
An m5C methylation regulator-
associated signature predicts
prognosis and therapy response
in pancreatic cancer

Duo Yun1, Zhirong Yang1, Shuman Zhang1, Hai Yang1,
Dongxue Liu1, Robert Grützmann2, Christian Pilarsky1 and
Nathalie Britzen-Laurent1*
1Division of Surgical Research, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-
Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, 2Department of Surgery,
Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen,
Germany

Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive digestive

malignancy due to frequent late-stage diagnosis, rapid progression and

resistance to therapy. With increasing PDAC incidence worldwide, there is

an urgent need for new prognostic biomarkers and therapy targets.

Recently, RNA methylation has emerged as a new tumorigenic mechanism

in different cancers. 5-methylcytosine (m5C) is one of the most frequent RNA

modifications and occurs on a variety of RNA species including mRNA, thereby

regulating gene expression. Here we investigated the prognostic role of m5C-

regulator-associated transcriptional signature in PDAC. We evaluated m5C-

regulator status and expression in 239 PDAC samples from publicly available

datasets. We used unsupervised consensus clustering analyses to classify

PDACs based on m5C-regulator expression. From the resulting signature of

differentially expressed genes (DEGs), we selected prognosis-relevant DEGs to

stratify patients and build a scoring signature (m5C-score) through LASSO and

multivariate Cox regression analyses. The m5C-score represented a highly

significant independent prognostic marker. A high m5C-score correlated

with poor prognosis in different PDAC cohorts, and was associated with the

squamous/basal subtype as well as activated cancer-related pathways including

Ras, MAPK and PI3K pathways. Furthermore, the m5C-score correlated with

sensitivity to pathway-specific inhibitors of PARP, EGFR, AKT, HER2 and mTOR.

Tumors with high m5C-score were characterized by overall immune exclusion,

low CD8+ T-cell infiltration, and higher PD-L1 expression. Overall, the m5C-

score represented a robust predictor of prognosis and therapy response in

PDAC, which was associated with unfavorable molecular subtypes and immune

microenvironment.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the

deadliest human malignant tumors, with an overall 5-year

survival rate below 11%. It represents the seventh leading

cause of cancer death globally for both sexes. In high-

development-index countries, its mortality rank is estimated

to increase from fifth to second or third by 2030 (Rahib et al.,

2014; Siegel et al., 2022). The high mortality of PDAC has been

notably imputed to the absence of obvious symptom at early

stages, resulting in the majority of patients being diagnosed

with locally advanced or metastatic tumors (Edwards et al.,

2005; Arslan et al., 2010). While late diagnosis reduces the

number of treatment options, PDAC is also highly recalcitrant

to most therapies, including immunotherapy (Sung et al., 2021).

Thus, it is crucial to develop new prognostic and predictive

tools to improve therapeutic intervention in a personalized

manner.

Post-transcriptional RNA methylation has emerged as an

important epigenetic regulatory mechanism, which has

recently gathered increasing interest, notably for its

association with human cancer progression

(Haruehanroengra et al., 2020; Han et al., 2021). 5-

Methylcytosine (m5C) is one of the most prevalent RNA

modifications, affecting mRNAs, tRNAs and rRNAs (Chen

et al., 2021). The methylation of RNA cytosines is reversibly

and specifically modulated by regulators including

methyltransferases (writers) and demethylases (erasers),

and is specifically recognized by binding proteins (readers)

(Bohnsack et al., 2019). The m5C-modification of mRNAs has

been shown to regulate their splicing, transport, translation,

stabilization or degradation (Boo and Kim, 2020; Chen et al.,

2021). Dysregulation of m5C-regulator gene expression is

involved in pathophysiological processes such as cell

proliferation, cell death or immune modulation, and has

been observed in various cancers (Zhang et al., 2021a; Xu

et al., 2021b). Changes in m5C regulators expression or m5C-

regulator-associated signatures have been found to correlate

with prognosis, immune infiltration and/or therapy response

in different solid tumor entities (Zhang et al., 2021b; Wood

et al., 2021).

The purpose of the present study was to investigate the

prognostic relevance of tumor-associated dysregulation of the

m5C-modification pathway for pancreas cancer patients. We

combined genomic, transcriptional and clinical data from

239 PDAC patients to test the prognostic power of m5C-

regulators and m5C-associated transcriptional signatures. We

investigated the impact of different m5C-associated patterns on

survival, gene/pathway expression, molecular subtypes, therapy

response and immune infiltration in order to provide a

comprehensive evaluation of the pathophysiological

consequences of the m5C pathway dysregulation in PDAC.

Material and methods

Collection and pre-processing of
pancreatic ductal adenocarcinoma gene
expression public datasets

The gene and clinical information data were searched from

the databases of Gene Expression-Omnibus (GEO) (https://

www.ncbi.nlm.nih.gov/geo/), the Cancer Genome Atlas

(TCGA) (https://portal.gdc.cancer.gov/) and the

supplementary data of Bailey’s cohort (https://www.nature.

com/articles/nature16965#Sec11). For TCGA datasets, the

fragments per kilobase of transcript per million mapped reads

(FPKM) values were transformed into transcripts per kilobase

million (TPM) values by using the R package “limma” (v. 3.50.3).

