
Amyloid precursor protein (APP)
and amyloid β (Aβ) interact with
cell adhesion molecules:
Implications in Alzheimer’s
disease and normal physiology

Grant Pfundstein1, Alexander G. Nikonenko2 and
Vladimir Sytnyk1*
1School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW,
Australia, 2Department of Cytology, Bogomoletz Institute of Physiology, Kyiv, Ukraine

Alzheimer’s disease (AD) is an incurable neurodegenerative disorder in which

dysfunction and loss of synapses and neurons lead to cognitive impairment and

death. Accumulation and aggregation of neurotoxic amyloid-β (Aβ) peptides
generated via amyloidogenic processing of amyloid precursor protein (APP) is

considered to play a central role in the disease etiology. APP interacts with cell

adhesion molecules, which influence the normal physiological functions of

APP, its amyloidogenic and non-amyloidogenic processing, and formation of

Aβ aggregates. These cell surface glycoproteins also mediate attachment of Aβ
to the neuronal cell surface and induce intracellular signaling contributing to Aβ
toxicity. In this review, we discuss the current knowledge surrounding the

interactions of cell adhesion molecules with APP and Aβ and analyze the

evidence of the critical role these proteins play in regulating the processing

and physiological function of APP as well as Aβ toxicity. This is a necessary piece
of the complex AD puzzle, which we should understand in order to develop safe

and effective therapeutic interventions for AD.
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Introduction

Alzheimer’s disease and the amyloid hypothesis

Alzheimer’s disease (AD) is an incurable neurodegenerative disorder in which

progressive synapse loss and neuronal dysfunction are followed by neuronal death in

the brain. People with AD suffer from severe cognitive impairments and eventually die as

a result of the disease. AD is the seventh leading cause of death in the United States

(Alzheimer’s Association, 2022). Its global economic burden, together with other

dementias, is estimated to be nearly $1 trillion (USD) per annum (Prince et al.,
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2015). Despite decades of research, effective therapeutic

interventions for AD remain elusive, presenting a considerable

problem given the increasingly aging population of our world

today.

The amyloid hypothesis has been central to our understanding

of AD for the past three decades. It proposes that aggregates of the

amyloid-β (Aβ) peptide, the primary component of senile plaques

formed in brains of people with AD, are themain causative agents in

AD pathogenesis (Hardy and Allsop, 1991; Selkoe, 1991; Hardy and

Higgins, 1992; Selkoe and Hardy, 2016; Karran and De Strooper,

2022). These Aβ aggregates bind to cell surface receptors on neurons
and glial cells, inducing synaptic dysfunction and

neuroinflammation, triggering aberrant intracellular signaling

cascades that lead to hyperphosphorylation of the microtubule

associated protein tau, causing disruption of axonal transport,

oxidative damage, breakdown of homeostasis, and resulting in

neurotoxicity (LaFerla et al., 1995; Sakono and Zako, 2010; Xia

et al., 2016; Yin et al., 2017; Sushma andMondal, 2019). The gradual

loss of synapses and neurons is responsible for cognitive

impairment, memory loss, and, eventually, death.

Amyloid precursor protein (APP) and its
processing

Aβ peptides are generated via the proteolysis of amyloid

precursor protein (APP). APP is a type I transmembrane

glycoprotein with a large N-terminal extracellular domain,

transmembrane region, and short intracellular tail (Figure 1A).

APP is encoded by a single gene on chromosome 21, and

alternative splicing generates three main isoforms, APP695,

APP751, and APP770, denoted by their amino acid length. The

extracellular part of all isoforms is comprised of two rigidly folded

domains, E1 and E2, joined by a flexible acidic domain (AcD) and

connected to the transmembrane region by a mostly unstructured

juxtamembrane linker (Coburger et al., 2013; Coburger et al., 2014)

FIGURE 1
APP structure and processing. (A) APP is composed of a large N-terminal extracellular domain, transmembrane region, and short cytoplasmic tail.
The extracellular domain comprises two rigidly folded regions, E1 and E2, joined by an acidic domain (AcD). E1 contains a heparin-binding domain (HBD)
within a larger growth factor-like domain (GFLD), and a copper/zinc-binding domain (CuBD). E2 comprises the second HBD and CuBD. The
juxtamembrane region contains the α- and β-cleavage sites, while the γ-cleavage site is locatedwithin the transmembrane domain. TheC-terminal
intracellular domain (AICD) contains the YENPTY sequence, which binds cytosolic adaptor proteins. (B) APP is primarily processed along two opposing
pathways. In amyloidogenic processing, APP is cleaved by β-secretase (BACE1) at the N-terminus of Aβ, generating sAPPβ and themembrane-bound β-
CTF. Subsequent γ-secretase cleavage of β-CTF releases the Aβ peptide into the extracellular/lumenal space and AICD into the cytosol. Aβ peptides
aggregate and form oligomers (AβO). In non-amyloidogenic processing, APP is cleaved by α-secretase (ADAM10) within the Aβ region, producing sAPPα
and α-CTF. Ensuing cleavage of α-CTF by γ-secretase liberates P3 into the extracellular/lumenal space and AICD into the cytosol.
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(Figure 1A). E1 contains a heparin-binding domain (HBD) within a

larger growth factor-like domain (GFLD), as well as a copper/zinc-

binding domain (CuBD). E2 contains the second HBD and CuBD

(Dahms et al., 2012). The extracellular domain mediates homophilic

trans-interactions, where an APP molecule on one cell binds to an

APPmolecule on an adjacent cell, allowing APP to function as a cell

adhesion molecule (Soba et al., 2005; Stahl et al., 2014). The

extracellular domain also binds other ligands such as epidermal

growth factor (EGF) (da Rocha et al., 2021) and reelin (Hoe et al.,

2009), and acts as a ligand itself after being shed into the extracellular

space where it interacts with other receptors (Caillé et al., 2004). The

single-pass transmembrane domain is involved in cholesterol

binding (Barrett et al., 2012), while the short intracellular tail

contains a YENPTY motif that binds cytoplasmic adaptor

proteins such as Dab1 and Mint, which mediate APP-dependent

signaling (Borg et al., 1996; King et al., 2003; Schettini et al., 2010).

The Kunitz protease inhibitor (KPI) domain is present in the two

longer isoforms, APP751 and APP770, and the OX-2 sequence is

contained inAPP770 (Tanzi et al., 1987; Sandbrink et al., 1996). APP

is widely expressed in many tissues. APP695 is the major neuronal

isoform, while APP751 and APP770 are highly expressed in non-

neuronal cells (Rohan de Silva et al., 1997).

APP undergoes complex proteolytic processing, yielding a

number of biologically active fragments. Processing along the

amyloidogenic pathway is initiated by β-site APP cleaving

enzyme 1 (BACE1), which cleaves APP at the amino terminus

of the Aβ region, producing sAPPβ and the membrane-bound β-
C-terminal fragment, β-CTF (Vassar et al., 1999; Yan et al., 1999;

Zhang et al., 2011) (Figure 1B). In the non-amyloidogenic

pathway, α-secretase (ADAM10; a disintegrin and

metalloproteinase 10) cleaves APP between Lys 16 and Leu

17 of the Aβ region, preventing the formation of Aβ and

releasing sAPPα and α-CTF instead (Lammich et al., 1999; Asai

et al., 2003; Kuhn et al., 2010). The cell surface or trans-Golgi

network accumulation of APP favors non-amyloidogenic

processing (Parvathy et al., 1999; Tan and Gleeson, 2019),

whereas the retention of APP in endocytic compartments

promotes amyloidogenic processing (Das et al., 2016). In both

pathways, γ-secretase, a complex composed of presenilin 1 (PS1),

nicastrin, anterior pharynx-defective 1 (APH-1), and presenilin

enhancer 2 (PEN-2), cleaves the membrane-tethered CTFs

yielding Aβ from β-CTF and P3 from α-CTF, as well as the

APP intracellular domain (AICD) (Figure 1B). In the

amyloidogenic pathway, γ-secretase produces peptides of

varying length with Aβ40, denoted by amino acid length, being

most abundant and Aβ42 being most aggregation prone (Jarrett

et al., 1993; Hamley, 2012; Chen et al., 2017). A shift towards the

generation of Aβ42 over Aβ40, or an imbalance in the overall

production and clearance of Aβ peptides predisposes to the

formation of neurotoxic oligomers (AβO), fibrils (AβF) and

plaques (Masters et al., 1985; Bharadwaj et al., 2009;

Mawuenyega et al., 2010). In addition, there are several non-

canonical pathways through which APP can be processed,

including proteolysis by η-secretase, δ-secretase, meprin, and

caspases (Andrew et al., 2016).

APP is a member of a small family of proteins consisting of

APP and APP-like proteins 1 and 2 (APLP1 and APLP2)

(Heber et al., 2000; Walsh et al., 2007). Although structurally

very similar to APP, APLPs lack the Aβ region and are thus

non-amyloidogenic. As a whole, members of the APP family

share poorly understood roles in synaptic plasticity,

synaptogenesis, neurite outgrowth, learning, and memory

(Small et al., 1994; Müller and Zheng, 2012; Klevanski

et al., 2015).

