel et al., 2008) and the Striatin, SG2NA and

Zinedin members for the B’’’ some of which also display

different isoforms (Castets et al., 1996, 2000).

The catalytic subunit of PP2A adopts a α/β fold structure

typical of the PPP family of phosphatases and contains two metal

ions in the catalytic site. The scaffold subunit is formed of

15 HEAT repeat domains, with each HEAT repeat comprising

a pair of antiparallel αhelices laterally packed to give rise to a

horseshoe shaped structure. The A subunit binds to the catalytic

subunit at its C-terminus (11–15 HEAT repeats) (Xing et al.,

2006) (Figure 1).

The B (B55) subunit is composed ofWD40 repeats forming a

seven-bladed β propeller with each blade comprising four

antiparallel β strands with an acidic groove in the middle. In

the blade 2, β strands extend out of the propeller forming a β
hairpin arm that binds to the A scaffold subunit at HEAT repeats

3–7 (Xu et al., 2008). This subunit makes very few interactions

with the C catalytic subunit (Figure 1A).

The B’ (B56) does not share structural similarity with B55.

This subunit is comprised of eight HEAT-like repeats forming a

curved shape resembling PP2A-A with the concave negative

charged surface facing the C subunit and the convex

hydrophobic surface facing the A scaffolding subunit. Unlike

the B55 subunit, B56 display several interactions with the

catalytic subunit of the holoenzyme (Xu et al., 2006) (Figure 1B).

The B’’ (PR48/PR70/PR72/PR130) is an elongated α helix

protein with two EF hand calcium-binding domains (EF1 D911-

D922 and EF2 D985-D996; human B” sequence) and a

N-terminal hydrophobic region. The second EF hand calcium-

binding motif and the hydrophobic region directly contacts the A

subunit whereas one helix at the C-terminus interacts with the C

subunit close to the catalytic site (Wlodarchak et al., 2013). In the

PP2A-PR70 holoenzyme, the A subunit adopts a compact

conformation due to the tripartite binding to PR70 and C

resulting in a wider enzyme than PP2A-B55 and PP2A-B56

(Figure 1C).

A main structural difference between this three PP2A

holoenzymes lies in the compaction of the scaffold subunit.

The PP2A-B55 holoenzyme displays the less compacted A

subunit due to a loose binding of PP2A-B to the scaffold

subunit and few interactions with PP2A-C. A much more

compact conformation of PP2A-A is observed in PP2A-B56,

in which besides the interaction of B56 to the scaffold subunit, an

additional association of the regulatory subunit to PP2A-C is

present. Finally, PP2A-PR70 displays the highest compacted

PP2A-A resulting from a double binding with PP2A-A and a

single tight interaction with PP2A-C (Wlodarchak et al., 2013)

(Figure 1C).
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Finally, the last holoenzyme PP2A-B‴ is an atypical PP2A

that forms part of a multicomplex named Striatin-Interacting

Phosphatase and Kinase (STRIPAK) (Glatter et al., 2009; Ribeiro

et al., 2010). B’’’ (Stiatrin) directly associates and put in close

proximity the phosphatase PP2A A/C with kinases and other cell

signaling proteins promoting its dephosphorylation. As for the

other PP2A complexes, B’’’ (Striatin) directly interacts with the A

scaffold subunit. These B regulatory proteins display four

protein-interaction domains including a calmodulin-binding

domain, a caveolin-binding domain, a coiled-coil domain and

a WD-repeat domain (Castets et al., 1996; Gaillard et al., 2001).

The coiled-coil domain of Striatin forms an asymmetric

homodimer. Two striatin dimers interact head-to-head

through their N-terminal end to form an anti-parallel

tetramer region that directly binds to the PP2A-A dimer by

its N-terminus whereas not contact exits with the PP2A-C

subunit (Figure 1D) (Chen et al., 2014; Jeong et al., 2021).