For building and internal testing of prognostic model, we

combined TCGA PAAD cohort and GSE57495 (RMA value)

cohort data (n = 239). Batch effects were corrected using the

“ComBat” function (batchType, par.prior = TRUE) of R package

“sva” (v. 3.42.0) (Leek et al., 2012). Principal components analysis

(PCA) algorithm was used to confirm the results of the batch

effects correction based on the normalized sequencing data using

the “prcomp” (scale. = TRUE) function in R package “limma” (v.

3.50.3). For external validation of the prognostic model, data

from the GSE21501(data were Lowess-normalized and then

log2 ratio was taken) cohort and Bailey’s cohort (normalized

RSEM data were converted to counts per million (c.p.m.) and

log2 transformed) were used independently. For comparison

with other molecular classifications, Moffitt’s cohort data

(GSE71729: data were non-negative normalized

log2 Cy5 signal), Bailey’s cohort data, Collision’s cohort data

(GSE17891; RMA log2 data) were used. The copy number

variation data of PDAC patients were downloaded from the

UCSC Xena database (https://xena.ucsc.edu/) and the somatic

mutation data were downloaded from the TCGA database. The

genetic landscape of 12 m5C-regulators in 23 pairs of

chromosomes and the variation were visualized using the

R-package “Rcircos” (v. 1.2.2) (Zhang et al., 2013). The

mutation status was visualized using the R-package “maftools”

(v. 2.10.5) (Mayakonda et al., 2018). The expression of m5C

regulators in pancreatic tumors and normal tissues was analyzed

with the online tools GEPIA2 (http://gepia2.cancer-pku.cn/

#analysis) (Tang et al., 2019) using data from TCGA and

GTEx (https://gtexportal.org/home/) (Carithers and Moore,

2015). Patients without survival data were removed from

further survival-related analyses. The cell line RNA-seq data

were obtained from the Moffitt’s cohort data (GSE71729) and

GSE165949 (Alfarano et al., 2022), the latter as data normalized

by “summarizeOverlaps” from the R package GenomicRanges (v.

1.38). Basic information of these datasets is listed in

Supplementary Table S1, and the study workflow is presented

in Supplementary Figure S1.
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Unsupervised consensus cluster analysis

The “Consensusclusterplus” function (maxK = 9, reps = 50,

clusterAlg = “pam”, distance = “euclidean”) was used to perform

unsupervised consensus clustering analysis in order to classify

PDAC patients based on normalized RNA sequencing data in R

package “Consensusclusterplus” (v. 1.58.0) (Wilkerson and

Hayes, 2010). The best k-value was selected based on the

clustering effect and the cumulative distribution function

(CDF). The result of classification was confirmed by Principal

Component Analysis (PCA) based on the normalized sequencing

data using the “prcomp” (scale. = TRUE) function in R basic

package.

Gene set variation analysis

The “gsva” function (geneSets, min.sz = 10, max.sz = 500,)

was used to analyze the transcriptome gene enrichment

(Hänzelmann et al., 2013) using the gene document named

“c2.cp.biocarta.v7.4.symbols.gmt” from the MSigDB database

(https://www.gsea-msigdb.org). We used the R-packages of

“gene set variation analysis (GSVA)” (v. 1.42.0) “limma” (v. 3.

50.3), “GSEABase” (v. 1.56.0) to analyze the different pathways

between the different m5C-clusters.

Construction and validation of the m5C-
related prognostic risk scoring signature
(m5C-score)

The differentially expression genes (DEGs) between three

m5C-clusters were analyzed by using “lmFit”, “contrasts.fit” and

“eBayes” in the R package “limma” (v.3.50.3) with a p-value filter

adjusted to 0.001. We determined the differentially expressed

genes (DEGs) between m5C-cluster A and B, A and C, or B and

C. The potential functions of these DEGs were then analyzed by

Gene Ontology (GO) annotation and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment pathway analysis by

using the “enrichKEGG” (organism = “hsa”, pvalueCutoff = 1,

qvalueCutoff = 1) and “enrichGO” (OrgDb = org.Hs.eg.db,

pvalueCutoff = 1, qvalueCutoff = 1) function in the R-package

“clusterProfiler” (v. 4.2.2) and “org.Hs.eg.db”(version 3.14.0). An

FDR < 0.05 was considered as significant. To build the m5C-

score, we first randomly attributed the 239 patients to a training

set (120 patients) and a testing set (119 patients). Univariate Cox

regression analysis was applied on the training set to screen

prognostic related DEGs with a p-value < 0.05 by using the

function “coxph” in the R-package “survival” (v. 3.3.1). Then the

least absolute shrinkage and selection operator (LASSO)

regression analysis was used to avoid over-fitting by using the

“glmnet” function (family = “cox”, maxit = 1000) function in the

R-package “glmnet” (v. 4.1.4) where the value of the lambda is

chosen by the smallest likelihood deviance. Finally, multivariate

Cox regression analysis was used to build the multivariate Cox

proportional hazards regression model by using the “coxph”

function in the R package “survival” (v. 3.3.1). The resulting

m5C-score was constructed by four genes differentially regulated

between clusters A, B and C (HIPK3, ZFAND4, DPP8, HIPK2).

