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Emergingevidencehasdemonstratedoverlappingbiological abnormalitiesunderlying

schizophrenia (SCZ), bipolar disorder (BP), andmajor depressivedisorder (MDD); these

overlapping abnormalities help explain the high heterogeneity and the similarity of

patients within and among diagnostic categories. This study aimed to identify

transdiagnostic subtypes of these psychiatric disorders based on lipidomics

abnormalities. We performed discriminant analysis to identify lipids that classified

patients (N = 349, 112with SCZ, 132with BP, and 105withMDD) and healthy controls

(N = 198). Ten lipids that mainly regulate energy metabolism, inflammation, oxidative

stress, and fatty acylation of proteins were identified. We found two subtypes (named

Cluster 1 andCluster 2 subtypes) across patientswith SCZ, BP, andMDDbyconsensus

clustering analysis based on the above 10 lipids. The distribution of clinical diagnosis,

functional impairment measured by Global Assessment of Functioning (GAF) scales,

and brainwhitematter abnormalitiesmeasured by fractional anisotropy (FA) and radial

diffusivity (RD) differed in the two subtypes. Patientswithin the Cluster 2 subtypewere

mainly SCZ and BP patients and featured significantly elevated RD along the genu of

corpus callosum (GCC) region and lower GAF scores than patients within the Cluster

1 subtype. The SCZ and BP patients within the Cluster 2 subtype shared similar

biological patterns; that is, these patients had comparable brain white matter

abnormalities and functional impairment, which is consistent with previous studies.

Our findings indicate that peripheral lipid abnormalities might help identify

homogeneous transdiagnostic subtypes across psychiatric disorders.
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1 Introduction

Schizophrenia (SCZ), bipolar disorder (BP), and major

depressive disorder (MDD) are three common psychiatric

disorders with a heavy disease burden (Vigo et al., 2016).

In clinical practice, it is an issue that the boundaries among the

various diagnoses are not clearly distinct from each other.

Patients with different diagnoses usually present baffling

similarities to each other, such as the “with psychotic

features” item of BP and MDD diagnoses and the

emotional dysfunctions in SCZ. This is partly because

rather than diagnostic objective criteria or biological

markers, the current psychiatric diagnosis nosology relies

on descriptive information elicited from self-report history

and clinical observation (Scadding, 1996; Craddock and

Mynors-Wallis, 2014; Heckers and Kendler, 2020). This

hampers the diagnostic accuracy of these psychiatric

disorders.

Increasing evidence has demonstrated that there are

overlapping biological characteristics across SCZ, BP, and

MDD, such as genetic risk factors (Cross-Disorder Group

of the Psychiatric Genomics, 2013; Cross-Disorder Group

of the Psychiatric Genomics et al., 2013; Ruderfer et al.,

2014; Cross-Disorder Group of the Psychiatric Genomics

Consortium. Electronic address and Cross-Disorder Group

of the Psychiatric Genomics, 2019; Andlauer et al., 2021),

brain structure and functional abnormalities (Meda et al.,

2014; Godwin et al., 2018; Kelly et al., 2018; Li et al., 2018;

Favre et al., 2019; van Velzen et al., 2020) and cognitive

impairment (Czobor et al., 2007; Reichenberg et al., 2009;

Millan et al., 2012; Barch and Sheffield, 2014; Reilly and

Sweeney, 2014; Tamminga et al., 2014). All of these

findings imply that the diagnostic classes are not distinct

entities, and the descriptive diagnosis nosology has

fundamental flaws. Therefore, it is necessary to identify

natural biological homogeneous subtypes across different

psychiatric disorders.

Lipid metabolites are downstream biochemical end

products that are more close to phenotypes than genomics

and proteomics. As an essential part of systems biology,

lipidomics could comprehensively illuminate the lipid

metabolic profile of individuals and identify changes related

to phenotype (Patti et al., 2012; Zhao et al., 2014). Plasma lipid

alterations, therefore, are sensitive and specific to several

observed risk factors for psychiatric disorders, including

genetic variations, brain white matter (WM) structural

abnormalities, and oxidative stress and inflammation. For

example, the ABCD1 gene mutation caused very long-chain

fatty acid accumulation in brain WM, which led to psychiatric

symptoms (Kitchin et al., 1987; Kemp et al., 2016). Plasma

lipids, such as triglyceride, were also reported to be associated

with brain WM microstructural changes and axonal

degeneration (Iriondo et al., 2021). Notably, derived from

peripheral essential omega-6 and omega-3 polyunsaturated

fatty acids, lipid-derived mediators serve as pro/anti-

inflammatory mediators regulating brain inflammation

(Laye et al., 2018). Brain tissues are susceptible to oxidative

stress due to their high oxygen consumption and unsaturated

fatty acid enrichment, which have been reported to be

associated with SCZ, BP, and MDD (Salim, 2017; Cobley

et al., 2018).