The B regulatory subunits are responsible of substrate

recognition by PP2A holoenzymes. This recognition is

provided by the specific structural properties of each B

subunit and its interaction with PP2A-A/C. Recent data

identified the mechanisms involved in substrate recognition

for the PP2A-B55 and PP2A-B56 holoenzymes. These data

support the identification by the B regulatory subunit of

specific Short Linear interaction Motifs or SLiMs in the

substrate sequence, a mechanism already shown for other

phosphatases such as PP1 (Roy and Cyert, 2009; Bollen et al.,

2010). The presence of SLiMs for PP2A-B56 was first identified in

BubR1 and RepoMan proteins (Qian et al., 2013). A subsequent

study permitted to attribute the sequence “LxxIxE” as a

consensus motif (Hertz et al., 2016; Wang et al., 2016). The

LxxIxE SLiM is usually present within disordered regions and

associates to a hydrophobic pocket on the B56 subunit between

HEAT repeats 3 and 5. This binding is enhanced by the presence

FIGURE 1
Structure of the different PP2A holoenzymes. Protein structure represented as a cartoon of the (A) PP2A-B55, (B) PP2A-B56, (C) PP2A-PR70
holoenzymes and of the (D) Hippo Signaling Integrator Human STRIPAK complex. The different PP2A subunits are represented in different colors as
indicated. PDB identifiers: 3DW8/PP2A-B55; 2NYM/PP2A-B56; 4I5L/PP2A-PR70; 7K36/STRIPAK.
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of a phosphorylated site inside or immediately C-terminally to

the motif (Hertz et al., 2016).

First data on PP2A-B55 substrate recognition revealed the

preference of the phosphatase towards phospho-Thr versus

phospho-Ser (McCloy et al., 2015) and a prominent role of

basic amino acids (preferentially Lysin and Arginine amino

acids) upstream and downstream the phosphorylated site

(Cundell et al., 2016). As for PP2A-B56, a recent study has

attributed a SLiM consensus sequence “pSPxxHxRVxxV” for

PP2A-B55. In this motif B55-substrate association would be

mediated by the interaction of the H and R amino acids of

the SLiM with D197 of B55α (Fowle et al., 2021).

The discovery of SLiMs for PP2A-B55 and PP2A-B56

prompted the interrogation of human full proteome for the

identification of proteins containing these SLiM consensus

motifs that could eventually be dephosphorylated by these two

enzymes (Hertz et al., 2016; Wu et al., 2017; Fowle et al., 2021).

This approach permitted the identification of SLiMs in already

known substrates for these phosphatases and supply a large list of

other putative substrates that will undoubtably provide new

interesting insides in the role of these enzymes in cell signaling.

PP2A-B55 in the control of mitosis: The
Greatwall/Arpp19-ENSA/PP2A-B55 axis

Data demonstrating the essential role of the control of

phosphatases in mitotic progression was first obtained in the

Xenopus egg extract model. These data unambiguously identified

PP2A-B55 as the phosphatase counterbalancing Cyclin B/

Cdk1 during interphase and demonstrated that its inhibition

is essential for the correct timing of protein phosphorylation

during mitosis (Mochida et al., 2009). Simultaneously, another

study demonstrated a role of the kinase Greatwall (Gwl) in the

control of mitotic progression via the negative modulation of

PP2A-B55 (Vigneron et al., 2009). These data have been

supported by subsequent reports showing that mitosis is

profoundly impacted by the missregulation of Gwl or PP2A-

B55 (Castilho et al., 2009; Burgess et al., 2010; Voets and

Wolthuis, 2010; Kim et al., 2012; Alvarez-Fernandez et al.,

2013; Cundell et al., 2013).

Gwl activation at mitotic entry is essential for correct cell

division. This kinase is activated by the phosphorylation on two

residues, Thr194 and Thr207 (human Gwl sequence) on its

catalytic site by Cyclin B/Cdk1, and its subsequent

autophosphorylation at its C-terminal tail on Ser875

(Vigneron et al., 2011; Blake-Hodek et al., 2012). Once active,

Gwl phosphorylates its substrates Arpp19 and ENSA, two

intrinsically disordered proteins that when phosphorylated,

potently bind and inhibit PP2A-B55 (Gharbi-Ayachi et al.,

2010; Mochida et al., 2010) (Figure 2). Inhibition of PP2A-

B55 permits the stable phosphorylation of mitotic substrates

and mitotic progression (Gharbi-Ayachi et al., 2010; Mochida

et al., 2010; Rangone et al., 2011; Larouche et al., 2021).