Many therapeutic interventions have targeted Aβ and the

proteases responsible for its generation, however thus far, all

attempts have failed to demonstrate reasonable efficacy and are

associated with worsening cognition and other side effects (Kumar

et al., 2018; Hampel et al., 2021; Karran and De Strooper, 2022).

These failures can be partly attributed to an incomplete

understanding of the complex cell biology underlying: 1) the

processing of APP, 2) the normal physiological function of APP

and its proteases, and 3) the mechanisms of Aβ-induced toxicity. A

class of proteins intimately involved in these poorly understood

processes are cell adhesionmolecules (CAMs), a vast category of cell

surface proteins that mediate adhesion of cells to one another and to

the extracellular matrix (ECM). These broadly include CAMs of the

immunoglobulin superfamily (IgSF), integrins, cadherins, selectins,

and other uncategorized proteins that possess adhesive function,

including APP itself. CAMs are of particular interest in amyloid-

dependent AD pathology as their structure and cell surface

localization make them well-suited for interactions with both

APP and Aβ, many of which have been found to date. Multiple

gene ontological analyses have also described cell adhesion as an

affected pathway in AD (Blalock et al., 2004; Cui et al., 2018; Wang

and Li, 2021; Shu et al., 2022).

Thus, in this review, we summarize the current knowledge

surrounding the interactions of CAMs with APP and Aβ and

how CAMs influence the processing and physiological

function of APP as well as their role in Aβ toxicity. This

breadth of knowledge is a necessary piece of the complex AD

puzzle, which we should better understand to enable the

development of safe and effective therapeutics for the

treatment and prevention of AD.

Interactions of CAMs with APP and
the role that CAMs play in the
amyloidogenic processing of APP and
Aβ toxicity

APP family

As APP family proteins are themselves CAMs, we first discuss

the role that homo- and hetero-dimerization of the members of this

family plays in APP processing, functioning, and Aβ toxicity.
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APP homodimerization influences its processing
APP interacts with itself forming homodimers in the mouse

brain (Schmidt et al., 2012; Herr et al., 2017) and numerous cell

lines, with at least four regions of this molecule, namely the

GFLD of E1 (Kaden et al., 2009), CuBD of E1 (Noda et al., 2013),

E2 (Wang and Ha, 2004), and TMD (Munter et al., 2007; Sato

et al., 2009), being engaged in dimer formation (Figure 2A and

Table 1). The impact of dimerization on APP processing is

complex and remains controversial. Several reports suggest

that APP dimerization modulates the balance between its α-
and β-cleavage. For example, inhibition of APP dimerization

using an APP-E1-derived peptide leads to an increase in sAPPα
levels and reduction in sAPPβ and Aβ levels in SH-SY5Y cells

(Kaden et al., 2008). Similarly, small molecule inhibitors of APP

dimerization reduce sAPPβ and Aβ levels in HEK293 cells

without affecting Aβ42/40 ratio (So et al., 2012), as well as

favoring sAPPα over sAPPβ production in CHO and

B103 cell lines (Libeu et al., 2012). Together, these findings

suggest that APP dimerization promotes BACE1-mediated

cleavage of APP. However, other studies report that APP

dimerization in CHO cells leads to an increase in sAPPα
levels and decrease in sAPPβ levels (Decock et al., 2015),

while statin-induced TMD dimerization in iPSC-derived

neurons reduces both sAPPα and sAPPβ levels, and decreases

production of Aβ (Langness et al., 2021). In addition, a number of

studies suggest that APP dimerization influences its γ-secretase-
mediated cleavage. For example, mutationally induced

dimerization of the juxtamembrane region of APP leads to an

increase in Aβ levels without affecting sAPPα or sAPPβ levels,

suggesting that the γ-secretase cleavage efficiency of APP-CTFs

may be influenced by APP dimerization (Scheuermann et al.,

2001). The preferred γ-cleavage site within APP may also be

affected by the mode of dimerization, as copper-induced APP

dimerization via the CuBD of E1 favors production of Aβ40 over
Aβ42 while TMD dimerization promotes generation of Aβ42 over
Aβ40 (Munter et al., 2007; Noda et al., 2013). It has also been

suggested that juxtamembrane domain/TMD dimerization may

predispose Aβ to form dimers and oligomers, which may in turn

affect the levels and toxicity of Aβ (Scheuermann et al., 2001). A

possible explanation for these controversies may lie in the fact

that various regions of APP contribute to dimerization, and it is

quite probable that variations in the contact sites involved may

influence APP processing in different ways.

Interactions of APP with other APP family
proteins influence APP processing

APP interacts with APLP1 in the mouse brain (Soba et al.,

2005; Bai et al., 2008). This interaction is mediated partially by

the E1 domains of APP and APLP1 (Figure 2C), but other

regions are suggested to be also involved (Kaden et al., 2009).

FIGURE 2
APP family interactions. (A) Interactions between E1, E2, and transmembrane domains of APP mediate formation of homodimers.
Homodimerization influences the α-, β-, and γ-cleavage of APP, Aβ generation, and the ratio of Aβ42/40. (B)Monomers, dimers, and oligomers of Aβ
bind to the E1 domain and cognate Aβ region of APP. The interaction with Aβ monomers and dimers promotes APP homodimerization, while the
APP-AβO interaction induces ERK phosphorylation, inhibits long-term potentiation (LTP), and leads to excitatory/inhibitory imbalance,
ultimately resulting in neurotoxicity. (C) APLP1 interacts with the E1 domain of APP, suppressing APP endocytosis, increasing cell surface levels of
APP, and thereby facilitating the α-cleavage of APP, and consequently reducing Aβ generation. (D) APLP2 interacts with APP and reduces Aβ
generation via an unknown mechanism. (E) APLP1 interacts with AβOs with unknown consequence.
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While APP is mostly found intracellularly, APLP1, in contrast,

is predominantly localized at the cell surface and has a much

slower rate of endocytosis compared to APP (Kaden et al.,

2009; Schilling et al., 2017). Accordingly, APP-APLP1

interactions are reported to suppress endocytosis of APP,

increasing its α-cleavage and reducing its β-cleavage in

HEK293 cells (Neumann et al., 2006). In agreement, the

co-expression of APP and APLP1 in SH-SY5Y cells results

in reduced Aβ generation compared to cells transfected with

APP only (Kaden et al., 2009). APP also influences the

subcellular distribution of APLP1, reducing its levels at the

cell surface (Kaden et al., 2009). Given the emerging role of

APLP1 as the primary cell adhesion molecule of the APP

family (Mayer et al., 2016; Dunsing et al., 2017; Schilling et al.,

2017; Onodera et al., 2021), these effects of APP on

APLP1 distribution provide evidence supporting the

involvement of APP in cell adhesion regulation. In the

mouse brain, APP also binds to APLP2 via its GFLD of E1

(Soba et al., 2005; Kaden et al., 2009). Similarly to APLP1,

APLP2 reduces Aβ generation in HEK293 cells when it is co-

TABLE 1 APP-interacting cell adhesion molecules and their role in APP processing and physiological function.

APP-interacting
protein

Function of interaction Cell type/tissue(s) displaying
interaction

Reference(s)

APP
family

APP Alters Aβ generation and Aβ42/40 ratio; May
modulate α-, β-, and γ-cleavage

Mouse brain, HEK293, CHO, SH-
SY5Y, B103, iPSC-derived neurons

Munter et al. (2007); Kaden et al. (2008); Libeu
et al. (2012); Schmidt et al. (2012); So et al.
(2012); Noda et al. (2013); Decock et al. (2015);
Herr et al. (2017); Langness et al. (2021)

APLP1 ↓ APP endocytosis; ↑ α -cleavage; ↓ β-cleavage; ↓
Aβ generation; ↓ Aβ42:40; ↓ APLP1 surface levels

Mouse brain, HEK293, SH-SY5Y,
COS7

Soba et al. (2005); Neumann et al. (2006); Bai
et al. (2008); Kaden et al. (2009)

APLP2 ↓ Aβ generation; ↓ Aβ42:40 Mouse brain,; HEK293 Soba et al. (2005); Bai et al. (2008); Kaden et al.
(2009)

IgCAMs NCAM1 ↓ Aβ generation; ↑ ERK phosphorylation; ↑
Neurite outgrowth

Mouse brain, CHO, COS7 Chen and Dou, (2012); Chen et al. (2016)

Fasciclin 2 ↑ Synapse formation D. melanogaster body-wall muscle Ashley et al. (2005)

NgCAM ↑ APP and αCTF levels; ↑ Axon growth Chick brain, chick retinal ganglion
cells, HEK293T

Osterfield et al. (2008)

Neurofascin Unknown Mouse brain Bai et al. (2008)

Contactin-1 ↑ α -cleavage; ↓ β-cleavage; ↓ Aβ42 levels; ↓
Aβ42:40

Mouse brain Bai et al. (2008); Puzzo et al. (2015)

Contactin-2 May modulate α/β cleavage; ↑ γ-cleavage; ↓
Neurogenesis; ↓ TGFβ2-induced cell death

Mouse brain, CHO, F11 Ma et al. (2008); Tachi et al. (2010)

Contactin-3 Unknown Chick brain and in vitro Osterfield et al. (2008); Peng et al. (2019);
Karuppan et al. (2022)