The signature could be represented using the formula: m5C-

score = Σi
n(CoefipXi), in which X represents the expression level

of each m5C-score gene and Coef represents the coefficient of

each m5C-score gene in the multivariate Cox proportional

hazards regression model. The m5C-score was then validated

with the testing set, as well as two independent datasets

(GSE21501 and Bailey cohort).

Gene set enrichment analysis

The gene set enrichment analysis (GSEA) software (version

4.1.0) was used to determine which pathways were significantly

different between high- and low-m5C-score groups using the

GSEA software (https://www.broadinstitute.org/gsea/). The

KEGG-database “c2.cp.kegg.v7.5.symbols.gmt” was chosen as

the reference database. The number of random permutations

was set to 1000. The gene expression data in the TCGA-PAAD

database were grouped via the m5C-score and recorded as the

high- and low-m5C-score groups. The phenotype labels were set

as high-m5C-score group versus low-m5C-score group patients.

Collapse/Remap to gene symbols was set as “No_Collapse”. The

other parameters were the default parameters in the GSEA

software. A pathway with FDR q < 0.05 was defined as

statistically significant.

Target drugs sensitivity prediction

The sensitivity to target drugs was determined by estimating

the half-maximal inhibitory concentration (IC50) with the

“pRRopheticPredict” (selection = 1) function in the R-package

“pRRophetic” (version 0.5) (Geeleher et al., 2014). Common

targets (Liu et al., 2021) being used in clinic or clinical trials were

analyzed.

Immune cells infiltration and exclusion
analyses

Cell type Identification By Estimating Relative Subsets Of

RNA Transcripts (CIBERSORT) (Newman et al., 2015) (https://

cibersort.stanford.edu) was used to quantify the proportions and

distributions of tumor-infiltrating immune cells (TIICs) based on

the RNA-seq data. The single-sample gene set enrichment

analysis (ssGSEA) (Barbie et al., 2009) method was used to

calculate the relative enrichment of immune cells for each
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FIGURE 1
Landscape of genetic variation, differential expression, prognosis and correlations analyses of m5C-regulator genes in PDAC. (A,B) Copy
number variation (CNV) frequency (A) and location on chromosomes (B) of m5C-regulator genes in the TCGA-PAAD cohort. Red dots represent
amplifications, blue dots deletions and black dots equal amplification and deletion frequency. (C) The somatic mutation status of m5C- regulator
genes in the TCGA-PAAD cohort. The upper bar represents tumor mutation burden (TMB), the right bar the number of PDAC patient with a

(Continued )
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PDAC patient by using the “gsva” (method = “ssgsea”, kcdf =

“Gaussian”, abs.ranking = TRUE) function in the R-package

“GSVA” (v. 1.42.0). The marker genes for each infiltrating

immune cell type were based on the results of Charoentong

and colleagues (Charoentong et al., 2017). The Tumor Immune

Dysfunction and Exclusion (TIDE) (http://tide.dfci.harvard.edu/

) algorithm was used to predict PDAC immune exclusion of

samples from the TCGA-PAAD cohort (Jiang et al., 2018).

Statistical analysis

For data analyses, we used the R-Studio (4.1.2) suite. For the

comparison of data between two groups, the Student’s t-test was

used for analyzing the quantitative statistics of normally

distributed variables and the Wilcoxon rank sum test was

used for analyzing the quantitative statistics of non-normally

distributed variables. If the comparisons were between more than

two groups, one-way ANOVA was used for parametric methods

and the Kruskal–Wallis test was used for the non-parametric

methods. The Kaplan–Meier (K-M) method and log-rank test

were used for survival analyses. The fulfillment of the

proportional hazards assumption was verified for all survival

analyses with a significant survival difference (log-rank test p <
0.05) by hierarchical regression using the SPSS software. The

“surv_cutpoint” function was used to identified the best cutoff in

the R-package “survminer” (v. 0.4.9) for the K-M analyses of

single genes and the external validation of the m5C-score. The

specificity and sensitivity of factors were analyzed by receiver

operating characteristic (ROC) curve, and the area under the

curve (AUC) were calculated with the “timeROC” (weighting =

“aalen”) function in the R-package “timeROC” (v.0.4). The

degree of correlation of the m5C-score with gene expression

and immune infiltration was determined by Spearman analyses.

A p-value < 0.05 was regarded as statistically significant.

Results

Genetic variation and prognostic value of
m5C-regulator expression in pancreatic
ductal adenocarcinoma

Twelve known m5C-methylation regulators including ten

writers, one eraser and one reader were selected for analysis

(Supplementary Table S2, Supplementary Figure S1)

(Ghanbarian et al., 2016; Bohnsack et al., 2019; Chen et al.,

2019; DeNizio et al., 2019). Copy number variations (CNV)

and point mutations of m5C-regulator genes were rare in the

TCGA-PAAD cohort with a frequency below 3 and 4%,

respectively (Figures 1A–C). In addition, the presence of

mutations in m5C-regulator genes was not associated

with the survival of PDAC patients (Supplementary

Figure S2A).