Intriguingly, Gwl/Arpp19-ENSA/PP2A-B55 axis is essential

for mitotic entry and maintenance in Xenopus oocytes

(Vigneron et al., 2009; Gharbi-Ayachi et al., 2010; Mochida

et al., 2010), however, although mitotic progression is highly

impacted, the knockout of the mouse Greatwall geneMastl or of

the Arpp19 gene do not prevent Mouse Embryonic Fibroblast

(MEFs) from entering mitosis (Alvarez-Fernandez et al., 2013;

FIGURE 2
Cyclin B/Cdk1 activation loop at mitotic entry. Schematic of
how Cyclin B/Cdk1 and the Gwl/Arpp19-ENSA/PP2A-
B55 cascades are activated at mitotic entry. At G2-M, Cyclin A/Cdk
activity triggers the Cyclin B/Cdk1 amplification loop and the
Gwl/Arpp19-ENSA/PP2A-B55 cascade by promoting the
phosphorylation of Bora and the subsequent activation of Plk1 by
Aurora A. Black arrows represent active pathways inducing mitotic
entry. Linking line finishing with arrowheads: activation. Linking
line finishing with perpendicular bar: inhibition. Black lines: major
active pathways at G2-M. Gray lines: inactive pathways at G2-M.
(a): active; (i): inactive. PDB identifiers: 3OP3/Cdc25; 4BYJ/Aurora
A; 6GUF/CyclinA-Cdk2; 3D5U/Plk1; 5LOH/Gwl; 6GU4/CyclinB-
Cdk1; 5VD2/Wee1; 3DW8/PP2A-B55.
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Hached et al., 2019). Although apparently contradictory, these

data could be explained by either a different balance between

Cyclin B/Cdk1/PP2A-B55 in these twomodels or by the presence

of an additional negative modulator of this phosphatase that

could participate to its inhibition at G2/M transition.

Once in anaphase, the gradual inactivation of the Gwl/

Arpp19-ENSA/PP2A-B55 axis is essential for the cell to exit

mitosis. The progressive reactivation of PP2A-B55 organizes the

temporal pattern of protein dephosphorylation and the

programmed cellular events required for cell division (Burgess

et al., 2010; Voets and Wolthuis, 2010; Alvarez-Fernandez et al.,

2013; Cundell et al., 2013; McCloy et al., 2015; Hached et al.,

2019). This reactivation is triggered at anaphase by the APC-

dependent ubiquitination and degradation of Cyclin B that

results in a gradual drop of Cyclin B/Cdk1 activity, in the

dephosphorylation of Gwl and Arpp19/ENSA and in the

progressive reactivation of PP2A-B55.

Spatiotemporal regulation of the
Greatwall/Arpp19-ENSA/PP2A-B55 axis
during mitosis

The Gwl/Arpp19-ENSA/PP2A-B55 axis is switched on at

G2-M. This transition is triggered by themutual control of Cyclin

B/Cdk1 and Gwl kinases. At mitotic entry, Cyclin B/

Cdk1 phosphorylates and positively modulates Gwl (Vigneron

et al., 2011; Blake-Hodek et al., 2012), whereas Gwl, via phospho-

Arpp19-ENSA and PP2A-B55 inhibition, maintains the

phosphorylation of Wee1/Myt1 and Cdc25, three PP2A-B55

substrates and key enzymes modulating Cyclin B/

Cdk1 activity (Zhao et al., 2008; Vigneron et al., 2009; Lorca

et al., 2010) (Figure 2).

During G2, Cyclin B/Cdk1 is maintained repressed by the

phosphorylation of its Cdk1 subunit on residues Thr14 and

Tyr15 (Draetta and Beach, 1988; Gould and Hunter, 1988;

Krek and Nigg, 1991). These phosphorylations are induced by

the Wee1/Myt1 kinases (Parker and Piwnica-Worms, 1992;

Mueller et al., 1995) and removed by the Cdc25 phosphatase

(Gautier et al., 1991; Kumagai and Dunphy, 1991; Strausfeld

et al., 1991). At G2-M transition, a partial activation of

Cdc25 promotes the dephosphorylation and activation of a

pool of Cyclin B/Cdk1. This pool will phosphorylate Wee1/

Myt1 and Cdc25 promoting the negative modulation of the

inhibitory kinases and the positive modulation of the

activatory phosphatase and inducing full Cyclin B/

Cdk1 activation and mitotic entry. This mechanism has been

called the Cyclin B/Cdk1 amplification loop (Izumi et al., 1992;