Contactin-4 ↑ APP and αCTF levels; ↑ Axon-target matching Mouse brain, chick brain, mouse
retinal ganglion cells, HEK293

Osterfield et al. (2008); Osterhout et al. (2015);
Peng et al. (2019); Karuppan et al. (2022)

Contactin-5 Unknown In vitro Peng et al. (2019); Karuppan et al. (2022)

Integrins α3 Unknown Mouse brain Hoe et al. (2009)

β1 ↑APP surface levels; ↑Monocyte activation; May
increase α-cleavage; Alters cell adhesion; Alters
neurite outgrowth

Mouse brain, HEK293, CHO, U937,
human umbilical vein endothelial cells,
THP-1 monocytes

Ghiso et al. (1992); Sondag and Combs, (2004);
Young-Pearse et al. (2008); Hoe et al. (2009); Rice
et al. (2013); Ristori et al. (2020)

Cadherins N-cadherin ↑ APP homodimerization; ↑ sAPPβ and Aβ
production

Mouse brain, HEK293 Asada-Utsugi et al. (2011)

E-cad/CTF2 ↑ APP-CTF lysosomal degradation; ↓ Aβ
production

CHO Agiostratidou et al. (2006)

Calsyntenin-
1

Stabilizes APP-Mint2 interaction; ↓ β-cleavage; ↓
Aβ production

Mouse brain, HEK293 Araki et al. (2003); Bai et al. (2008); Takei et al.
(2015); Gotoh et al. (2020)

Calsyntenin-
3

Unknown Mouse brain Bai et al. (2008)

Neurexins 1α, 2 Unknown Mouse brain Norstrom et al. (2010)

Caspr-1 May alter APP stability/processing; May alter Aβ
production

Mouse brain, HEK293, CHO Hur et al. (2012); Fan et al. (2013)

Prion
Protein

PrPc ↑ Cell adhesion Human brain, mouse brain,
zebrafish, N2a

Schmitt-Ulms et al. (2004); Bai et al. (2008);
Kaiser et al. (2012); Ulbrich et al. (2018)

LRR-
CAMs

LRRTM3 ↑ β-cleavage; ↑ Aβ production SH-SY5Y, HEK293T Majercak et al. (2006); Lincoln et al. (2013)

FLRT1,3 Unknown HEK293T Yu et al. (2016)
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TABLE 2 Aβ-interacting cell adhesion molecules and their role in Aβ toxicity.

Aβ-interacting
protein

Aβ species Function of
interaction

Cell type/tissue(s) displaying
interaction

Reference(s)

APP family APP Monomers;
Oligomers;
Fibrils

↑ Neurotoxicity Mouse brain, rat cortical neurons, N2a, B103 Lorenzo et al. (2000); Heredia et al. (2004);
Shaked et al. (2006); Fogel et al. (2014);
Kirouac et al. (2017); Wang et al. (2017)

↑ Ras levels

↑ ERK phosphorylation

↓ LTP

↑ APP dimerization

APLP1 Oligomers Unknown COS7 Laurén et al. (2009)

IgCAMs NCAM2 Oligomers ↑ NCAM2 shedding; ↑
Synapse loss

Mouse brain Leshchyns’ka et al. (2015)

L1 Monomers; Low-
MW oligomers

↓ High-MW AβOs Mouse brain and in vitro Djogo et al. (2013)

↓ Plaque load

↓ Synapse loss

↓ Astrogliosis

Integrins α1, α2,
αV, β1

Monomers;
Oligomers;
Fibrils

↑ Neurotoxicity Human fetal cortical cultures, mouse brain,
rat oligodendrocytes, THP-1 monocytes, rat
mast cells, HT22, BV-2, SH-SY5Y, IMR-32

Sabo et al. (1995); Matter et al. (1998);
Bamberger et al. (2003); Anderson and
Ferreira, (2004); Bozzo et al. (2004);
Koenigsknecht and Landreth, (2004);
Wright et al. (2007); Niederhoffer et al.
(2009); Han et al. (2013); Woo et al. (2015);
Quintela-López et al. (2019); Ortiz-Sanz
et al. (2020)

↑ Cofilin activation

↑ Mitochondrial
dysfunction

↑ ROS generation

↑ Apoptosis

↑ MAPK activation

↑Dendritic complexity and
spine density

↑ Oligodendrocyte survival

↑ Microglial activation

↑ Aβ phagocytosis

↓ Cell surface integrins

↓ Cell adhesion

Neurexins 1, 2, 3 Oligomers ↓ Presynaptic
differentiation

Human brain (ex vivo), rat hippocampal
neurons, COS-7, HEK293

Brito-Moreira et al. (2017); Naito et al.
(2017)

↓ Neurexin-1β axonal cell
surface levels

↑ Oxidative stress

↑ Synapse loss

↑ Memory impairment

Fibrils Unknown CSF of AD patients Rahman et al. (2018)

Neuroligins 1 Oligomers ↑ Oxidative stress Human brain (ex vivo), mouse brain Dinamarca et al. (2015); Brito-Moreira et al.
(2017); Dufort-Gervais et al. (2020)↑ Synapse loss

↑ Memory impairment

2 Oligomers Unknown Rat hippocampal neurons Dinamarca et al. (2015); Brito-Moreira et al.
(2017)

Prion
protein

PrPc Oligomers ↓ LTP Human brain, mouse brain, COS-7, SH-SY5Y,
HEK293

Laurén et al. (2009); Barry et al. (2011);
Caetano et al. (2011); Larson et al. (2012);
Rushworth et al. (2013); Peters et al. (2015);
Gunther et al. (2019)

↑ Intracellular Ca2+

↑ Fyn activation

↑ Tau
hyperphosphorylation

↑ Synaptotoxicity

↑ Memory impairment

↑ Cell surface PrPc

↓ PrPc-mediated
BACE1 inhibition
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expressed with APP (Kaden et al., 2009) (Figure 2D). APLPs

preferentially reduce Aβ42, rather than Aβ40 levels, suggesting
that APP/APLP interactions affect the γ-secretase-mediated

cleavage of APP-CTFs (Kaden et al., 2009).

APP interacts with Aβ and mediates Aβ toxicity
APP interacts with Aβ monomers, oligomers, and fibrils,

acting as a receptor for Aβ, which mediates Aβ-induced toxicity

(Figure 2B and Table 2). Soluble Aβ was found to bind to the Aβ
region of APP at the cell surface thereby inducing cell death in

N2a cells (Shaked et al., 2006). This effect was dependent on the

YENPTY motif in the APP intracellular domain, which interacts

with a number of cytoplasmic proteins involved in intracellular

signaling, suggesting that Aβ induces intracellular signaling

pathways via APP. Consistent with this idea, AβO treatment

of B103 cells increases Ras levels and ERK phosphorylation, both

of which are dependent on APP expression (Kirouac et al., 2017).

ERK induces hyperphosphorylation of tau and thereby can

mediate the APP-dependent AβO toxicity (Guise et al., 2001;

Siano et al., 2019). In APP−/− mice, AβO binding to synapses is

reduced and AβO effects on long-term potentiation (LTP) and

the balance of excitatory/inhibitory activity are attenuated (Wang

et al., 2017). Cultured APP−/− neurons are less vulnerable to Aβ-
induced toxicity compared to wild-type neurons (Lorenzo et al.,

2000). Aβ monomers and dimers also bind to the E1 domain of

APP, increasing APP homodimerization and influencing

neurotransmitter release probability (Fogel et al., 2014). In

addition, AβFs bind to APP leading to an increase in APP

levels at the cell surface, thereby facilitating the binding of Aβ
to APP (Lorenzo et al., 2000; Heredia et al., 2004). APP-Aβ
interactions promote homodimerization of APP, which may in

turn stimulate amyloidogenic processing of APP to a greater

extent (Fogel et al., 2014). APLP1 has also been identified as a

binding partner of AβO, however, the functional significance of
this interaction remains to be determined (Figure 2E).

Immunoglobulin superfamily of CAMs

Members of the immunoglobulin superfamily (IgSF) of

CAMs are plasma membrane-attached glycoproteins

characterized by the presence of immunoglobulin-like (Ig)

repeats within their extracellular domains. IgSF CAMs

mediate calcium-independent homophilic adhesion between

cells where identical molecules on membranes of adjacent

cells bind to each other. IgSF CAMs also heterophilically

interact in cis with a number of other cell surface receptors

located within the same membrane or bind in trans to the cell

surface receptors on membranes of other cells. These proteins

play important roles in regulating neuronal development and

synaptic functions (Maness and Schachner, 2007; Sytnyk et al.,

2017) and have been implicated in AD (Leshchyns’ka and

Sytnyk, 2016). The role that APP and Aβ play in regulating

the functions of these proteins and effects of these proteins on the

amyloidogenic processing of APP and Aβ toxicity are reviewed

below.

Neural cell adhesion molecules (NCAMs)
NCAMs belong to a sub-family of CAMs within the IgSF.