Using data from the TCGA-PAAD and GTEx cohorts, we

compared m5C-regulator expression between tumor and

normal tissues. Only three genes (YBX1, DNMT1 and

NSUN4) out of twelve were significantly differentially

expressed in tumors, all showing an up-regulation

(Figure 1D; Supplementary Figure S2G). We then assessed

the prognostic value of m5C-methylation regulators

expression for PDAC patients in our cohort (TCGA-PAAD

+ GSE57495). Seven out of twelve m5C-methylation regulators

showed a significant correlation between gene expression and

overall patient survival (Figures 1E–K and Supplementary

Figures S2B–F). High expression of DNMT1, DNMT3B,

NSUN2, NSUN3 and YBX1 was associated with a worse

prognosis (Figures 1E–I). On the contrary high expression of

NSUN6 and NSUN7 correlated with a better prognosis (Figures

1J,K). However, only one gene, the m5C-reader YBX1, was

significantly associated with PDAC prognosis in the Univariate

Cox regression analysis (Figure 1L).

Given that the expression of several m5C-methylation

regulators correlated positively in PDAC (Figure 1M), we

investigated whether pancreatic cancers could be classified

based on m5C-regulator gene expression. Unsupervised

consensus clustering identified 3 subgroups named m5C-

clusters A, B and C in our PDAC cohort (Supplementary

Figures S3A–E; Supplementary Table S3). GSVA pathway

analysis revealed differentially regulated cancer pathways

between the three m5C-clusters, including KRAS-related

pathways (MAPK-, mTOR-, EGF- and ERK-pathways), cell

death pathways (TNFR1-, FAS- and death-pathways), and

cancer-related pathways (Wnt-, Gleevec-, MET and CREB-

pathways) (Supplementary Figure S3F). The expression of

each m5C-regulator was also significantly different between

three m5C-clusters (Supplementary Figure S3G).

However, the different clusters did not correlate with the

survival of PDAC patients in our cohort (Supplementary

Figure S3H).

FIGURE 1
mutation in one or more m5C-regulator gene, and the bar below the distribution of conversions in each sample. (D) Differential expression of
m5C-methylation regulators between PDAC and normal pancreas tissue in the TCGA-PAAD andGTEx cohorts. Tumor, red; Normal, blue. (E–K) K-M
curves illustrating OS between high- and low- expression of m5C-regulator genes analyzed by log-rank test in the TCGA-PAAD and
GSE57495 cohorts. (L) Univariate Cox regression analyses of OS of m5C-regulator genes in the TCGA-PAAD and GSE57495 cohorts. (M)
Correlation analyses between m5C-regulator gene expression by Spearman analyses. *p-value < 0.05.
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FIGURE 2
Identification of different PDAC subgroups based on m5C-related prognostic DEGs. (A) Venn diagram showing 1166 DEGs between different
m5C-clusters. (B) Consensus matrix for optimal k = 3 clusters using the TCGA-PAAD and GSE57495 cohorts analyzed by unsupervised consensus
clustering analyses based on the 1166 m5C-related prognostic DEGs. (C) Heatmap showing the expression of m5C-related prognostic DEGs with
survival status, stage, m5C-clusters, m5C-prognostic-gene clusters. Columns represented patients and rows m5C-related prognostic DEGs.
(D) The K-M curves show OS for m5C-prognostic-gene clusters 1/2/3 analyzed by log-rank test in the TCGA-PAAD and GSE57495 cohorts. (E)
Expression of m5C-regulators in the three m5C-prognostic-gene clusters; *p < 0.05; **p < 0.01; ***p < 0.001.
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Identification of prognosis-relevant m5C-
regulated gene subtypes

Since patient clustering according to m5C-regulator

expression could not predict survival but was associated with

transcriptional changes affecting several pancreatic cancer

pathways, we investigated whether PDAC samples could be

clustered according to m5C-related gene expression. In total,

1166 genes were differentially expressed between all three m5C-

clusters (Figure 2A; Supplementary Table S4-4). Both KEGG and

GO enrichment analyses showed that m5C-related differentially

expressed genes (DEGs) were enriched in pathways regulating

RNA regulation and processing (Supplementary Figures S4A,B;

Supplementary Table S5-1/2), and in cancer-related pathways

(Supplementary Figures S4A,B; Supplementary Table S5-1/2).

This indicated that the changes in m5C-regulator expression in

cancer have functional consequences impacting RNA regulation

and cancer-pathway gene expression.

Using univariate Cox regression analysis, 100 m5C-related

DEGs were identified as statistically significant prognostic

markers in PDAC (Supplementary Table S6). Based on their

expression, PDAC patients of our cohort could be stratified into

3 subgroups namedm5C-prognostic-gene cluster 1, 2 and 3 (Figures

2B,C; Supplementary Figures S4C–E). The m5C-prognostic-gene

cluster 3 was characterized by an overall low expression of the

prognostic DEGs, and the highest overall survival rate (Figures

2C,D). The m5C-prognostic-gene cluster 2 was associated with a

high expression of the prognostic DEGs and the lowest survival rate,

while the m5C-prognostic-gene cluster 1 exhibited a mixed

phenotype with intermediate survival rate (Figures 2C,D). Of

note, the expression of each m5C-regulator was also significantly

different between the three m5C-prognostic-gene clusters

(Figure 2E). Except for NSUN5, all m5C-regulator genes were

up-regulated in cluster 2 (Figure 2E), suggesting that the

overexpression of m5C-regulators induces the expression of

multiple genes involved in tumorigenesis.