Hoffmann et al., 1993). Although reported a long time ago, the

key question of how Cdc25 is partially activated to trigger this

feedback loop was not known. This issue has only been recently

resolved by two groups that showed that Cyclin A/Cdk1/2 is the

missing piece of the puzzle. These groups demonstrated that the

main kinase triggering mitotic entry is Cyclin A/Cdk1/2

(Vigneron et al., 2018; Hégarat et al., 2020). At late G2, the

activity of this kinase rises and phosphorylates the protein Bora

that promotes Aurora A-dependent activation of Plk1. Once

active, Plk1 partially phosphorylates Cdc25 resulting in the

activation of a pool of Cyclin B/Cdk1 (Vigneron et al., 2018).

This active pool rapidly triggers the amplification loop and

phosphorylates and activates Gwl. Phospho-Arpp19/ENSA

then inhibit PP2A-B55, preventing Wee1/Myt1/

Cdc25 dephosphorylation and ensuring full Cyclin B/

Cdk1 activation (Figure 2). These interconnected loops create

bistability and confer robustness, irreversibility and a switch-like

behavior to mitotic entry, three properties that are essential to

prevent intermediate interphase-mitotic states that could be very

detrimental to the cell (Hegarat et al., 2014; Mochida et al., 2016;

Hutter et al., 2017; Rata et al., 2018).

Beside its molecular regulation, the activation of the Gwl/

Arpp19-ENSA/PP2A-B55 axis is also tightly controlled by

subcellular localization. To ensure the activation of these two

interlinked loops, both Cyclin B/Cdk1 amplification loop and

Gwl/Arpp19-ENSA/PP2A-B55 axis have to co-localize at G2-M

entry (Figure 3). Cyclin B is imported into the nucleus at G2-M

transition where it activates the amplification loop (Lindqvist

et al., 2009; Gavet and Pines, 2010; Santos et al., 2012). Gwl is a

nuclear protein that becomes cytoplasmic in prophase (Alvarez-

Fernandez et al., 2013; Wang et al., 2013). The nuclear

localization of this kinase is mediated by the presence of two

NLS sequences and its cytoplasmic exclusion appears to be

mediated by the phosphorylation of these motifs. So far, two

different kinases, Cyclin B/Cdk1 in MEFs (Alvarez-Fernandez

et al., 2013) and Plk1 in theDrosophilamodel (Wang et al., 2013)

have been proposed as responsible of this phosphorylation.