The group consists of NCAM1 (originally designated NCAM)

and the lesser known NCAM2 (also designated OCAM)

(Winther et al., 2012; Weledji and Assob, 2014). NCAM1 and

NCAM2 are structurally similar, being composed of five

N-terminal Ig domains (IgI-V) and two fibronectin type III

(Fn3) repeats (Fn3I-II) (Figure 3A). Alternative splicing

generates three major NCAM1 isoforms, which have identical

extracellular domains and differ in the membrane attachment.

Two longer isoforms of NCAM1, designated NCAM140 and

NCAM180 according to their molecular weight, are

transmembrane proteins with a longer intracellular tail in

NCAM180. The shortest NCAM1 isoform, designated

NCAM120, is a glycosylphosphatidylinositol (GPI)-anchored

protein lacking the intracellular domain. Two major

NCAM2 isoforms also have identical extracellular domains.

The longer NCAM2 isoform is a transmembrane protein,

whereas the shorter isoform is GPI-anchored to the plasma

membrane. NCAMs are expressed in many tissues but are

particularly enriched in the brain, where they participate in

the regulation of neurite outgrowth, synaptogenesis and

synaptic plasticity (Sytnyk et al., 2017; Rasmussen et al., 2018).

NCAMs interact with APP

NCAM1 forms a complex with APP in the mouse brain, with

the E2 domain of APP and the extracellular domain of

NCAM1 mediating this interaction (Chen and Dou, 2012)

(Figure 3Ai). NCAM180, a splice variant of NCAM1 with a

longer cytoplasmic tail, does not, however, associate with APP,

suggesting that the APP/NCAM1 complex formationmay also be

dependent on an additional intracellular mechanism. The

interaction of APP with NCAM1 is conserved in Drosophila

melanogaster, where the APP homolog, APPL, binds to the

NCAM ortholog Fasciclin 2 (Ashley et al., 2005; Mao and

Freeman, 2009). Human APP was also found in a complex

with NCAM2 in the brain of transgenic APP23 mice

(Leshchyns’ka et al., 2015).

Role of APP in regulating NCAM1-dependent neurite

outgrowth and synaptogenesis

APP and NCAM1 trigger the mitogen-activated protein kinase

(MAPK) pathway via phosphorylation of ERK1 and ERK2. Co-

expression of NCAM1 and APP in COS7 cells promotes

phosphorylation of ERK1,2 to a larger extent than found in cells

expressing either protein alone (Chen and Dou, 2012) (Figure 3Ai,ii).

This synergistic effect requires the extracellular, but not the intracellular

domain of APP. Both APP and NCAM1 independently promote

neurite outgrowth in mouse hippocampal neurons, and when present
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together they increase neurite outgrowth synergistically (Chen et al.,

2016). The fact that the latter effect can be inducedby secreted sAPPα is
consistent with a non-essential role of the intracellular domain of APP,

altogether indicative of a ligand-receptor interaction between APP and

NCAM1 (Figure 3Aii).

The role of the interaction between NCAM and APP in

synaptogenesis was shown in Drosophila, where Fasciclin

2 promotes synapse formation by interacting with APPL,

which initiates signaling via the adaptor protein Mint1

(Ashley et al., 2005).

FIGURE 3
Interactions of IgSF CAMs with APP and Aβ. (A) (i) NCAM1 interacts with the E2 domain of APP and reduces Aβ generation. Binding of APP or (ii)
sAPPα to NCAM1 induces ERK phosphorylation and promotes neurite outgrowth. (iii) AβOs bind to NCAM2 triggering shedding of its extracellular
domain by an unidentified protease, causing synapse disassembly. (B) (i) The chicken ortholog of L1, NgCAM, interacts with APP and regulates APP
stability and processing. Binding of APP to NgCAM promotes axon outgrowth in retinal ganglion cells. (ii) Aβ peptides bind to the second
Fn3 domain of L1. L1 reduces Aβ42:40 ratio and the formation of high molecular-weight (MW) AβOs in favor of monomers, dimers, and tetramers. (C)
APP interacts with all contactin family members except for contactin-6. The E1 CuBD of APP binds to the second Fn3 domain of contactin.
Contactin-1 promotes α-cleavage and reduces β-cleavage of APP, thereby reducing Aβ generation. Contactin-2 promotes γ-cleavage of APP,
thereby increasing AICD release and inhibiting neurogenesis. Contactin-2 also inhibits the binding of APP to TGFβ2 and reduces apoptosis induced
by APP-TGFβ2 interactions. Contactin-4 regulates APP stability and processing and is required for APP-dependent axon-target matching. The
function of APP interactions with contactin-3 and -5 remains undetermined.
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NCAMs in AD

In AD, NCAM1 levels are reduced in the frontal and

temporal cortex, while levels of proteolytic

NCAM1 fragments in the serum are increased (Todaro

et al., 2004; Aisa et al., 2010). The levels of

NCAM1 carrying polysialic acid, an unusual carbohydrate

predominantly found on NCAM1, are similarly diminished in

the entorhinal cortex in AD-affected brains inversely

correlating with hyperphosphorylated tau load (Murray

et al., 2016). The levels of polysialylated NCAM1 are

however increased in the AD hippocampus (Mikkonen

et al., 1999).

NCAM2 is enriched in the human hippocampus, a brain

region highly susceptible to Aβ-induced toxicity. In brains of

people with AD, NCAM2 levels are reduced in hippocampal

synapses and the levels of soluble NCAM2 are elevated

suggesting increased shedding of NCAM2 from synaptic

membranes (Leshchyns’ka et al., 2015). The overall levels of

NCAM2 and the levels of its phosphorylation are however

increased in AD brains (Leshchyns’ka et al., 2015; Sathe et al.,

2020). Together these data suggest that NCAMs play a role

in AD.

NCAMs regulate the amyloidogenic processing of APP

Co-expression of NCAM1 with APP in CHO cells reduces

production of both Aβ40 and Aβ42, suggesting that

NCAM1 modulates APP processing (Chen and Dou, 2012)

(Figure 3Ai). The mechanism underlying this effect is currently

unknown.

A single nucleotide polymorphism (SNP) in NCAM2

(rs2212624) is associated with the development of late-onset AD

(Kimura et al., 2006), while another SNP in NCAM2 (rs1022442) is

associated with high Aβ levels in the cerebrospinal fluid (CSF) (Han
et al., 2010), together suggesting that NCAM2 may be implicated in

Aβ-dependent AD pathology. The association between SNPs in

NCAM2 and the levels of Aβ in CSF (Han et al., 2010) suggests that

NCAM2 may influence Aβ production, presumably by interacting

with APP.

Role of NCAMs in Aβ toxicity

A peptide derived from the fibroblast growth factor

receptor (FGFR)-binding region of NCAM1 within the

Fn3II domain prevents neurodegeneration and cognitive

impairment in AβO-treated rats (Klementiev et al., 2007).

The peptide mimics NCAM1 functions by binding to and

activating FGFR (Neiiendam et al., 2004). Together these data

suggest that the loss of NCAM1-FGFR interactions and

attenuation of NCAM1-dependent signaling contribute to

Aβ toxicity.

NCAM2 interacts with AβOs in brains of transgenic

APP23 mice, and AβOs increase shedding of synaptic

NCAM2 in cultured hippocampal neurons, compromising

synaptic adhesion and inducing synapse disassembly

(Leshchyns’ka et al., 2015) (Figure 3Aiii).

L1 family
The L1 family is a group of IgSF CAMs that includes L1,

close homologue of L1 (CHL1), neurofascin and NgCAM-

related CAM (NrCAM). L1 is a transmembrane protein with

a short cytoplasmic tail and extracellular domain composed

of six Ig-like domains and five Fn3 repeats (Figure 3B). L1 is

expressed in a variety of tissues, but is enriched in the

nervous system, where it plays a role in synaptogenesis,

neurite outgrowth, and neuromuscular junction stability

(Sytnyk et al., 2017).

Role of APP in regulating L1 family functions

APP interacts with neuronal-glial CAM (NgCAM), the

chicken ortholog of L1, in the chick brain, and APP and

sAPPα enhance NgCAM-dependent axon growth in retinal

ganglion cells (Osterfield et al., 2008) (Figure 3Bi). In the

mouse brain, APP interacts with another L1 family member,

neurofascin (Bai et al., 2008). The functional role of this

interaction remains to be investigated.

L1 family members in AD and their role in the

amyloidogenic processing of APP and Aβ toxicity

In the CSF of AD patients, the levels of L1 proteolytic

fragments are increased (Strekalova et al., 2006), while

neurofascin levels are reduced (Brinkmalm et al., 2018).

The levels of full-length APP and αCTF are elevated in

HEK293T cells co-expressing NgCAM, suggesting a role for

the latter in modulation of APP stability and/or processing

(Osterfield et al., 2008) (Figure 3Bi).

Aβ42 peptides bind to L1 in vitro via its second

Fn3 domain (Djogo et al., 2013) (Figure 3Bii). This

interaction reduces the formation of high-molecular

weight (MW) forms of AβOs, with a corresponding

increase in levels of Aβ monomers, trimers, and tetramers.