Lipidomics has recently been developed as a powerful tool

to investigate the natural characteristics of SCZ, BP, and

MDD. The peripheral lipidomics profile alterations of these

psychiatric disorders have been pervasively characterized

using ultrahigh-performance liquid chromatography-

tandem mass spectrometry (UHPLC–MS/MS) technology

and have served as promising biomarkers for early

diagnosis and clinical outcome prediction (Oresic et al.,

2011; Brunkhorst-Kanaan et al., 2019; Zhou et al., 2019; Bot

et al., 2020; Hussain et al., 2020; Zhuo et al., 2020; Dickens

et al., 2021). Therefore, taking advantage of lipidomics

analysis may help identify biologically homogeneous

subtypes across these psychiatric disorders. In this study,

first, we investigated the peripheral lipidomics profile

abnormalities between psychiatric patients (with SCZ, BP,

and MDD) and healthy controls (HCs) by discriminant

analysis, and identify the most contributory lipids for

classification. Then, based on these identified lipids, we

further investigated the potential subtypes across SCZ, BP,

and MDD by consensus clustering analysis. To

comprehensively profile the differences in these potential

biological subtypes, we further described and compared the

brain WM microstructure and clinical features of these

subtypes.

2 Methods

2.1 Participants

All participants, who were right-handed Han Chinese and

aged 16–55 years old, were interviewed by at least two trained

psychiatrists using the Structured Clinical Interview of the

Diagnostic and Statistical Manual of Mental Disorders, 4th

Edition, Text Revision (DSM-IV-TR)—Patient Version

(SCID-P). A total of 547 participants (112 patients with

SCZ, 132 with BP, 105 with MDD, and 198 HCs) were
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recruited from West China Hospital of Sichuan University

between 2014 and 2019. The inclusion criteria for patients

were as follows: 1) fulfilment of one of the DSM-IV-TR criteria

for SCZ, BP, or MDD; 2) Han Chinese; 3) right-handed; 4)

education achievement of more than 6 years; and 5) scores on

Wechsler’s intelligence test equal to or higher than 70. The

exclusion criteria for patients were as follows: 1) comorbidity

with other DSM-IV-TR axis I or axis II disorders (such as

alcohol and substance abuse); 2) presence of organic brain

diseases, neurological diseases or somatic diseases undergoing

drug treatment (such as diabetes); 3) any history of head

trauma; 4) any physical therapies, such as electroconvulsive

therapy, undergone within the past 6 months before magnetic

resonance imaging (MRI) scan; 5) any contraindication to

perform MRI scan; 6) pregnant or breastfeeding; and 7)

Wechsler’s intelligence test scores less than 70. In this

study, all SCZ patients were first-episode and drug-naïve.

There were 77 MDD patients and 63 BP patients who were

drug-naïve, and 28 MDD and 69 BP patients who were not

drug-naïve but had at least a two-week wash-out period.

HCs were enrolled via online and local advertisements. They

were screened for any mental disorder by the SCID—Non-

Patient Version (SCID-NP). The exclusion criteria for HCs

were similar to those for patients. Moreover, HCs with first-

degree relatives with DSM-IV-TR axis I or II disorders were

excluded.

2.2 Ethical principles

This study abided by the guidelines of the Declaration of

Helsinki and was approved by the Institutional Ethics

Committee of West China Hospital, Sichuan University.

After the study procedure had been fully explained,

written informed consent was obtained from all

participants and their guardians if participants were less

than 18 years old.

2.3 Clinical assessment

We used the Global Assessment of Functioning (GAF) scale

to evaluate functional impairment in all patients. The Positive

and Negative Syndrome Scale (PANSS), the Young Mania Rating

Scale (YMRS), the Hamilton Anxiety Scale (HAMA), and the

Hamilton Depression Scale (HAMD) were used to assess

symptom severity in patients as appropriate. Clinical features,

including onset age, total duration of illness period (TDP),

current duration of illness period (CDP), duration of

untreated period (DUP), current episode state, BP I or II

subtype for BP, and the number of episodes for MDD, were

also documented.

2.4 Lipidomics data acquisition and
preprocessing

Peripheral blood was collected in EDTA tubes from all

participants on the same day they were enrolled in this study.

Lipid extraction, UHPLC‒MS/MS analysis, and lipid qualitative and

quantitative identification are described in the Supplementary

Methods. A total of 7212 lipid features in the positive polarity

model and 4,898 lipid features in the negative polarity model were

obtained. The lipidomic data were preprocessed by the “statTarget”

(version 1.22.0) (Luan et al., 2018) and “MetaboAnalystR” (version

3.0.3) (Pang et al., 2020) packages in R software (version 4.1.0). We

performed preprocessing steps as follows: 1) drift signal correction

using the quality control-based robust locally estimated scatterplot

smoothing (LOESS) signal correction (QC-RLSC) algorithm (Dunn

et al., 2011); 2) a quality assurance procedure to remove metabolic

features with relative standard deviation (RSD) >20%, which was

calculated for all QC samples (Dunn et al., 2011); 3)

log2 transformation and ComBat batch effect correction

(Johnson et al., 2007); and 4) interquartile range (IQR) data

filtering. The quality control results of the lipidomics data are

described and depicted in Supplementary Figure S1. After the

preprocessing steps, a total of 1,164 lipids remained for

discriminant analysis.