Unlike Gwl, B55 is localized in the cytoplasm throughout the

cell cycle (Mayer-Jaekel et al., 1994; Santos et al., 2012; Larouche

et al., 2021). Finally, different localizations have been reported for

ENSA (Endos in Drosophila), being cytoplasmic for the

Drosophila Endos (Larouche et al., 2021) and nuclear/

cytoplasmic in human cells (Charrasse et al., 2017). The

current model proposes that, at the G2/M transition, the

colocalization of Gwl with Cyclin B/Cdk1 in the nucleus,

away from PP2A-B55, will permit their activation. At

prophase, before nuclear envelope breakdown, activated Gwl

will move to the cytoplasm where it will phosphorylate ENSA

and inhibit PP2A-B55 (Alvarez-Fernandez et al., 2013; Wang

et al., 2013; Larouche et al., 2021). However, since as reported

below, Gwl is a PP2A-B55 substrate (Heim et al., 2015; Ma et al.,

2016; Rogers et al., 2016; Ren et al., 2017), this model does not

explain how Gwl phosphorylation and activity is maintained in

the cytoplasm to induce ENSA phosphorylation in the presence

of a fully active phosphatase. Alternatively, ENSA can be partially

localized in the nucleus, as previously described for human ENSA

(Charrasse et al., 2017), where a pool of this protein would be

phosphorylated by Cyclin B/Cdk1-activated Gwl. Once
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FIGURE 3
Model for the spatiotemporal regulation of the Gwl/Arpp19-ENSA/PP2A-B55 axis. During G2 Gwl kinase is maintained inactive in the nucleus
while Cyclin B/Cdk, ENSA and PP2A-B55 are present in the cytoplasm. At G2-M, CyclinB-Cdk1 is activated and relocalized in the nucleus where it will
phosphorylate and activate Gwl. Once activated, Gwl will translocate to the cytoplasm where it will subsequently phosphorylate Arpp19/ENSA
triggering its binding to PP2A-B55 and the inhibition of this phosphatase. The drop of PP2A-B55 phosphatase activity will now allow the stable
phosphorylation of mitotic substrates and maintain mitosis. Linking line finishing with arrowheads: activation. Linking line finishing with
perpendicular bar: inhibition. (a): active; (i): inactive.
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phosphorylated, ENSA would be transported into the cytoplasm

where it would inhibit PP2A-B55. Partially inhibited PP2A-B55

holds cytoplasmic Gwl activity and maintains ENSA

phosphorylation and phosphatase inhibition.

Cyclin B/Cdk1 and Gwl activity will be maintained high

until anaphase when the activation of the APC will induce the

progressive ubiquitination and degradation of Cyclin B. Cyclin

B/Cdk1 complex does not only directly phosphorylate Gwl to

maintain its activity but also phosphorylates and inhibits PP1,

the phosphatase responsible of the dephosphorylation of Gwl

on its Ser875 C-tail residue (Figure 4). At anaphase, the

progressive decrease of Cyclin B/Cdk1 activity ensues with

a gradual autodephosphorylation and reactivation of PP1 (Wu

et al., 2009). Active PP1 induces dephosphorylation of Gwl on

Ser875 and decreases phospho-Arpp19-ENSA enabling the

activation of a threshold level of PP2A-B55 that will

subsequently dephosphorylate Gwl on its Thr194-Thr207 T-

loop activatory sites. Gwl will be now completely inactivated

and will trigger a negative feedback loop resulting in the

overall reactivation of PP2A-B55 and mitotic exit (Heim

et al., 2015; Ma et al., 2016; Rogers et al., 2016; Ren et al.,

2017). Besides PP1 and PP2A-B55, FCP1 also

dephosphorylates Gwl on other Cyclin B/Cdk1 phosphosites

including Ser90 and S453, however, the exact role of these sites

in the control of kinase activity has not been reported (Della

Monica et al., 2015).

FIGURE 4
Mechanisms of Gwl inactivation at mitotic exit. Cyclin B degradation results in auto-dephosphorylation of PP1. Active PP1 promotes the
dephosphorylation of Gwl on its Ser875 providing to this Gwl a partial activity (p.a). The partial inactivation of this kinase results in the intermediate
reactivation of PP2A-B55, that promotes the full dephosphorylation of Gwl and Arpp19-ENSA (Arp/EN) andmitotic exit. Black arrows represent active
pathways inducing mitotic exit. Grey arrows represent inactive pathways. (a): active; (i): inactive. Linking line finishing with arrowheads:
activation. Linking line finishing with perpendicular bar: inhibition. Black lines: major active pathways at M-G1. Gray lines: inactive pathways at M-G1.
PDB identifiers: 6GU4/CyclinB-Cdk1; 4MOV/PP1; 5LOH/Gwl; 3DW8/PP2A-B55.
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PP2A-B55 inhibition by Arpp19/ENSA

Arpp19 and ENSA are two intrinsically unstructured

proteins from the endosulfine family reported so far as the

two unique substrates of the Gwl kinase (Gharbi-Ayachi et al.,

2010; Mochida et al., 2016). Besides Gwl, these two proteins can

also be phosphorylated and modulated by two other kinases:

Cyclin B/Cdk1 and PKA. Cyclin B/Cdk1 phosphorylates

Arpp19/ENSA at its N-terminus on residues Ser23/Ser21

(human Arpp19/ENSA sequence respectively). In vitro assays

demonstrate that phospho-Ser21-ENSA displays PP2A-B55

inhibitory activity although it only represents 14-fold

inhibitory potential compared to 3800-fold inhibitory

potential for the ENSA protein phosphorylated by Gwl

(Mochida, 2014). However, despite this in vitro inhibitory

activity, whether the phosphorylation of this site plays a

physiological role is completely unknown so far.