Construction and validation of a
prognostic model based on an m5C-
related gene expression signature (m5C-
score)

Next, we build a scoring signature (m5C-score) based on the

100 m5C-related prognostic DEGs to be used as prognostic model

for PDAC patients. First, the patients of our cohort were randomly

distributed into a training set and a testing set (Supplementary Table

S7). LASSO regression analysis was performed on the training set

using the m5C-related prognostic genes to avoid over-fitting

(Supplementary Figures S5A,B). The multivariate Cox

proportional hazards regression model was used to obtain the

scoring signature (m5C-score), which is composed of four

prognostic DEGs: Homeodomain Interacting Protein Kinase 3

(HIPK3), Zinc Finger AN1-Type Containing 4 (ZFAND4),

Dipeptidyl Peptidase 8 (DPP8) and Homeodomain Interacting

Protein Kinase 2 (HIPK2). The correlation coefficients of each

gene was computed by multivariate Cox regression analysis and

them5C-score was calculated as follows: m5C-score = (1.0722 × exp

[HIPK3]) + (−1.168 × exp[ZFAND4]) + (0.9293 × exp[DPP8]) +

(−0.6607 × exp[HIPK2]), where “exp”means the expression of each

m5C-score gene. Positive and negative coefficients indicated positive

or negative correlation between single gene expression and them5C-

score, respectively.

Then, patients were classified into high-m5C-score and low-

m5C-score groups using the median value of the m5C-score as

cut-off (Figure 3A; Supplementary Table S8-1). Patients with low

m5C-score survived significantly longer than patients with high

m5C-score (Figure 3B). The area under the curve (AUC) of time-

dependent receiver operating characteristic (ROC) curve was

0.821 for the 5-year overall survival (OS), showing that the m5C-

score is an excellent predictor of survival (Figure 3C). The

prognostic value of the m5C-score was then validated in the

testing set and in two independent cohorts (GSE21501, Bailey

cohort). Here again, patients with low m5C-score showed

significantly longer survival than patients with high m5C-

score, and the m5C-score could predict survival with good

accuracy (Figures 3D–I; Supplementary Tables S8-2/3/4).

Univariate and multivariate Cox regression analyses performed

using clinical data available for the TCGA-PAAD cohort showed

that the m5C-score is an independent risk factor for PDAC patients,

while age, gender, tumor grade and stage were not significant

(Figures 4A,B). In addition, each individual m5C-score gene and

common PDAC serum tumor markers were analyzed with the

m5C-score by univariate Cox regression analysis in our cohort

(Figures 4C,D). Eachm5C-score gene taken individually (Figure 4C;

Supplementary Figures S5C–F) and the marker genes MUC16,

MUC1 and KRT19 (Figure 4D) were significantly associated with

prognosis. All the statistically significant parameters (p < 0.05) were

then selected to draw ROC curves, which showed that the m5C-

score had the highest AUC at 1-, 3- and 5-year OS compared with

either the m5C-score individual genes (Figures 4E–G), the m5C-

methylation reader YBX1 or common PDAC serum tumor markers

(Figures 4H–J). Overall, these results established the m5C-score is a

robust predictive tool for survival of PDAC patients, that was

superior to m5C-regulators or common tumor markers.

A high m5C-score is associated with
mutation and transcriptomic regulation of
pancreatic cancer-related genes

To further characterize the pathobiological significance of the

m5C-score, somatic mutations were compared in PDACs with high

and low m5C-score. The frequency of somatic mutations in the

TCGA cohort was higher in the high-m5C-score group (87.5%)

than in the low-m5C-score group (68.83%, Figure 5A). In particular,
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FIGURE 3
Construction and validation of a four-gene scoring signature (m5C-score) prognostic model. (A) Distributions of PDAC patients and survival
status according tom5C-score in the training set. (B) K-M curves illustrating OS according to them5C-score analyzed by log-rank test in the training
set. (C) ROC curves for m5C-score prediction of OS at 1, 3 and 5 years in the training set. (D–F) K-M curves illustrating OS according to the m5C-
score analyzed by log-rank test in the testing set and external cohorts (GSE21501 set, Bailey cohorts). (G–I) ROC curves of m5C-score
prediction of OS at 1, 3 and 5 years in the testing and external cohorts.
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KRAS, TP53, SMAD4 and CDKN2Aweremore frequently mutated

in the high-m5C-score group. In agreement with these results, a

higher expression of KRASwas observed in tumors with high-m5C-

score compared to low-m5C-score (Figure 5B).

Then, GSEA pathway analysis was performed to investigate

whether specific pathways could be related to the m5C-score.

PDAC-related pathways were enriched in the high-m5C-score

group, which included “pathways in cancer”, “pancreatic cancer”,

and several signaling pathways (TGF-beta, MAPK, p53,

hedgehog, ERBB and Wnt; Supplementary Table S9; Figures

5C,D). In addition, the genes differentially expressed between

high-m5C-score and low-m5C-score groups (Figure 5E;

Supplementary Table S10) were enriched in many

malignancy-related pathways (Figure 5F; Supplementary Table

S11). Taken together, these results showed an association

between a high-m5C-score, mutation rates and transcriptional

regulation of pancreatic cancer-related pathways, including the

MAPK pathway doenstream of KRAS, and the TGFβ pathway.