Hippocampal L1 levels are reduced in aged APPswe mice, a

mouse model of AD overexpressing human APP with a

Swedish (KM670/671NL) mutation, which exhibits Aβ
deposition with age (Hu et al., 2022). In APP/PS1 mice, a

mouse AD model co-expressing mutated human APP with a

Swedish mutation and mutated presenilin 1, overexpression

of L1 using adeno-associated viruses results in a reduced Aβ
plaque load and Aβ42/40 ratio, as well as milder hippocampal

synapse loss and astrogliosis (Djogo et al., 2013). A 70 kDa

fragment of L1 (L1-70) generated by proteolysis of L1 by

serine proteases also reduces Aβ load in mice. This occurs via

translocation of L1-70 to the nucleus inducing cytokine

expression and the clearance of Aβ plaques by activated

microglia (Hu et al., 2022). While microglial activation is

important for Aβ clearance, in prolonged or extreme form it
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results in inflammation exacerbating neuronal damage in AD

(Heneka et al., 2015).

Together, these findings allude to a protective role for

L1 in AD via the prevention of aggregation and promotion of

Aβ clearance.

Contactins
Contactins are a family of CAMs within the IgSF comprising

six members, including contactin-1 (also designated F3),

contactin-2 (also named TAG1 or TAX1), contactin-3 (also

named BIG-1 or PANG), contactin-4 (also designated BIG-2),

contactin-5 (also named NB-2), and contactin-6 (also designated

NB-3). Contactins are composed of six Ig domains and four

Fn3 domains attached to plasma membrane via a GPI anchor

(Figure 3C). They are primarily expressed in the brain where they

accumulate in axons, contributing to control of axon growth and

guidance, as well as to other functions distinct for each family

member (Shimoda and Watanabe, 2009; Gennarini et al., 2017;

Chatterjee et al., 2019).

Role of APP in regulating contactin family functions

In the mouse brain, APP was shown to interact with

contactin-1 (Bai et al., 2008; Puzzo et al., 2015), contactin-2

(Ma et al., 2008), and contactin-4 (Osterhout et al., 2015).

Contactin-3 and -4 were demonstrated to interact with APP

in the chick brain (Osterfield et al., 2008). In vitro assays show

that contactin-3 and -4 bind to APP with the highest affinity

amongst the contactin family via a conserved interaction

interface between the E1 CuBD of APP and second

Fn3 domain of Contactin-3 and -4 (Peng et al., 2019;

Karuppan et al., 2022) (Figure 3C). Contactin-5 also binds to

APP via this interface, suggesting the binding site is likely to be

similar for all contactins (Karuppan et al., 2022). Contactin-1 and

-2 show little to no binding to APP in these in vitro assays,

suggesting additional factors may mediate such interactions in

the brain. Contactin-6 does not bind to APP in vitro, and this

interaction has not thus far been identified in vivo, potentially

making contactin-6 unique within the contactin family.

The interaction of contactin-4 with APP is required for axon-

target matching in mouse retinal ganglion cells, regulating the

circuitry involved in vision stabilization (Osterhout et al., 2015)

(Figure 3C). The physiological role of the interactions between

other contactins and APP is yet to be determined.

Contactin family members in AD and their role in the

amyloidogenic processing of APP and Aβ toxicity

In mice, contactin-1 expression in the hippocampus

decreases with age being associated with age-dependent

cognitive decline (Shimazaki et al., 1998; Puzzo et al., 2015).

Single nucleotide polymorphisms in the contactin-2 coding gene

are associated with late-onset AD and contactin-2 CSF levels are

reduced in AD and correlate with Aβ40 and hyperphosphorylated
tau levels (Medway et al., 2010; Chatterjee et al., 2018). The levels

of contactin-2 also decrease with age in mice (Tachi et al., 2010).

The chromosomal region encompassing the contactin-4 coding

gene was found to have suggestive linkage to late-onset AD

(Blacker et al., 2003; Bamford et al., 2020).

Contactin-1 is suggested to modulate the α-/β-cleavage of

APP as aged transgenic mice overexpressing contactin-1 display

reduced sAPPβ and increased sAPPα levels compared to

similarly aged wild-type mice (Puzzo et al., 2015) (Figure 3C).

The levels of Aβ42 are decreased, while the levels of Aβ40 remain

unchanged in these transgenic mice, suggesting that the preferred

γ-cleavage site may also be influenced by contactin-1

overexpression. Contactin-2 may similarly influence the α-/β-
cleavage of APP as mouse embryonic fibroblasts overexpressing

contactin-2 show increased production of both α- and β-CTFs,
with a more prominent rise in α-CTF levels (Ma et al., 2008).

However, contactin-2 does not affect sAPPα or sAPPβ levels in

HEK293 cells or cultured cortical neurons (Rice et al., 2013).

Contactin-2 promotes the γ-cleavage of APP-CTFs as

demonstrated by a decrease in AICD release in CNTN2−/−

embryonic mouse brains (Ma et al., 2008). This contactin-2-

dependent γ-cleavage and release of AICD initiates a signaling

pathway that inhibits neurogenesis (Figure 3C). Contactin-2 is

also suggested to suppress neuronal cell death, as it competitively

inhibits the binding of transforming growth factor β2 (TGFβ2) to
APP (Tachi et al., 2010), an interaction known to induce

neuronal apoptosis (Hashimoto et al., 2005). In HEK293 cells,

co-expression of contactin-4 increases the levels of full-length

APP and αCTF suggesting that contactin-4 also regulates the

processing of APP (Osterfield et al., 2008) (Figure 3C).

Together, these data suggest that at least some members of

the contactin family regulate the function and processing of APP,

and that the age-related reduction in contactin expression may

contribute to the shift towards amyloidogenic processing that

leads to AD.

Other IgSF CAMs
The small GPI-anchored CAMThy-1 has also been identified

as a binding partner of APP (Bai et al., 2008), while neurotrimin

and opioid-binding protein/CAM have been found to bind AβF
(Verdier et al., 2005). The role these interactions play in normal

physiology and amyloid-dependent pathology requires further

investigation.

Integrins

Integrins form a large and diverse family of ubiquitously

expressed transmembrane CAMs (Barczyk et al., 2009). They are

heterodimers composed of α and β subunits, combining to form

at least 24 different pairs with distinct functions and expression

patterns (Takada et al., 2007) (Figure 4). Integrins are the

primary mediators of cell-to-ECM adhesion throughout the

body and serve a wide variety of functions including
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regulation of cellular growth and migration (Howe et al., 1998;

Huttenlocher and Horwitz, 2011). Integrins are widely expressed

in cells of the nervous system, where they play important roles in

neurite outgrowth, synaptic plasticity, and neural immune

function (Archelos et al., 1999; Clegg et al., 2003).

Integrins interact with APP
In the mouse and rat brain, APP binds to β1-integrins and

α3-integrins, but not to αM-integrins (Young-Pearse et al., 2008;

Hoe et al., 2009) (Figure 4A). APP colocalizes strongly with α1β1-
and α5β1-integrins in cultured neurons, and with α1β1- but not

FIGURE 4
Interactions of integrins with APP and Aβ. (A) (i) The E1 domain of APP interacts with β1-and α3-integrins. Integrins suppress endocytosis of APP
and thereby may facilitate its α-cleavage. APP influences integrin stability and integrin-dependent adhesion. (ii) In neurons, sAPPα binds to β1-
integrins and induces neurite outgrowth. (iii) In monocytes, adhesion to a collagen substrate induces the formation of an APP-β1-integrin complex,
which activatesMAPK signaling resulting inmonocyte activation. (B) (i) In neurons, binding of AβOs to β1-integrins leads to a reduction in the cell
surface levels of β1-integrins and compromised cell adhesion, and results in activation of the f-actin severing protein, cofilin, mitochondrial
dysfunction and ROS generation, leading to apoptosis. (ii) AβFs bind several integrin subunits (β1, α1, α2, and αV) and induce MAPK activation and
neurotoxicity. Binding of AβF to β1-integrin also induces FAK and paxillin activation, leading to dysregulation of integrin-mediated focal adhesion and
contributing to neuronal dystrophy. (iii) In microglia, AβFs bind to a receptor complex composed of α6β1-integrin, CD47, and CD36, and induce
tyrosine-kinase activation, stimulating AβF phagocytosis and microglial activation.
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α5β1-integrins in cultured astrocytes (Yamazaki et al., 1997),

suggesting cell type-specific interactions between APP and

different integrin subunits. The β1-integrin-APP complex is

formed via the interaction of the E1 domain of APP with the

extracellular domain of β1-integrin (Young-Pearse et al., 2008).

Binding sites within APP for other integrin subunits remain

unknown. APP and β1-integrins may also be linked by

cytoplasmic adaptor proteins, such as Dab1 and Fe65, which

both APP and β1-integrins bind to (Young-Pearse et al., 2008).

Role of APP in regulating integrin-dependent
functions

Studies in multiple cell types suggest that APP regulates

integrin-mediated adhesion, a function consistent with the

ubiquitous expression of both proteins. The loss of APP in

endothelial cells reduces expression of β1-and β3-integrins,
compromising attachment of cells to collagen and

fibronectin substrates (Ristori et al., 2020). Adhesion of

THP-1 monocytes to collagen substrates is also dependent

on APP expression, wherein adhesion induces the formation

of a receptor complex containing β1-integrins and APP,

initiating MAPK signaling and facilitating monocyte

activation (Sondag and Combs, 2004) (Figure 4Aiii). In

contrast, the loss of APP in mice leads to an increase in the

levels of β1-and α3-integrins in the brain (Hoe et al., 2009),

suggesting that the integrin-APP interactions in cells of the

nervous system may differ from those in other tissues. In

cultured neurons, blockade of β1-integrins with anti-β1-
integrin antibodies leads to inhibition of neurite outgrowth

induced by sAPPα, suggesting that β1-integrins function as

receptors for soluble forms of APP (Young-Pearse et al., 2008)

(Figure 4Aii).