2.5 DTI data acquisition and preprocessing

Brain WM microstructural abnormalities were measured by

fractional anisotropy (FA) and radial diffusivity (RD) using

diffusion tensor imaging (DTI) scans. The FA indicates the

underlying characteristics of white matter microstructure, such

as the directionality of axonal fibres, diameter, and density (Basser,

1995; Basser and Pierpaoli, 1996). RD is considered an indicator of

myelin sheath thickness, reflecting myelin damage (Song et al.,

2002; Song et al., 2005). Altered FA or RD in some regions

indicated the brain white matter microstructures abnormalities

here. The DTI scan parameters are described in the Supplementary

Methods. Raw images were processed by MRIcroN (http://www.

mricro.com), DTIPrep, and FMRIB Software Library (FSL)

(version 5.0.8). The imaging format was converted by

MRIcroN, and then the imaging quality was checked by

DTIPrep (translation <2 mm, rotation <0.5 mm). Individual

images that met the quality control criteria were included for

subsequent procedures (6 samples were excluded after checking

the imaging quality). The preprocessing steps includedmotion and

eddy current correction, gradient direction reorientation, and

brain mask estimation to remove the nonbrain spaces. After

calculating diffusion tensor metrics, normalization and linear/

nonlinear registration were also performed to allow comparison

across participants. Brain regions of interest (ROIs) were defined

by the JHU-ICBM-DTI-81 WM labels atlas (n = 48). The z scores
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of the mean FA and RD in each ROI were calculated for further

statistical analysis.

2.6 Statistical analysis

2.6.1 Demographic characteristics
Demographic characteristics including age, sex, educational

attainment (years), and body mass index (BMI) of different

groups (psychiatric patients and HCs) were compared using

the independent test or chi-square test. BMI was calculated as

weight divided by height squared (kg/m2). All the analyses above

were calculated in R software.

2.6.2 Discriminant analyses for patients and HCs
based on lipidomics data

Preprocessed lipids were further analysed using the “mixOmics”

(version 6.16.3) package in R software (Rohart et al., 2017). The data

were centred on zeromean and unit variance (auto scaling). Principal

component analysis (PCA) was used to check the homogeneity of the

samples and determine whether QC samples were tightly clustered

together. After removing the outliers, we developed a sparse partial

least square-discriminant analysis (sPLS-DA) model, a supervised

machine learning analysis, to identify the lipids that contributed most

to the classification of psychiatric and HC groups. Parameter tuning

processes were performed using the tune function to determine the

optimal parameters. The performance of the tuning sPLS-DA model

obtained with a balanced error rate (BER) was estimated with 7-fold

cross validation and repeated 1,000 times. The optimal parameters,

including the number of components and variables, were selected

when the tuning model had a low classification error rate. The

performance of the optimal sPLS-DA model was estimated by

using the perf function, with 7-fold cross validation repeated

1,000 times. Evaluated indexes included BER and overall

classification error rate (prediction distances were calculated by

max, centroids, and Mahalanobis distance) and areas under the

receiver operating curve (AUCs). We also performed univariate

analysis and two-sample Wilcoxon rank-sum tests to complement

the multivariate analysis, followed by false discovery rate (FDR)

adjustment. The most important variables (lipids) for

differentiating the psychiatric and HC groups satisfied the

following cut-off criteria: 1) AUCs of the sPLS-DA model >0.8, 2)
variable importance in projection (VIP) scores >1, 3) occurrence

frequency of the lipids >0.8 after performing 1,000 times of cross

validation, and 4) p value <0.05 after FDR adjustment. A total of

10 significantly altered lipids met all the above criteria to differentiate

between patients and HCs.

2.6.3 Identifying lipid-based subtypes utilizing
consensus cluster

We developed an unsupervised cluster model to investigate

the potential subtypes within the group of psychiatric patients

using the data of 10 identified lipids. Consensus partitioning was

performed and summarized by the “cola” package (Gu et al.,

2021). Features for consensus partitioning were calculated by

four methods: standard deviation (SD), median absolute

deviation (MAD), coefficient of variation (CV), and ability to

correlate to other rows (ATC). Partitioning methods included

hierarchical clustering (hclust), k-means clustering (kmeans),

partitioning around medoids (pam), and spherical k-means

clustering (skmeans). The partitioning step was repeatedly

executed 50 times for each partitioning method. The mean

silhouette score and concordance were calculated to evaluate

the cluster models and select the optimal number (k) of subtypes.

The SD-skmeans model generated an optimal k of 2.

2.6.4 The differences between lipid-based
subtypes across multiple-level data

We compared the differences between the two subtypes in terms

of clinical features (including the global functional impairment

measured by GAF scale scores; symptoms severity measured by

PANSS scores, YMRS scores, HAMA scores, and HAMD scores

in patients as appropriate; onset age; TDP; CDP; andDUP), and brain

WM microstructural alterations (measured by FA and RD) in R

software. A two-sample t test was performed to compare the

difference in GAF scores and ROI-based FA and RD data between

the subtypes (followed by FDR adjustment). The 48WM regional FA

and RD effect sizes of subtypes (Cohen’s d) were also calculated.