A high m5C-score is associated with the
squamous/basal pancreatic ductal
adenocarcinoma subtype

We then evaluated whether the m5C-score correlated with the

common molecular subtypes of PDAC. For this, we used

FIGURE 4
Higher predictive value of the m5C-score compared with clinical factors, individual m5C-regulator genes and tumor marker genes. (A–B)
Univariate (A) and multivariate (B) Cox regression analyses of OS of m5C-score and clinical factors from the TCGA-PAAD cohort. (C–D) Univariate
Cox regression analyses of OS of m5C-score and individual m5C-score genes (C) and tumor marker genes (D) in the TCGA-PAAD and
GSE57495 cohorts. (E–J) The AUC of ROC curves shows the predictive value of OS at 1, 3 and 5 years of m5C-score compared to individual
m5C-score genes (E–G), or the prognostic-related m5C-regulator YBX1 and serum tumor marker genes (H–J).
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FIGURE 5
A highm5C-score is associated with increasedmutation rate and expression of PDAC-related genes and pathways. (A) Somatic mutation status
in high- and low-m5C-score groups in the TCGA-PAAD cohort. The upper bar represents tumormutation burden (TMB), the right bar the number of
PDAC patient withmutation for each of the 20most frequentlymutated genes in PDAC, and the bar below high- and low-m5C-score group patients.
(B) KRAS expression in high- and low-m5C-score tumors from the TCGA-PAAD+GSE57495 cohort. (C,D)Gene set enrichment analysis (GSEA)
between high- and low-m5C-score groups in the TCGA-PAAD cohort. (E) Heatmap of DEGs between high- and low-m5C-score groups. Columns
represent patients and rows DEGs between high- and low-m5C-score groups. (F) KEGG pathway analyses for genes differentially expressed
between high- and low-m5C-score PDACs.
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classifications published by Bailey, Collisson, and Moffitt et al.

(Collisson et al., 2011; Moffitt et al., 2015; Bailey et al., 2016).

The Bailey classification distinguishes 4 molecular subtypes (Bailey

et al., 2016). The Squamous subtype showed a significantly higher

m5C-score compared to the Progenitor, the Immunogenic and the

Aberrantly Differentiated Endocrine Exocrine (ADEX) subtypes

(Figure 6A, Supplementary Table S8-4). The proportion of tumor

of the Squamous and Progenitor subtypes was higher in the high-

FIGURE 6
High m5C-score is associated with the squamous/basal molecular subtype and poor prognosis in PDAC. (A) m5C-score levels in the different
molecular subtypes defined by Bailey et al.; (B) Distribution of Bailey’s molecular subtypes in high- and low-m5C-score PDACs; (C) K-M curves
illustrating OS according to the combination of the m5C-score with Bailey’s molecular subtypes analyzed by log-rank test. (D) m5C-score levels in
the different molecular subtypes defined by Collisson et al.; (E) Distribution of Collisson’s molecular subtypes in high- and low-m5C-score
PDACs. (F)m5C-score levels in the two molecular subtypes defined by Moffitt et al.; (G) Distribution of Moffitt’s molecular subtypes between high-
and low-m5C-score PDACs; (H) K-M curves illustrating OS according to the combination of the m5C-score with Moffitt’s molecular subtypes
analyzed by log-rank test.
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m5C-score group, while Immunogenic and ADEX subtypes were

over-represented in the low-m5C-score group (Figure 6B). Survival

analysis revealed that patients with high-m5C-score combined with

Squamous subtype had the worst prognosis, while patients with low-

m5C-score combined with Progenitor subtype showed the best

prognosis (Figure 6C).

The Collison classification differentiates Classical, Exocrine-

like and Quasi-mesenchymal subtypes (Supplementary Table S8-

5) (Collisson et al., 2011). The m5C-score in the Exocrine-like

subgroup was marginally lower than in the other two subtypes

(Figure 6D), and the proportion of Exocrine-like tumors was

drastically reduced in the high-m5C-score group (Figure 6E).

In the Moffit cohort (Moffitt et al., 2015), tumors are

classified as either Basal-like or Classical (Supplementary

Table S8-6). The Basal-like subtype was associated with a

higher m5C-score (Figure 6F) and the high-m5C-score group

displayed a higher proportion of Basal-like tumors (Figure 6G).

In the Moffitt cohort, Basal-like tumors with high-m5C-score

had the worst prognosis, while low-m5C-score combined with

Classical subtype showed the best prognosis (Figure 6H). A

strong overlap has been described between the Classical/

Pancreatic Progenitor subtypes on one side, and the

Squamous/Basal-like/Quasi-mesenchymal subtypes associated

with poor a prognosis on the other side (Xu Z. et al., 2021).

Taken together, this means that a high m5C-score is strongly

associated with the Squamous/Basal-like subtype, which

represents a more aggressive phenotype with a poor prognosis.

The m5C-score correlates with targeted
therapy response in pancreatic ductal
adenocarcinoma

Targeted therapy of PDAC remains limited, with the EGFR-

inhibitor Erlotinib being the only approved drug for treatment of

advanced inoperable PDAC in combination with gemcitabine.

However, multiple drugs targeting the KRAS signaling pathway,

either upstream or downstream, as well as DNA repair are being

tested in preclinical and clinical trials (Liu et al., 2021).We used the

R package “pRRophetic” to predict the sensitivity of tumors with

high or low m5C-score towards drugs targeting these pathways.