β1-integrins regulate the processing of APP
In cultured hippocampal neurons overexpressing β1-integrin

and APP, APP internalization is reduced and APP levels at the

cell surface are increased (Hoe et al., 2009), suggesting that β1-
integrins facilitate the α-cleavage of APP which is known to occur

predominantly at the cell surface (Parvathy et al., 1999)

(Figure 4Ai). In agreement, overexpression of β1-integrins in

HEK293 cells endogenously expressing APP leads to an increase

in sAPPα production, however, this effect could not be

reproduced in cultured cortical neurons (Rice et al., 2013).

The levels of β1-integrins are reduced in the brain of the

Tg2576 mouse model of AD overexpressing a mutant form of

APP (isoform 695) with the Swedish mutation (KM670/671NL).

This model displays elevated Aβ levels and ultimately amyloid

plaques (Hoe et al., 2009), supporting the idea that low integrin

levels correlate with increased amyloidogenic APP processing.

Integrin-mediated signaling was also implicated in the control of

APP processing in several genome-wide siRNA screens

(Camargo et al., 2015; Chapuis et al., 2017). β1-integrins
interact with a 109 amino acid APP-CTF (Ghiso et al., 1992).

They may therefore bind to α- and β-CTFs of APP and influence

their γ-cleavage.

Role of integrins in Aβ toxicity
Integrins bind to Aβ monomers, oligomers, and fibrils. The

RHDS sequence located near the N-terminus of Aβ is similar to

the known integrin recognition sequence RGDS (Ghiso et al.,

1992). CHO cells expressing α5β1-integrins attach to non-

fibrillar Aβ-coated surfaces, and this attachment is blocked by

soluble RGDS sequence-containing peptides or anti-α5-integrin
antibodies (Matter et al., 1998). The binding of integrins to Aβ is
subunit specific because CHO cells expressing αvβ1-integrin, but
not αvβ3-integrin, also attach to Aβ-coated surfaces. Aβ40
peptides also bind to αIIbβ3-integrin (platelet integrin) via the

RHDS sequence, however, other sequences in Aβ40 are also

involved (Donner et al., 2016; Donner et al., 2018). The

binding of α6-integrins and β1-integrins to AβF is mediated

by an epitope distinct from the RHDS sequence (Bamberger

et al., 2003; Venkatasubramaniam et al., 2014). β1-integrin also

binds AβOs, and β1-integrin conditional knock-out mice

demonstrate reduced binding of AβOs to neurons (Woo et al.,

2015).

The binding of AβOs to β1-integrins in neurons results in the
activation of cofilin, an f-actin severing protein, leading to the

depletion of f-actin, mitochondrial dysfunction, ROS generation,

and apoptosis (Woo et al., 2015) (Figure 4Bi). β1-integrin also

mediates a transient increase in spine density and dendritic

complexity following AβO treatment (Ortiz-Sanz et al., 2020).

Changes in function of oligodendrocytes, the myelinating glial

cells of the central nervous system, are associated with the onset

of neurodegeneration in AD. It is noteworthy that the binding of

AβOs to β1-integrin in oligodendrocytes leads to the activation of
protein tyrosine kinase Fyn and serine/threonine-specific Ca2+/

calmodulin-dependent protein kinase II (CaMKII), promoting

differentiation, maturation, and survival of these cells (Quintela-

López et al., 2019). This may represent a physiological role of Aβ
which may be lost in favor of toxicity with chronic Aβ exposure.

Binding of AβF to β1-integrin in neurons results in

activation of focal adhesion kinase (FAK) and the focal

adhesion scaffolding protein, paxillin, leading to the

formation of aberrant focal adhesion-like structures (Grace

and Busciglio, 2003; Han et al., 2013). AβF-induced neuronal

dystrophy is dependent on β1-integrin-induced paxillin

activation, indicating that dysregulation of focal adhesions

may be central to Aβ toxicity (Figure 4Bii). Furthermore, AβF-
induced neurotoxicity appears to be driven by the MAPK

pathway, dependent on specific integrins, with neurotoxicity

mediated by α1-integrin in hippocampal neurons and α2-, αV,
and β1-integrins in cortical neurons (Anderson and Ferreira,

2004; Wright et al., 2007). Binding of AβF to a receptor

complex composed of α6β1-integrin, IgSF CAM CD47, and

B-class scavenger receptor CD36 in microglia, immune

effector cells of the central nervous system, causes Fyn
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activation, triggering microglial cell activation and leading to

a potentially deleterious inflammatory response (Bamberger

et al., 2003) (Figure 4Biii). Tyrosine kinase-dependent

signaling via this receptor complex induces phagocytosis of

AβF, which may facilitate Aβ clearance (Koenigsknecht and

Landreth, 2004). Blockade of β1-integrins prevents AβF-
induced tyrosine kinase signaling, ROS generation, and

interleukin-1β production in THP-1 monocytes (Bamberger

et al., 2003). AβF also stimulates histamine secretion from

mast cells via binding to a β1-integrin-CD47 receptor

complex (Niederhoffer et al., 2009).

While aberrant overactivation of some integrin signaling

pathways appears to be a common response to Aβ, other

integrin-dependent pathways are silenced in AD mouse models.

For example, integrin-linked kinase (ILK) levels and activity are

reduced in APP/PS1mice expressing a chimericmouse/humanAPP

with a Swedish mutation and a mutant human presenilin 1 in the

central nervous system neurons. Overexpression of ILK rescues

hippocampal neurogenesis and memory deficits in this AD mouse

model (Xu et al., 2018).

Integrin-mediated cell-to-cell and cell-to-ECM adhesion also

appears to be a target of Aβ toxicity, as Aβ peptides partially block

β1-integrin-mediated adhesion of SH-SY5Y cells to a fibronectin

substrate (Sabo et al., 1995). AβOs induce the loss of cell surface β1-
integrins in cultured neurons and α1β1-integrins in neuroblastoma

cell lines (Bozzo et al., 2004; Bozzo et al., 2010; Woo et al., 2015).

Overexpression of α5β1-integrins in human neuroblastoma IMR-32

cells results in inhibition of Aβ-induced apoptosis (Matter et al.,

1998), suggesting that the loss of integrins contributes to AβO-
induced neuronal death in AD (Figure 4Bi).

Cadherins

Cadherins are a family of widely expressed CAMs

characterized by the presence of the extracellular cadherin

(EC) domains and mediating calcium-dependent homophilic

adhesion between cells. Classical cadherins such as E- or

N-cadherin are transmembrane glycoproteins with a short

cytoplasmic tail and extracellular domain composed of five EC

domains (Figure 5B). Other cadherins contain variable numbers

of EC and other domains. Cadherins play various roles in

regulating cell migration, cytoskeleton organization, and are

crucial components of adherens junctions in epithelia and

endothelia (Angst et al., 2001; Halbleib and Nelson, 2006;

Kowalczyk and Nanes, 2012; Shih and Yamada, 2012). In the

FIGURE 5
Interactions of cadherins with APP. (A) The γ-cleavage product of E-cadherin, E-cad/CTF2, interacts with APP-CTFs, promoting their lysosomal
degradation and precluding Aβ generation. (B) N-cadherin interacts with APP promoting its homodimerization, β-cleavage, and Aβ generation.
N-cadherin-induced APP homodimerization may promote β-cleavage and Aβ generation, however, this mechanism needs to be confirmed. (C) APP
forms a complex with the non-classical cadherin, calsyntenin-1, and adaptor protein Mint2. The APP-Mint2 interaction, whichmay suppress Aβ
generation, is stabilized in the tripartite complex with calsyntenin-1, thus enabling greater suppression of Aβ generation. Formation of the APP-
Mint2-calsyntenin-1 complex also precludes calsyntenin-1 processing, reducing generation of the γ-cleavage product, calsyntenin-1 ICD, which
disrupts the APP-Mint2-calsyntenin-1 complex.
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brain, cadherins regulate neurite outgrowth and the formation of

synaptic contacts, and are important for overall neural

development (Zhu and Luo, 2004; Arikkath and Reichardt,

2008; Hansen et al., 2008).

Cadherins in AD and their role in the
amyloidogenic processing of APP

The levels of N-cadherin proteolytic fragments are increased

in the CSF and plasma of AD patients (Choi et al., 2020), while

N-cadherin expression is upregulated in the cerebral cortex of Aβ
aggregate-injected mice (Kong et al., 2005), suggesting

deregulation of N-cadherin expression or cleavage of this

glycoprotein in AD.

In the mouse brain, N-cadherin interacts with APP and

enhances APP homodimerization as well as production of

sAPPβ and Aβ (Asada-Utsugi et al., 2011) (Figure 5B).