Arpp19/ENSA main phosphorylation site is Ser62/Ser67

(human Arpp19/ENSA sequence respectively). This residue is

phosphorylated by the Gwl kinase and is the essential site

controlling Arpp19/ENSA association to PP2A-B55 (Gharbi-

Ayachi et al., 2010; Mochida et al., 2010). Recent studies

addressed the mechanisms governing Arpp19/ENSA-PP2A-

B55 binding and inhibition. These studies demonstrate that

Arpp19/ENSA are indeed substrates of PP2A-B55 and that

their phosphorylation by Gwl increases their affinity towards

the phosphatase around 4000-fold. However, their

dephosphorylation is very slow with a KCat around 0.030 s−1

compared to a KCat of 25 s
−1 for the other regular substrates

of the phosphatase. Thus, phospho-Arpp19/ENSA inhibit PP2A-

B55 by competing with their substrates (Williams et al., 2014).

Data also demonstrate that the inhibition of PP2A-B55 by

Arpp19/ENSA requires Ser62/Ser67 adjacent residues included

in the sequence 59YFDSGD64 (of human Arpp19 sequence). The

mutation into alanine of any of these residues in a phospho-Ser62

Arpp19 form induces a rapid dephosphorylation of its Gwl site

with close kinetics to those observed for regular PP2A-B55

substrates indicating that they are not competing anymore

and consequently, that they lost their inhibitory capacity

(Labbé et al., 2021). However, although these residues are

essential for PP2A-B55 inhibition, whether they participate to

the interaction with the PP2A-B55 heterocomplex is completely

unknown so far. In this regard, a role in the interaction with

acidic residues on the B55 subunit has been proposed for basic

Lys/Arg residues flanking the sequence containing the Gwl

phosphorylation site (DSG motif) (Cundell et al., 2016),

however, mutation of these residues appears not to impact

their dephosphorylation kinetics and their PP2A-B55

inhibitory activity (Labbé et al., 2021).

Arpp19/ENSA can be also phosphorylated on Ser109/

Ser112 (human Arpp19/ENSA sequence respectively) by

PKA. This phosphorylation is essential to maintain

prophase arrest in oocytes and to disable the formation of a

critical threshold of Cyclin B/Cdk1 activity required for

meiotic resumption (Dupre et al., 2013; Dupré et al., 2014;

Lemonnier et al., 2021). Phospho-Ser109/Ser112 delays the

stably phosphorylation of the Gwl site by increasing its

dephosphorylation and confers, in this way, the correct

temporal pattern of Arpp19/ENSA inhibitory activity

(Labbé et al., 2021).

Both, Arpp19 and ENSA inhibit PP2A-B55 with similar

kinetics. The question that emerges is then, why the cell

requires two different inhibitors of this phosphatase? The

answer was recently provided by comparing the phenotypes of

Arpp19 and ENSA knockout (KO) mice. Arpp19 knockout

revealed to be lethal. Upon Arpp19 KO, embryonic

development arrested at gastrulation with cells displaying a

high mitotic index. Further analysis in Arpp19 KO MEFs

demonstrated that the ablation of this gene promotes

dramatic mitotic defects that result in increased cell death and

aneuploidy (Hached et al., 2019). Conversely, the KO of the

ENSA gene does not perturb early embryonic development

suggesting that this protein is differentially controlling cell

proliferation. Indeed, accordingly, the knockdown of this

protein in human cells induces DNA replication defects by

decreasing the number of active replication forks (Charrasse

et al., 2017). Thus, the presence of two PP2A-B55 inhibitors

confers to the cell a means to fine-tune this phosphatase under

different cellular contexts.