First, we investigated drugs targeting the signaling

downstream of KRAS. The mTOR inhibitor Temsirolimus

had a higher predicted IC50, meaning a decreased sensitivity,

in the high-m5C-score group (Figure 7A). On the contrary,

inhibition of AKT by A.443654, of MEK1/2 by

PD.0325901 and RDEA119, and of PI3Kβ by AZD6482 was

predicted to be more efficient in the high-m5C-score group in

agreement with the high gene expression of AKT1-3, MEK1 and

PIK3CB (Figures 7B–D). This indicated that tumors with high

m5C-score, which exhibit higher KRAS mutation and expression

(see Figures 5A,B), might be eligible for targeted therapy with

inhibitors of AKT, MEK or PI3K, but not mTOR.

PDAC is characterized by frequent overexpression of ERBB

receptors upstream of KRAS, notably EGFR and HER2 (ERBB2).

Targeted therapy against EGFR or HER2 has yielded contrasted

results in clinical trials, but combined targeting showed a

synergistic effect in preclinical models (Maron et al., 2013; Liu

et al., 2021). The expression of both EGFR and ERBB2 was

increased in the high-m5C-score group compared to the low-

m5C-score group (Figure 7E). In the high-m5C-score group, the

predicted sensitivity was reduced for the EGFR inhibitor

Gefitinib but increased for Lapatinib, an inhibitor of both

EGFR and HER2, indicating that a combined inhibition might

be effective in tumors with a high m5C-score (Figure 7E).

A subset of sporadic PDAC is characterized by DNA repair

efficiency due to mutations in the homologous recombination

(HR) pathway genes BRCA1/2 and/or PALB2. The inhibition of

PARP, a downstream HR gene, has proven to be efficient for the

treatment of BRCA1/2-mutated PDAC. The expression of

BRCA1/2 and PALB2 was reduced and the predicted

sensitivity to the PARP-inhibitor ABT.888 was accordingly

increased in tumors with a low m5C-score compared to the

high-m5C-score group (Figure 7F).

Overall, tumors with a high m5C-score were predicted to be

more sensitive to AKT, MEK and PI3K inhibitors, as well as

combined EGFR/HER2. In contrast, tumors with low m5C-score

might be more sensitive to PARP inhibition.

Subsequently, we determined the m5C-score in different PDAC

cell lines.We compared them5C-score in 17 different pancreatic cell

lines included in the Moffit classification study (Moffitt et al., 2015).

The Panc1005 cell line showed highest m5C-score, followed by

CAPAN1, while PANC1 showed the lowest m5C-score (Figure 7H

and Supplementary Table S8-7). In addition, the sequencing data

from four pancreatic cancer cell lines (CAPAN1, PANC1,

MIAPACA2 and CFPAC1) was acquired from GSE165949

(Alfarano et al., 2022). CAPAN1 showed the highest m5C-score,

the PANC1 showed the lowest m5C-score, while MIAPACA2 cells

had an almost negative m5C-score, confirming the results above

(Figure 7G; Supplementary Table S8-8). These results might serve as

basis for further studies using cell lines to compare the biological

effects of high and low m5C-score.

An m5C-score is associated with immune
exclusion and immune resistance

Recent studies have suggested a role of RNA modification in

cell infiltration within the tumor microenvironment (TME) (Xu F.

et al., 2021; Zhang M. et al., 2021). Therefore, we investigated the

overall abundance of tumor infiltrating immune cells (TIICs) in

the TCGA-PAAD cohort. Immune exclusion was significantly

higher in tumors with high m5C-score compared to the low-m5C-

score group (Figure 8A; Supplementary Table S12). Next, we

evaluated the relative abundance of 25 different types of TIICs

in every PDAC sample in our cohort (Supplementary Table S13),
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and determined the correlation between m5C-score and the

various TIICs. The m5C-score correlated negatively with the

presence of CD8+ T cells (Figure 8B) and naive B cells

(Figure 8C), and was positively with to the presence of resting

mast cells (Figure 8D), activated dendritic cells (Figure 8E) and

eosinophils (Figure 8F). Then, ssGSEA was used to calculate the

relative enrichment of immune cells in tumor microenvironment

(TME) of PDAC patients in our cohort (Supplementary Table

S14). Here, the m5C-score correlated positively with the

infiltration of gamma delta T cells, natural killer T cells, natural

killer cells and type 2 T helper (Th2) cells, and negatively with the

infiltration of activated B cells, activated CD8+ T cells, and

monocytes (Figure 8G). Taken together, these results showed

that a high m5C-score was associated with more frequent

immune exclusion, a type 2 immune response (mast cells,

eosinophils, Th2 T cells), and a low cytotoxic T cell infiltration

and activity (CD8+ T cells), all indicative of an immune-deprived

microenvironment with low anti-tumorigenic activity.