3 Results

3.1 Demographic characteristics

We removed 7 individuals (3 patients and 4 HCs) after the

lipidomic data quality control process (Supplementary Figure S1).

The demographic characteristics of the remaining 346 psychiatric

patients and 194 HCs are described in Table 1. There were no

significant differences between patients andHCs in terms of age, sex,

or BMI. The mean educational attainment years of participants in

the HC group were higher than those of participants in the

psychiatric group (p < 0.001).

3.2 Discriminant analyses for patients
and HCs

3.2.1 Choosing optimal parameters from the
tuning model

The performance of tuning the sPLS-DA model is displayed

inFigure 1A. The balanced classification error rates were decreased

when more components were added to the model. In the tuning

model, the first two components (composed of 2 lipid features selected

from thefirst component and 20 lipid features selected from the second

component) were sufficient to achieve good performance (error rate =

0.046 ± 0.005, 7-fold cross validation repeated 1,000 times).
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TABLE 1 Comparison of demographic characteristics between the psychiatric patient and healthy control groups.

Variables Patients HC x2/t-statistic p value

(n = 346) (n = 194)

Sexa (male/female) 141/205 66/128 2.11 0.15

Ageb 24.86 ± 8.32 25.22 ± 8.22 0.48 0.63

Educational Attainmentb (years) 13.29 ± 2.79 15.20 ± 2.44 8.27 <0.001***
BMIb 21.04 ± 3.01 20.93 ± 2.60 −0.42 0.68

aThe p value was obtained by the chi-square test.
bThe p value was obtained by the two-sample t test.

*p < 0.05; **p < 0.01; ***p < 0.001.

Age, sex and BMI data are presented as the mean ± standard deviation. BMI was calculated as weight divided by height squared (kg/m2).

HC, healthy control; BMI, body mass index.

FIGURE 1
The sPLS-DA model for differentiating psychiatric patients and healthy controls using lipidomic data. (A) Balanced error rates (BERs) decreased
when more components were added to the tuning sPLS-DA model. Here, the first 2 components (light blue line) were sufficient to achieve good
performance (error rate = 0.046 ± 0.005, 1,000×7-fold cross-validation), and the optimal features of each component are indicated as a diamond
plot. (B) The sPLS-DA sample plot with ellipse circles indicating the 95% confidence interval. The first two components of the sPLS-DA model
differentiating the psychiatric patient group (orange triangle) from the HC group (blue circle). (C) Classification performance per component (overall
and BER) for three prediction distances using repeated cross-validation (1,000×7-fold). All the classification error rates were lower than 0.06. (D) The
ROC curve of the sPLS-DA model, and the AUC = 0.986. sPLS-DA, sparse partial least squares discriminant analysis; ROC, receiver operating curve;
AUC, area under the receiver operating curve; HC, healthy control group; Psychosis, psychiatric patient group.
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3.2.2 Identifying contributing lipids for the
classification of psychiatric patients and HCs

Figure 1B displays the sPLS-DA sample plot. The first two

components accurately distinguished psychiatric patients from

HCs. Figure 1C displays the BER and overall error rates of the

two components for three prediction distances (7-fold cross

validation, repeated 1,000 times). All classification error rates

were less than 0.06 (details in Supplementary Table S1). The

receiver operating curve (ROC), as an additional measure that

helped reflect the performance of the sPLS-DAmodel, is depicted

in Figure 1D, and the AUC = 0.986. The low classification error

rates and high AUC indicate that the previous tuning process led

to a final sPLS-DA model that achieved good performance.

According to the cut-off criteria mentioned in the methods,

10 lipids were selected (Table 2).

3.3 Consensus cluster analysis within the
group of psychiatric patients

Consensus clustering was performed among the psychiatric

patients. The skmeans model generated stable partitions compared

to other methods, especially when combined with SD (details in

Supplementary Table S2). The confident samples with silhouette

scores >0.5 (N = 319) were classified into two stable subtypes

named the Cluster 1 and Cluster 2 subtypes (mean silhouette =

0.8; concordance = 0.9). The consensus heatmap (Figure 2A) provides

a visual representation of how consistent two samples were in the

same subtype. The PCA plot (Figure 2B) also confirmed that the two

subtypes were separate from each other.

3.4 The differences in lipid-based
subtypes across multiple-level data

3.4.1 Demographic characteristics of the two
subtypes

There were no significant differences between the two lipid-

based subtypes in terms of demographic characteristics (age, sex,

educational attainment, and BMI) (Table 3).