PP2A-B55-dependent dephosphorylation
and mitotic exit

Once chromosomes are correctly attached to the fibers of

the spindle, the cell exits mitosis. This is preceded by the

silencing of the SAC and the subsequent activation of the APC

that will in turn, induce the sequential degradation of Cyclin B,

the dephosphorylation of Gwl and of Arpp19/ENSA, and

the reactivation of PP2A-B55. Active PP2A-B55 will then

promote a sequential dephosphorylation of mitotic

substrates that will ensure the ordered cellular events

conducting cell division. Chromosome segregation,

cytokinesis furrow formation, chromatin decondensation or

nuclear envelop reformation are promoted by the precise

temporal pattern of PP2A-B55-dependent substrate

dephosphorylation. Modifying this pattern for example, by

knocking down/out Gwl, Arpp19 or B55 profoundly impacts

cell division by perturbing the order of the different

cellular events (Burgess et al., 2010; Voets and Wolthuis,

2010; Alvarez-Fernandez et al., 2013; Cundell et al., 2013;

Hached et al., 2019). Accordingly, in Gwl knockdown and

Arpp19 knockout cells, DNA decondensation is observed

in some of these cells before chromosome alignment,

cytokinesis furrow formation often precedes sister

chromatid segregation and nuclear envelope can be
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reformed before the end of anaphase (Burgess et al., 2010;

Hached et al., 2019).

Recent data obtained by global phosphoproteomic studies

have identified new PP2A-B55 substrates and provided new

insights in the role of PP2A-B55-dependent

dephosphorylation in mitotic exit (McCloy et al., 2015;

Cundell et al., 2016; Godfrey et al., 2017; Touati et al., 2018;

Holder et al., 2020).

One of these substrates is the SAC protein Mps1 (Diril

et al., 2016). At prometaphase, SAC activation will be

mediated by the localization of Mps1 at unattached

kinetochores where it will become activated and will

phosphorylate the kinetochore protein KNL1 and the

checkpoint proteins Bub1 and Mad1 (Ciliberto and Hauf,

2017). Clustering of Mps1 molecules in unattached

kinetochores induces T-loop autophosphorylation and turns

on this kinase (Kang et al., 2007) whereas its additional

phosphorylation by Cyclin B/Cdk1 is required to keep its

activity (Morin et al., 2012). At anaphase onset, once

microtubules of the spindle are correctly attached to

kinetochores, Mps1 is evicted from these chromosomal

structures (Hiruma et al., 2015; Ji et al., 2015) and

submitted to T-loop dephosphorylation by PP2A-B56

(Hayward et al., 2019). Interestingly, recent data indicate

that, besides the T-loop, the correct temporal pattern of

dephosphorylation of the Cyclin B-Cdk1-dependent sites of

Mps1 by PP2A-B55 is also essential for normal mitotic exit.

Accordingly, the inappropriate reactivation of this

phosphatase by Gwl KO in MEFs results in a premature

dephosphorylation of Mps1 and SAC silencing resulting in

perturbed mitotic exit, a phenotype that can be rescued by the

inhibition of PP2A by okadaic acid (Diril et al., 2016).

Some constituents of the APC have also been identified as

substrates of PP2A-B55. At early mitosis, Cyclin B/Cdk1,

phosphorylates the structural constituent Apc1 on

Ser355 and the regulatory subunit Cdc20 on Thr70.

Phosphorylation of Apc1 is essential to permit the binding

of Cdc20 to the APC complex that will trigger its activation

(Zhang et al., 2016). Conversely, for Cdc20, the association to

the APC requires its dephosphorylation (Labit et al., 2012;

Diril et al., 2016; Lee et al., 2017). Thus, for the APC to be

activated, Cdc20 dephosphorylation must precede the one of

Apc1 (Hein et al., 2017). PP2A-B55 has an inherent preference

for phospho-Thr versus phospho-Ser and this could explain

the ordered dephosphorylation of these two APC components.

Indeed, compelling data point to a role of this phosphatase in

Cdc20 and Apc1 dephosphorylation. The knockdown of

B55 in Hela cells as well as the Thr-to-Ser mutation of

Cyclin B/Cdk1 phosphorylation site of Cdc20 perturbs the

pattern of dephosphorylation of this protein and mitotic exit

(Hein et al., 2017). Moreover, the KO of Arpp19 in MEFs

results in a too rapid inactivation of the APC and the

incomplete degradation of Cyclin B (Hached et al., 2019).

However, although it can participate to establish the gradual

dephosphorylation of Apc1 and Cdc20, PP2A-B55 cannot be

the phosphatase triggering APC activation since its

reactivation requires Cyclin B degradation and Gwl/

Arpp19-ENSA dephosphorylation. Instead, this role could

be played by either PP2A-B56 (Lee et al., 2017) or PP1

(Kim et al., 2017), two phosphatases already active in the

kinetochore from early mitosis.