Similarly to APP, E-cadherin is processed by ADAM10 and

γ-secretase (Marambaud et al., 2002; Maretzky et al., 2005).

The cytoplasmic fragment of E-cadherin, termed E-cad/CTF2,

which is released following γ-secretase cleavage of E-cadherin,
interacts with APP-CTFs in CHO cells, promoting their

lysosomal degradation and inhibiting the production of Aβ

and AICD (Agiostratidou et al., 2006) (Figure 5A). E-cadherin

was identified as an interacting partner of APP in silico using a

protein-protein interaction tool (Dursun and Gezen-Ak,

2017). This approach also identified β-catenin, which is a

cytoplasmic adaptor protein that links E-cadherin to the

cytoskeleton (Tian et al., 2011), suggesting that APP

modulates cadherin functions in cytoskeletal organization,

signaling, and adherens junction maintenance.

In the mouse brain, APP interacts with the non-classical

cadherins calsyntenin-1 and -3 (Bai et al., 2008). These cell

adhesion molecules are highly expressed in neurons and

accumulate in the post-synaptic membrane (Hintsch et al.,

2002). Calsyntenin-1 forms a complex with APP and Mint2,

stabilizing the APP-Mint2 interaction, suppressing

amyloidogenic processing and reducing Aβ production (Araki

et al., 2003; Gotoh et al., 2020) (Figure 5C). Accordingly,

calsyntenin-1 deficiency in APP23 mice results in increased

plaque deposition. On the other hand, the intracellular

domain of calsyntenin-1 released following γ-secretase
cleavage (calsyntenin-1 ICD) disrupts the APP-Mint2-

Calsyntenin-1 complex, promoting Aβ generation (Takei

et al., 2015). Since the tripartite complex additionally protects

FIGURE 6
Interactions of neurexin and neuroligin with APP and Aβ. (A)Neurexin-1 and -2 interact with APP in mouse brains, with unknown consequence.
(B) Caspr-1 interacts with APP. This interaction alters stability and processing of APP influencing production of Aβ. It is uncertain whether the
interaction increases or decreases amyloidogenic processing. (C) AβOs bind to neurexin-1β, reducing its levels at the axonal cell surface and
hindering presynaptic differentiation. (D) AβOs additionally bind to neurexin-2α triggering oxidative stress, synapse loss, and memory
impairments in mice. Similarly, (E) AβOs interact with neuroligin-1 at the post-synapse, inducing oxidative stress, synapse loss, and memory
impairments inmice. Shedding releases soluble neuroligin-1which also binds to and likely sequesters AβOs, preventing interactionswithmembrane-
bound neuroligin-1 and other receptors.
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calsyntenin-1 from cleavage (Araki et al., 2004), calsyntenin-1

ICD production may promote further calsyntenin-1 cleavage and

ICD production, leading to a positive feedback loop that

generates increasing amounts of Aβ (Figure 5C).

Neurexins and neuroligins

Neurexins are a family of transmembrane CAMs, which

includes three classical neurexins (neurexin-1 to -3) and five

contactin-associated proteins (Caspr-1 to -5) named for their

close association with contactins. Each neurexin gene encodes an

α and β isoform, which differ in their extracellular part. The

extracellular domains of α-neurexins are composed of six

laminin G-like domains and three EGF-like regions, while the

extracellular domains of β isoforms contain only a single laminin

G-like repeat (Reissner et al., 2013). The extracellular domains of

contactin-associated proteins contain four laminin G-like

domains, two EGF-like regions, an F5/8 type C domain, and a

fibrinogen-like part (Figure 6B).

Neuroligins are a family of transmembrane CAMs, which

includes five members (neuroligin-1 to -3, 4X and 4Y). The

extracellular domains of neuroligins mostly consist of an

acetylcholinesterase (AChE)-homologous domain, which binds

in a calcium-dependent manner to the laminin G-like domains of

neurexins (Bemben et al., 2015). The interaction between

presynaptic neurexins and postsynaptic neuroligins plays an

important role in synapse formation and maturation being

critical for overall neural development (Craig and Kang, 2007;

Bang and Owczarek, 2013).

Role of neurexin family members in the
amyloidogenic processing of APP

Cytosolic domains of neurexins and APP interact with

Mint1 andMint2 (Biederer and Südhof, 2000), and neurexin-1

and -2 were found in a complex with APP in the brains of

transgenic mice expressing affinity tagged APP (Norstrom

et al., 2010) (Figure 6A). APP also interacts with Caspr-1 in

the mouse brain (Fan et al., 2013) (Figure 6B). Caspr-1

interacts with and is cleaved by γ-secretase, and its

silencing results in a drastic reduction of Aβ production in

HEK293 cells (Hur et al., 2012). The levels of Caspr-1 are

increased in APP/PS1 mice (Fan et al., 2013). Caspr-1 loss of

function leads to a decrease in sAPPα production in brain

endothelial cells via transcriptional regulation of the

secondary α-secretase ADAM9 (Tang et al., 2020).

Interestingly, Caspr-1 overexpression results in reduced

levels of APP, APP-CTFs and Aβ in CHO cells transfected

with APP containing an Indiana (V717F) mutation (Fan et al.,

2013), which affects binding of APP to γ-secretase (De Jonghe

et al., 2001).

Role of neurexin family members in Aβ toxicity
AβOs bind to neurexin-1, -2, and -3 in transfected

COS7 cells (Naito et al., 2017). The binding of AβOs to β-
neurexins has no effect on neurexin-neuroligin interactions

but hinders the neurexin-mediated excitatory presynaptic

differentiation observed when hippocampal neurons were

co-cultured together with neuroligin-expressing

HEK293 cells. This occurs via a reduction in neurexin-1β
levels at the axonal cell surface induced by AβOs (Figure 6C).

In accordance, β-neurexins, but not α-neurexins, are

downregulated in synapses of the J20 APP mouse model

of AD, which overexpresses human APP with the Swedish

and Indiana mutations linked to familial AD (Naito et al.,

2017). AβOs also bind neurexin-2α in human brain tissue

(Brito-Moreira et al., 2017) (Figure 6D). Blockade of the

neurexin-2α-AβO interaction using antibodies against

neurexin-2α reduces the binding of AβOs to cultured

hippocampal neurons and prevents AβO-induced

oxidative stress and synapse loss. AβO-induced memory

impairment in mice is attenuated after injection of the

aforementioned anti-neurexin-2α antibodies (Brito-

Moreira et al., 2017). Neurexins-1, -2, and -3 have been

reported to bind to AβF in CSF of AD patients (Rahman

et al., 2018).

Role of neuroligins in Aβ toxicity
AβOs bind to neuroligin-1 in human brain tissue and in

the rat brain (Dinamarca et al., 2015; Brito-Moreira et al.,

2017). Blockade of the neuroligin-1-AβO interaction reduces

binding of AβOs to neurons, inhibits AβO-induced oxidative

stress and synapse loss in cultured neurons, and prevents

memory impairments in mice (Brito-Moreira et al., 2017).

Soluble neuroligin-1 binds to AβOs and reduces excitatory

synaptotoxicity (Dinamarca et al., 2015), most likely by

sequestering AβOs and inhibiting their interaction with

membrane-bound neuroligin-1 (Figure 6E). On the other

hand, neuroligin-1 deficient neurons are more vulnerable to

AβO-induced toxicity, and AβO-induced impairments in

learning are more severe in neuroligin-1 deficient mice

(Dufort-Gervais et al., 2020). Neuroligin-1 levels are also

reduced in the hippocampus of people with AD (Dufort-

Gervais et al., 2020). These seemingly contradictory

findings may suggest that although neuroligin-1 mediates

toxicity via its interaction with AβOs, loss of neuroligin-1

and its associated physiological functions may weaken

synapses and increase vulnerability to AβO toxicity through

other receptors. AβOs also bind to neuroligin-2, but not

neuroligin-3 (Brito-Moreira et al., 2017). In contrast to

neuroligin-1, neuroligin-2 is localized to inhibitory

synapses (Varoqueaux et al., 2004), and the effects of its

interaction with AβOs remain unknown.
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Prion protein

The cellular prion protein (PrPc) is a small glycoprotein well-

known for its role in prion diseases such as Creutzfeldt-Jakob

disease, where it exists in a misfolded and aggregated form

termed prion protein scrapie (PrPSc) (Atkinson et al., 2016).

PrPc consists of a disordered N-terminal domain and C-terminal

α-helical region attached to the membrane via a GPI anchor

(Watts et al., 2018). PrPc is expressed in a variety of tissues but is

particularly enriched in the brain where is plays a role in

regulating cell adhesion, neuronal development, synaptic

plasticity, and myelin maintenance (Roucou and LeBlanc,

2005; Petit et al., 2013; Wulf et al., 2017; Watts et al., 2018).

Role of APP in regulating PrPc-dependent
functions

PrPc interacts with APP in the mouse brain, zebrafish, and N2a

cells (Schmitt-Ulms et al., 2004; Bai et al., 2008; Kaiser et al., 2012)

(Figure 7Aii). APP was pulled down from human brain lysate with

the N-terminal domain of PrPc used as bait (Ulbrich et al., 2018). In

zebrafish embryos, knockdown of either APP or PrPc homologs was

shown to have no effect on cell aggregation, however, knockdown of

both significantly reduced the propensity for aggregation. (Kaiser

et al., 2012). The loss of APP in zebrafish results in increased seizures

upon exposure to low doses of convulsant, and this effect is lost in

fish lacking PrPc suggesting that APP regulates neuronal excitability

in a PrPc-dependent manner (Kanyo et al., 2020).