3.4.2 The differences in clinical features of the
two subtypes

Cluster 1 included 179 patients (52.65%), and Cluster

2 included 140 patients (41.18%). The clinical diagnosis

distribution varied between the two subtypes (x2 = 65.81,

p < 0.001) (Table 3). Cluster 1 consisted of 33 (18%)

patients with SCZ, 59 (33%) patients with BP and 87 (49%)

patients with MDD, and Cluster 2 consisted of 65 (46%)

patients with SCZ, 64 (46%) patients with BP and 11 (8%)

patients with MDD (Figure 3A). A higher proportion of

patients with MDD was in Cluster 1 (89%) than in Cluster

2 (11%). In contrast, more patients with SCZ were allocated to

Cluster 2 (66%) than to Cluster 1 (34%). Patients with BP were

uniformly distributed in Cluster 1 (52%) and Cluster 2 (48%)

(Figure 3B). In regard to clinical features, Cluster 2 patients

(50.17 ± 13.83) showed significantly lower GAF scores than

Cluster 1 patients (54.96 ± 13.08) (t = 2.94, p = 0.0036)

(Table 3). The clinical features of schizophrenia did not

show any difference between the

two clusters (Supplementary Table S3); the distribution of

bipolar I and bipolar II disorder differed in the two clusters

TABLE 2 Identified differential lipids for classifying psychiatric patients and healthy controls.

Lipids Classification Formula Molecular
weight

VIP Freq Trenda

Comp 1 Comp 2

9,12-Octadecadienal Fatty acyls/Fatty aldehydes C18H32O 264.2455 33.38 31.50 1.00 ↑***
20-oxo-22,23,24,25,26,27-
hexanorvitamin D3

Sterol lipids/Vitamin D3 like
derivatives

C21H30O2 314.2248 6.92 6.53 1.00 ↓***

10-nitro-9Z,12Z-octadecadienoic acid Fatty acyls/Nitro fatty acids C18H31NO4 325.2255 0.00 9.52 1.00 ↓***
DGTS 16:0/18:1 Other C44H83NO7 737.6169 0.00 2.71 1.00 ↑***
4-amino-3-methylbutanoic acid γ-Aminobutyric acid analogue C5H11NO2 117.0791 0.00 2.07 0.93 ↓***
Cyclopentaneoctanoic acid Fatty acyls/Unsaturated fatty acids C17H26O5 310.1781 0.00 1.70 0.94 ↑***
OxPC 16:0-18:1+2O Other C42H82NO10P 791.5690 0.00 1.59 0.95 ↑***
Caprylic acid Fatty acyls/Straight chain fatty acids C8H16O2 144.1152 0.00 1.37 0.97 ↑***
Hexadecandioic acid Fatty acyls/Dicarboxylic acids C16H30O4 286.2145 0.00 1.30 0.93 ↑***
12-Tridecynoic acid Fatty acyls/Unsaturated fatty acids C13H22O2 210.1621 0.00 1.12 0.89 ↑***

aUp arrow (↑) indicates an upregulated trend in psychiatric patients compared with healthy controls; down arrow (↓) indicates a downregulated trend in psychiatric patients compared with

healthy controls.

***p value < 0.001, adjusted by false discovery rate (FDR) adjustment.

VIP, variable importance in projection; Comp1, first component of the classification model; Comp2, second component of the classification model; Freq, lipid occurrence frequency when

performing 1,000 times cross-validation; DGTS, diacylglyceryl- N,N,N- trimethylhomoserine; OxPC, [2-[(Z)-12,13-dihydroxyoctadec-9-enoyl]oxy-3-hexadecanoyloxypropyl] 2-

(trimethylazaniumyl)ethyl phosphate.
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(x2 = 4.87, p = 0.027), and a higher proportion of bipolar I

patients occurred in Cluster 2 (61%) than in Cluster 1 (39%)

(Supplementary Table S4). In addition, the HAMA scores of

MDD patients with a Cluster 2 (11.36 ± 5.73) subtype were

significantly lower than those with a Cluster 1 subtype

(16.07 ± 5.61) (t = 2.56, p = 0.024) (Supplementary Table

FIGURE 2
The consensus clustering analysis identified two subgroups within psychiatric patients. (A) The consensus matrix heatmap plot visualized the
stability of the two subtypes. The “p1” and “p2” labels refer to the probability of the sample being classified into “class 1” and “class 2,” respectively, after
clustering was repeated 50 times. “Prob” refers to the calculated probability of the sample being classified into the corresponding subgroup. The
“consensus” legend refers to how consistent two samples were in the same subgroup. (B) The PCA plot confirmed that there were two
subgroups of psychiatric patients. The confident samples (silhouette score >0.5) are classified into two subgroups obviously separated from each
other, and the ambiguous samples (silhouette score <0.5) are indicated by crosses on the plot.

TABLE 3 Comparison of demographic characteristics and functional impairment assessment between the lipid-based subgroups.

Variables Cluster 1 Cluster 2 x2/t-statistic p value

(n = 179) (n = 140)

Demographic characteristic

Sexa (male/female) 64/115 62/78 2.05 0.15

Ageb 25.11 ± 8.45 24.21 ± 7.73 0.98 0.33

Educational Attainmentb (years) 13.15 ± 2.92 13.40 ± 2.60 −0.82 0.41

BMIb 20.82 ± 2.84 21.24 ± 3.28 −1.22 0.22

Clinical diagnosis distributiona

SCZ 33 65 65.81 <0.001***
BP 59 64

MDD 87 11

Clinical assessmentb (n = 156) (n = 123)

GAF scale scores 54.96 ± 13.08 50.17 ± 13.83 2.94 0.0036**

aThe p value was obtained by the chi-square test.
bThe p value was obtained by the independent two-sample t test.