Once activated, the APC triggers anaphase and

chromosome segregation. Subsequently, a structure referred

as the central spindle is formed on antiparallel microtubules.

This structure, key to define the position of the cytokinesis

furrow, is induced by the recruitment at the center of the

spindle of the bundling protein PRC1. PRC1 is phosphorylated

by Cyclin B/Cdk1 on Thr 470 and 481 at early mitosis and this

phosphorylation prevents its binding to the microtubules

(Jiang et al., 1998; Mishima et al., 2004; Zhu et al., 2006).

Upon Cyclin B degradation and Gwl/Arpp19-ENSA

dephosphorylation, PP2A-B55 is reactivated inducing the

dephosphorylation of PRC1 (Cundell et al., 2013; Hached

et al., 2019). Dephosphorylated PRC1 then binds

antiparallel microtubules and promotes anaphase spindle

elongation and central spindle formation (Zhu et al., 2006;

Walczak and Shaw, 2010).

Finally, to return to interphase cells have to reform the

nuclear envelope and the nuclear pore complexes. The nuclear

envelope is composed of an outer and an inner nuclear

membrane. The inner membrane contains transmembrane

proteins of the LEM domain family that contact with lamins,

a filamentous meshwork of intermediate filaments underlying

the nuclear envelope (Burke and Ellenberg, 2002) and with

BAF, a chromatin-binding protein that links nuclear envelope

with chromatin (Wagner and Krohne, 2007). At early mitosis,

nuclear pore proteins, lamins and BAF are phosphorylated, by

Cyclin B/Cdk1 for the first two proteins (Peter et al., 1990, 1990;

Glavy et al., 2007; Laurell et al., 2011) and by the VRK kinase for

the third one (Nichols et al., 2006) and this phosphorylation

causes nuclear envelope disassembly. At the end of mitosis,

these proteins have to be dephosphorylated to reform the

nuclear envelope. This dephosphorylation is dependent on

PP2A-B55. Accordingly, the premature activation of PP2A-

B55 by either Gwl knockdown in human cells or Arpp19 KO in

MEFs promotes the precocious dephosphorylation of these

nuclear components and advances nuclear envelope

reformation (Cundell et al., 2013; Hached et al., 2019). On

the contrary, the partial loss of Tweens (B55 subunit in

Drosophila) in early embryos of Drosophila delays lamin and

BAF recruitment to nascent nuclei (Mehsen et al., 2018).

Interestingly, major phosphosites in these late

dephosphorylated nuclear proteins correspond to Ser,

confirming that the preference of this phosphatase for

phospho-Thr over phospho-Ser participates to the

establishment of the proper order of protein

Frontiers in Cell and Developmental Biology frontiersin.org09

Lacroix et al. 10.3389/fcell.2022.967909

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.967909


dephosphorylation and confers the correct timing of the mitotic

events.

Concluding remarks

The discovery of the accurate regulation of phosphatases has

allowed a great step forward in the understanding of the

mechanisms controlling mitosis. New provided structural data,

the identification of SliMs controlling phosphatase-substrate

interaction and the discovery of new phosphatase inhibitors

have significantly increased our knowledge of how the

temporal pattern of protein dephosphorylation is established

during mitotic exit. However, capital questions remain still

unanswered. Notably, although PP2A-B55 could contribute to

program dephosphorylations by preferentially selecting

phospho-Thr versus phospho-Ser sites, how it temporally

orders dephosphorylations of Cyclin B/Cdk1 substrates

containing a similar phospho-site is completely unknown. In

this line, the nature of the associated SLiM could participate to

this order, however, this issue has not been studied yet.

Additionally, whether a differential subcellular localization of

PP2A-B55 isoforms could participate to the establishment of a

temporal pattern of protein dephosphorylation is not known.

Other major challenges for the future include the identification of

new specific substrates or inhibitors for this phosphatase and the

mechanisms by which they are recognized and interact with this

enzyme. Finally, the identification of molecules targeting SLiM-

phosphatase interaction and substrate dephosphorylation would

not only represent a major advance for the study of the function

of this enzyme but could additionally provide new interesting

therapeutic tools.
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