PrPc in AD and its role in the amyloidogenic
processing of APP

There are some similarities between prion diseases and AD,

and the gene encoding for PrPc (Prpn) has been identified as a

potential susceptibility gene for AD (Riemenschneider et al.,

2004; Bertram et al., 2007). PrPc levels are reduced in the

temporal cortex of patients suffering from sporadic AD, and

this reduction correlates with increased clinical severity of the

disease (Whitehouse et al., 2013).

PrPc modulates APP processing by interacting with BACE1,

where PrPc binds to immature BACE1 in the Golgi, preventing its

export and maturation (Parkin et al., 2007; Griffiths et al., 2011).

PrPc reduces Aβ levels in mouse brains, and PrPc levels inversely

correlate with Aβ load in AD (Whitehouse et al., 2013). It is

unknown whether PrPc also controls APP processing by directly

interacting with APP.

Role of PrPc in Aβ toxicity
AβOs bind to the N-terminal region of PrPc in AD brains

but not in brains of non-demented controls (Chen et al.,

FIGURE 7
Interactions of the cellular prion protein (PrPc) and LRR superfamily CAMs with APP and Aβ. (A) (i) Binding of AβOs to PrPc induces an increase in
intracellular Ca2+ levels, LTP inhibition, Fyn activation, and tau hyperphosphorylation, ultimately resulting in synaptotoxicity and neuronal death. PrPc

is anchored to the outer leaflet of the plasmamembrane and transmits the AβO-induced signals across the plasmamembrane by interacting with the
transmembrane proteins LRP1 and mGluR5. Soluble PrPc binds to and can sequester AβOs, preventing membrane-bound PrPc-mediated AβO
toxicity. (ii) Interaction of APP with the N-terminal domain of PrPc enhances cell adhesion via an unknown mechanism and may also regulate
neuronal excitability. (B) (i) LRRTM3 interacts with APP promoting its β-cleavage and facilitating Aβ generation. (ii) APP also interacts with FLRT1 and
FLRT3, with unknown consequence.
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2010; Dohler et al., 2014) (Figure 7Ai). The efficiency of AβO
binding to the neuronal surface is strongly reduced in

cultured Prpn−/− neurons, and AβOs fail to inhibit

hippocampal LTP in Prpn−/− mice indicating that PrPc is

one of the major neuronal receptors for AβOs (Laurén et al.,

2009). The AβO-induced LTP impairment is also reduced in

rats after intracerebroventricular administration of antibody

fragments directed to a putative Aβ-binding site on PrPc

(Barry et al., 2011). Furthermore, PrPc shedding due to

cleavage by ADAM10 decreases AβO binding to iPSC-

derived neurons, resulting in reduced toxicity (Jarosz-

Griffiths et al., 2019), while soluble PrPc inhibits AβO-

induced LTP inhibition (Calella et al., 2010; Scott-McKean

et al., 2016).

Binding of AβO to PrPc leads to an increase in intracellular

calcium levels, causes synaptotoxicity, and induces activation of

Fyn kinase leading to tau hyperphosphorylation (Larson et al.,

2012; Peters et al., 2015). PrPc transmits signals across the plasma

membrane by binding to LRP1 (Rushworth et al., 2013) and

mGluR5 (Um et al., 2013; Hu et al., 2014). NCAMs, which bind

both PrPc and Fyn, may also be involved (Bodrikov et al., 2005;

Santuccione et al., 2005; Wang et al., 2013). Binding of AβO to

PrPc has been shown to hinder PrPc-dependent

BACE1 inhibition, likely promoting further Aβ production

and accumulation (Rushworth et al., 2013). Binding of AβO
to PrPc at the cell surface leads to an increase in PrPc levels here

by limiting PrPc endocytosis (Caetano et al., 2011), thereby

further promoting the binding of AβO to the cell surface and

enhancing AβO toxicity in a positive feedback loop.

An orally administered PrPc agonist that blocks binding of

AβOs to PrPc rescues memory impairment and synaptic loss

in transgenic APP/PS1 mice (Gunther et al., 2019), which

overexpress human APP with a Swedish mutation and mutant

PS1 and exhibit an age-dependent accumulation of AβOs and

AβO-induced pathology. The effects of the PrPc agonist are

seen in 12-month-old mice, when Aβ accumulation has

already occurred, and memory impairment and synaptic

loss are evident (Gunther et al., 2019). These data suggest

that therapeutic interventions targeting the PrPc-AβO
interaction may prove effective at restoring brain health in

individuals already diagnosed with AD.

CAMs of the leucine-rich repeat
superfamily

CAMs of the leucine-rich repeat superfamily are

characterized by the presence of leucine rich-repeats (LRRs) in

their extracellular domains. Leucine-rich repeat transmembrane

proteins (LRRTMs) are a family within the LRR superfamily

consisting of four members (LRRTM-1 to -4). They are single-

pass transmembrane proteins with short cytoplasmic tails and

extracellular domains comprising ten LRRs (Figure 7Bi).

LRRTMs mediate synaptic adhesion by binding to neurexins

(Ko, 2012). A family of fibronectin leucine-rich repeat

transmembrane (FLRT) proteins also belongs to the LRR

superfamily. Three members of this family (FLRT-1 to -3) are

single-pass transmembrane proteins with ten extracellular LRR

domains and a juxtamembrane Fn3 domain (Figure 7Bii). FLRTs

mediate synaptic adhesion by binding to latrophilins (O’Sullivan

et al., 2012). LRRTMs and FLRTs play an important role in

synapse formation and regulation (Ko, 2012; Schroeder and de

Wit, 2018).

LRR superfamily CAMs in AD and their role in the
amyloidogenic processing of APP

LRRTM3 was identified as a candidate gene for AD from

an siRNA screening of over 15,000 genes (Majercak et al.,

2006). SNPs within the promoter and intronic regions of the

gene coding for LRRTM3 are associated with AD (Reitz et al.,

2012). LRRTM3 interacts with APP in HEK293 cells and

colocalizes with APP in cultured neurons (Lincoln et al.,

2013). siRNA-mediated knockdown of LRRTM3 leads to a

reduction in sAPPβ and β-CTF levels and Aβ secretion in SH-

SY5Y cells (Majercak et al., 2006; Lincoln et al., 2013),

suggesting that LRRTM3 modulates β-cleavage of APP

(Figure 7Bi). APP also interacts with FLRT1 and FLRT3 in

HEK293T cells (Yu et al., 2016) (Figure 7Bii). The functional

role of this interaction remains unclear.

Conclusions and outlook

The amyloid hypothesis places APP and Aβ at the center of AD
etiology, however, our understanding of the normal functions of

APP, regulation of its processing, and the mechanisms of Aβ-
induced toxicity are still incomplete. These knowledge gaps have

been showcased by the failures of therapeutics targeting APP

processing and Aβ, which have been unable to demonstrate

reasonable efficacy (Kumar et al., 2018; Hampel et al., 2021;

Karran and De Strooper, 2022). While the physiological

functions of APP are incompletely understood, its general role in

regulating cell adhesion is suggested by multiple reports showing

that APP not only interacts with different CAMs, but also regulates

multiple functions of these proteins, including cell adhesion and

neuronal growth regulation. CAMs also emerged as important

regulators of the processing of APP with some CAMs promoting

amyloidogenic pathway and others enhancing the non-

amyloidogenic pathway. In addition to its role in AD

pathogenesis, Aβ plays physiological roles in learning and

memory (Puzzo et al., 2011; Kent et al., 2020). It is therefore

possible that the CAM-regulated switches in the modes of APP

processing are functionally important, however, the roles these

switches play in the healthy brain remains poorly understood

and should be analyzed in the future. Substantial evidence

indicates that CAMs function as the cell surface receptors for Aβ
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and its oligomers. While a possible physiological role of these

interactions remains also unknown, the binding of Aβ to CAMs

clearly plays a role in AD by inducing aberrant signaling pathways

and loss of CAM-mediated adhesion. Interestingly, some CAMs

inhibit the formation of large Aβ oligomers, suggesting these

proteins are involved in the regulation of Aβ turnover in the brain.

Together, the research outlined here highlights the importance

of the interplay between CAMs and APP during normal physiology,

a factor which should be considered when developing therapeutics

that target APP as they may impact these functions. On the other

hand, modulation of the interactions between APP and CAMs may

represent an attractive therapeutic approach to reduce Aβ
generation while limiting side effects due to overzealous

obstruction of APP and its proteases. Finally, inhibition of the

binding of Aβ to CAMs may be used to prevent the binding of

Aβ to the neuronal surface and reduce the Aβ-induced toxic effects.
There are still major gaps in our understanding of the role that

CAMs play in APP and Aβ-dependent functions. Future research
should focus on the mechanisms underpinning the interactions of

CAMs with APP and Aβ in the brain with the hope of aiding future

endeavors to develop safe and effective therapies for AD.
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