*p < 0.05; **p < 0.01; ***p < 0.001.

Age, sex, BMI and GAF scale scores are presented as the mean ± standard deviation. BMI was calculated as weight divided by height squared (kg/m2). HC, healthy control; BMI, body mass

index; GAF, Global Assessment of Functioning Scale.
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S5). Table 4 provides a general summary schema to

summarize the comparison results of the clinical features of

SCZ, BP and MDD allocated to the two subtypes.

3.4.3 Brain white matter alterations between the
two subtypes

After FDR adjustment, patients in the Cluster 2 group

showed significantly increased RD (1.169 ± 0.768) compared

to those in the Cluster 1 group (0.857 ± 0.771) (Cohen’s d =

0.405; t = −3.591; p.adj = 0.018), mainly along the genu of

corpus callosum (GCC) (Figure 4; Supplementary Table S6).

Patients within the Cluster 2 subtype showed trends of

decreased FA along the fornix (including the column and

body of the fornix) (p = 0.018, Cohen’s d = 0.266) and right

posterior thalamic radiation (p = 0.032, Cohen’s d = 0.243)

and increased FA mainly along the left hippocampus region

(p = 0.044, Cohen’s d = 0.226) compared to patients within the

Cluster 1 subtype, although significance did not survive FDR

adjustment (Supplementary Table S7). Supplementary Table

S8 provides the association of identified lipids and brain WM

alterations in psychiatric patients.

4 Discussion

In this study, discriminant analysis identified 10 disease-

specific lipids that contribute to the classification of psychiatric

patients (including patients with SCZ, BP, and MDD) and HCs.

We further found two lipid-based subtypes (named the Cluster

1 and Cluster 2 subtypes) within the psychiatric patients utilizing

cluster analysis. The two subtypes differed in clinical features and

brain WM abnormalities. The clinical diagnosis distribution

significantly differed in the two subtypes: patients with BP

were uniformly distributed in the two subtypes, but a higher

proportion of patients with MDD (89%) was noted in Cluster 1,

and a higher proportion of patients with SCZ (66%) was noted in

Cluster 2. Patients in Cluster 2 showed significantly lower GAF

scores than those in Cluster 1. Moreover, the patients within

Cluster 2 showed significantly increased RD in the GCC,

decreased FA trends in the fornix and posterior thalamic

radiation, and increased FA trend in the hippocampus.

Patients within the Cluster 2 subtype mainly consisted of

those with SCZ and BP (a total of 92%). Previous studies have

indicated that SCZ and BP are characterized by similar biological

FIGURE 3
Distribution of clinical diagnoses in the two subgroups. (A) Cluster 1 included 179 psychiatric patients, consisting of 33 (18%) patients with SCZ,
59 (33%) patients with BP and 87 (49%) patients with MDD, and Cluster 2 included 140 psychiatric patients. (B) A higher proportion of MDD patients
was present in Cluster 1 (89%) than in Cluster 2 (11%). There were more patients with SCZ in Cluster 2 (66%) than in Cluster 1 (34%). Patients with BP
were uniformly distributed in Cluster 1 (52%) and Cluster 2 (48%). SCZ, schizophrenia; BP, bipolar disorder; MDD, depressive disorder. *p < 0.05;
**p < 0.01; ***p < 0.001.
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patterns, such as high genetic correlation (Cross-Disorder Group

of the Psychiatric Genomics et al., 2013) and comparable WM

abnormalities. A large-scale meta-analysis has reported that

patients with SCZ/BP (but not in MDD) shared limbic system

(such as the fornix) abnormalities (Koshiyama et al., 2020), and

posterior thalamic contraction (Mamah et al., 2016). In this

study, the interesting constituent ratio of clinical diagnosis,

and the decreased FA trend along the fornix and posterior

thalamic region in patients within the Cluster 2 subtype were

supported and consistent with previous findings. We also

observed that bipolar I and bipolar II disorder distributions

differed between the two subtypes. This finding is consistent

with previous studies that found biological heterogeneity

between bipolar I and bipolar II disorder (Charney et al.,

2017; Huang et al., 2022). HAMA scores of MDD patients

differed in the two subtypes. However, considering that only

11 MDD patients were allocated to Cluster 2, the small sample

size may not satisfy the statistical power. Other clinical features of

SCZ, BP and MDD showed no differences between the two lipid-

based subtypes, which support that there are mismatch

boundaries between biological subtypes and clinical diagnosis

based on descriptive data. The differential findings of the two

subtypes support the high similarity among SCZ and BP patients.

In addition to the lipid-based biological pattern, Cluster

2 patients also presented differential WM abnormalities

measured by RD mainly along the GCC region and lower GAF

scores. Brain WM abnormalities in the corpus callosum have been

widely and consistently reported across several psychiatric disorders

by meta-analyses, especially in the GCC of patients with SCZ (Kelly

et al., 2018; Koshiyama et al., 2018; Favre et al., 2019; van Velzen

et al., 2020). Lower GAF scores indicate severer psychological, social

and occupational functioning impairment. The GCC is the bend of

the anterior corpus callosum; thus, it facilitates prefrontal

interhemispheric connectivity and relates to social competence,

planning and memory performance, etc. (Paul et al., 2007). We

speculate that the greater functioning impairment of patients within

the Cluster 2 subtype are potentially the consequences of structural

abnormalities in the GCC. As RD is a specific index reflecting the

demyelination or morphology abnormalities of fibre tracts (Song

et al., 2002; Song et al., 2005), the significantly elevated RD in the

GCC region of Cluster 2 patients might reflect greater brain WM

lesions here. In summary, these findings indicate that the lipid-based

subtypes across psychiatric disorders also showed differential

multiple-level biological characteristics.

FIGURE 4
Radial diffusivity (RD) differences between the two subgroups for 48whitematter brain regions that represent themajor fasciculi. The colour bar
(red–yellow) indicates the mean effect size of the group (Cohen’s d). The genu of the corpus callosum (green arrow) showed significantly increased
RD in patients in the Cluster 2 subgroup (Cohen’s d = 0.405; p.adj = 0.018).

TABLE 4 Comparison of clinical features of SCZ, BP and MDD patients
between the lipid-based subgroups.

Variablesa SCZ BP MDD

PANSS scale −

YMRS scale −

HAMA scale − +

HAMD scale − −

Maternal gestation −

Full-term/preterm pregnant period −

Full-term normal/caesarean delivery −

Bipolar I/II subtype +

Psychotic feature −

Onset age − − −

TDP (month) − − −

CDP (month) − −

DUP (month) − −

Current episode state −

Depressive episodes −

a+ indicates a significant difference in SCZ, BP, and MDD patients between the lipid-

based subgroups in the corresponding item; − indicates there are no significant

differences.

PANSS, positive and negative syndrome scale; YMRS, young mania rating scale;

HAMA, hamilton anxiety scale; HAMD, hamilton depression scale; TDP, total duration

of illness period; CDP, current duration of illness period; DUP, duration of untreated

period.
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The 10 identified lipids from the sPLS-DA model relate to

several abnormal physiological processes, including inflammation

and oxidative stress, brain structural or functional abnormality

regulation, and metabolic deterioration. 10-Nitro-9Z,12Z-

octadecadienoic acid (nitrolinoleic acid, LNO2) is rich in human

plasma and red cell membranes. It acts as a lipid-derivedmediator in

activating antioxidant signalling pathways (Kalyanaraman, 2004;

Koutoulogenis and Kokotos, 2021). LNO2 also exhibits robust cell

signalling activities as an anti-inflammatory (Coles et al., 2002;

Schopfer et al., 2005; Wright et al., 2006; Koutoulogenis and

Kokotos, 2021). In this study, decreased plasma LNO2 might

indicate the vulnerable anti-inflammatory status of psychiatric

patients. In addition, there are several other identified lipids

associated with inflammation and oxidative stress. Of note,

change in hexadecanedioic acid level was reported to be related

to inflammatory status, and it contributed to the classification of

SCZ and HCs in previous studies (Cui et al., 2020; Qian et al., 2021).

The diacylglyceryl-N,N,N-trimethylhomoserine (DGTS)16:0/18:

1 level is considered a biomarker reflecting low oxidative stability

among wheat varieties (Wei et al., 2021). A meta-analysis has

revealed that first-episode psychiatric patients exhibited a

proinflammatory and vulnerable antioxidant status (Fraguas

et al., 2019). Recently, a proposed hypothesis illuminated

immune/inflammatory-mediated alteration of brain WM in the

limbic system as the main pathophysiological mechanism of

psychiatric disorders (Magioncalda and Martino, 2022). In this

study, DGTS 16:0/18:1 and hexadecandioic acid positively related

to RD of GCC and FA of left hippocampus. These above-altered

lipidsmight indicate inflammation and oxidative stress imbalance in

psychiatric patients.

Although there is insufficient evidence, previous studies have

implicated that the altered 12-tridecynoic acid and 4-amino-3-

methylbutanoic acid levels might be related to the regulation of

brain structural abnormalities. The Wnt signalling pathways are

important in modulating synapse growth and synaptic plasticity in

humans, and altered Wnt signalling was documented in patients

with SCZ and BP (Tabares-Seisdedos and Rubenstein, 2009; Hoseth

et al., 2018). 12-Tridecynoic acid is one of the lipids that participates

in the fatty acylation/deacylation of Wnt proteins (Gao and

Hannoush, 2014; Torres et al., 2019), which are necessary for

their biofunction (Willert et al., 2003; Rios-Esteves et al., 2014).

However, there is no direct evidence linking the changes in fatty acid

levels to Wnt protein activation. In this study, the effect of increased

12-tridecynoic acid levels on the brain structure is unknown, and

further studies could perhaps investigate the relationship between

them by evaluating Wnt signalling pathways. 4-Amino-3-

methylbutanoic acid is a 3-substituted γ-aminobutyric acid

(GABA) analogue with greater affinity for GABA receptors in

the human brain (Nicholson et al., 1979). Moreover, it could

raise GABA levels by increasing L-glutamic acid decarboxylase

(GAD) activity in the mouse brain and produce an

anticonvulsant effect (Silverman et al., 1991; Taylor et al., 1992).

However, there is also no evidence linking decreased 4-amino-3-

methylbutanoic acid concentrations with the function of central

GABAergic neurons, which requires more research. These

peripheral lipid alterations may provide clues and broaden our

understanding of the mechanisms underlying brain structure

abnormalities, which is one of the main pathogenic mechanisms

of psychiatric disorders.

Unhealthy dietary and behaviour patterns have recently been

noted as risk factors for the metabolic deterioration of patients with

SCZ, BP, and MDD (Beyer and Payne, 2016; Vancampfort et al.,

2017). A previous randomized crossover trial reported that the high

fiber consumption dietary intervention decreased plasma 9,12-

octadecadienal level. It is considered to be involved in mediating

the positive effect of a healthy diet on maintaining satiety and

preventing obesity (Lankinen et al., 2011). In this study, increased

9,12-octadecadienal level in psychiatric patients might reflect the

unhealthy dietary pattern (such as low consumption of fiber and

fruit) of these patients (Dipasquale et al., 2013). Caprylic acid is

important in regulating food intake behaviour by esterifying ghrelin,

which is a key peptide hormone with orexigenic biofunction

(Kojima et al., 1999; Kojima and Kangawa, 2002; Delporte,

2013). Previous randomized controlled trial studies have reported

that ingestion of caprylic acid helps stimulate food intake behaviour,

and has been used to treat anorexia nervosa (Kawai et al., 2017) and

cachectic patients (Ashitani et al., 2009). Disordered eating

behaviours are common among SCZ, BP (such as binge eating,

food cravings, and night eating), and MDD (emotional and external

eating) patients, which were occurred in the initial onset and cannot

all be attributed to the side effects of drug treatment (Paans et al.,

2018; Stogios et al., 2020; Sankaranarayanan et al., 2021). In this

study, the increased caprylic acid level might provide clues about the

disordered eating behaviour among psychiatric patients. Apart from

attention to dietary patterns and disordered eating behaviour, an

unhealthy behaviour pattern is another important risk factor for

metabolic deterioration. Of note, 20-oxo-22,23,24,25,26,27-

hexanorvitamin D3 is only synthesized by skin tissue in humans

through ultraviolet B (UVB) induced physicochemical processes

(Slominski et al., 2012). Since UVB is essential in the synthetic

process, it is reasonable to infer that the significantly decreased 20-

oxo-22,23,24,25,26,27-hexanorvitamin D3 levels in psychiatric

patients may be attributed to lower sunlight exposure, which is

associated with unhealthy behavioural patterns (such as sedentary

behaviour). A previous meta-analysis reported that patients with

SCZ, BP and MDD have significant sedentary behaviour (average

476 min per day) during waking hours and low activity (38.4 min

per day) (Vancampfort et al., 2017). Above all, the alterations in

9,12-octadecadienal, caprylic acid, and 20-oxo-22,23,24,25,26,27-

hexanorvitamin D3 levels might reflect the unhealthy dietary and

behavioural pattern of the mechanism that underlying metabolic

deterioration of psychiatric patients.

There are some limitations to this study. First, as antipsychotic

drugs affect lipid metabolism, we tried our best to recruit drug-naïve

patients. In this study, all the recruited schizophrenia patients were

first-episode and drug-naïve, however, drug-naïve bipolar disorder
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patients were hard to recruit due to the diagnosis delay and high

misdiagnosis rate (Culpepper, 2014; Fritz et al., 2017). We recruited

63 (47.8%) drug-naïve BP patients and set at least 2 weeks wash-out

period for other BP patients (the median current duration of illness

period was 2 months). When it comes to MDD patients, the main

treatment strategies are SSRI/SNRI drugs, even so, we recruited 77

(77.3%) drug-naïve patients and also set at least 2 weeks wash-out

period for otherMDD patients. Then, because sample collection at a

single center with lower variability may restrict the generalization of

these findings. We will conduct independent sample validation in

the future study tomake these findingsmore robust and convincing.

Moreover, the biological functions of some identified lipids are

attractive, such as LNO2 and caprylic acid. Although previous

studies have evidenced their biological function in psychiatric

patients, further studies could better elucidate the effects of these

lipids on psychiatric diseases. For example, adding inflammatory

factors examination, and the questionnaire about the dietary and

behaviour patterns.

5 Conclusion

In conclusion, our findings suggested that peripheral blood

lipidomic profile alterations could help identify homogeneous

transdiagnostic subtypes across psychiatric disorders consisting

of SCZ, BP and MDD. One of the subtypes that mainly consisted

of patients with SCZ and BP represented more severe brain WM

abnormalities and functional impairments. It is suggested that

lipid-based subtypes might help identify patients with differential

biological characterizations.
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