FIGURE 7
The m5C-score can predict target drug response in PDAC. Target drug IC50 prediction and differential expression analyses of target genes
between high- and low-m5C-score groups in the TCGA-PAAD and GSE57495 cohorts are given for (A) mTOR inhibitor (MTOR gene); (B) AKT
inhibitor (AKT 1/2/3 genes); (C) MEK1 and 2 inhibitors (MEK1 and MEK2 genes - MAP2K1/2); (D) PI3K inhibitor (PIK3CB gene); (E) EGFR and
HER2 inhibitors (EGFR—ERBB1—and HER2—ERBB2—genes; (F) PARP inhibitor (BRC1/2 and PALB2 genes). (G) The m5C-score comparison of
different PDAC cell line type from GSE165949. (H) The m5C-score comparison of different PDAC cell lines from the Moffitt’s cohort.
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Overexpression by tumor cells of immune checkpoint

ligands such as the programmed death ligand 1 (PDL1)

represents a mechanism of immune escape, but also a

therapy target. In our cohort, PD-L1 expression was

significantly more expressed in high-m5C-score tumors

compared to low-m5C-score tumors (Figure 8H).

Altogether, tumors with a high m5C-score displayed

characteristics of immunologically “cold” cancers and

immune evasion.

YBX1 expression correlates with m5C-
score, target drug IC50, immune exclusion
and immune infiltration.

Since YBX1 had the best predictive power for survival among

the m5C-regulators, albeit lower than the m5C-score (see

Figure 4E), we analyzed the relationship between

YBX1 expression level and the m5C-score, predicted targeted

drug response and immune infiltration. The m5C-score was

FIGURE 8
The m5C-score correlates with immune exclusion, low cytotoxic immune cells infiltration and PD-L1 expression. (A) Immune exclusion score
between high- and low-m5C-score groups in the TCGA-PAAD cohort. (B–F) Spearman correlation of immune cells infiltration with m5C-score in
TCGA-PAAD and GSE57495 cohorts analyzed by CIBORSORT. (G) Spearman correlation of immune cells infiltration with m5C-score in TCGA-PAAD
and GSE57495 cohorts analyzed by ssGSEA. *p-value<0.05. (H) Expression of PD-L1 between high- and low-m5C-score group in the TCGA-
PAAD and GSE57495 cohorts.
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significantly higher in the high-YBX1 expression level group

compared to the low-YBX1 expression group (Supplementary

Figure S6A). Next, we estimated the IC50 of target drugs between

high and low YBX1 expression groups (for drugs significantly

related to the m5C-score). Only two target drugs showed a

significant difference. Similar to the m5C-score, high

YBX1 expression was associated with a higher sensitivity to

the PI3Kβ inhibitor AZD6482, and a lower sensitivity to the

EGFR inhibitor Gefitinib (Supplementary Figures S6B,C).

Contrary to the m5C-score, YBX1 was not associated with the

response to inhibitors of AKT, MEK, combined HER1/HER2 or

PARP. Then, we analyzed the correlation of YBX1 with immune

exclusion and immune infiltration. Tumors with high

YBX1 expression had more immune exclusion compared to

the low YBX1 expression group (Supplementary Figure S6D).

CIBERSORT analyses showed that YBX1 expression correlated

negatively with mast cells, and positively with CD4+ memory

T cells in a significant manner. Using ssGSEA analyses, we found

a positive correlation between YBX1 expression and many kinds

of immune cells such as activated B cell, activated CD8+ T cell,

activated dendritic cell, natural killer cell and type and type 1 and

2 T helper cell (Supplementary Figure S6G). PD-L1 expression

was significantly up-regulated in the high YBX1 expression group

compared to the low YBX1 expression group (Supplementary

Figure S6H). Overall, these results showed that the

YBX1 expression correlates with the m5C-score, but the m5C-

score was a better predictor for prognosis and drug sensitivity.

Contrary to the m5C-score, YBX1 expression was associated with

an active anti-tumor immune response. However, both factors

were equally associated with PDL-1 expression and immune

exclusion.

Discussion

An increasing body of studies suggests that m5C

modification regulators are involved in tumorigenesis, tumor

progression, and anti-tumor immune response in multiple

malignancies including breast, ovarian, cervical or prostate

cancers (Esteve-Puig et al., 2020; Nombela et al., 2021). In the

present study, we aimed to comprehensively investigate the

predictive value of m5C regulation in PDAC. Overall, we

observed a low level of CNVs or SNVs for m5C-regulator

genes in PDAC samples and the presence of genomic

alterations did not correlate with patient survival, indicating

that mutations of m5C-regulator genes were rather passenger

than driver mutations. These findings were in accordance with a

recent study by Yu et al. (2021), who uncovered a small number

of m5C-regulator gene mutations in PDAC, that were without

predictive statistical significance. In a pan-cancer study across

33 tumor types, He et al. (2021) also reported low mutation

frequency among m5C-regulators. At the RNA level, we found

that most of the m5C-regulators were differentially expressed

between normal and tumor tissues, or between different tumor

samples, confirming that m5C-regulator gene expression is

frequently dysregulated in tumors (He et al., 2021). The

prognostic value of m5C-regulator gene expression has been

assessed in several other tumor entities. Several m5C-regulators

are associated with overall survival prognosis in cutaneous

melanoma (DNMT2, NSUN1, NSUN3, NSUN6 and YBX1).

In particular, low NSUN6 expression was shown to correlate

with melanoma progression (Huang et al., 2021a). On the

contrary, in lung squamous carcinoma, while most of the

m5C-regulators showed significantly different expression

between tumor and normal samples, only NSUN3 could

significantly predict prognosis (and NSUN4 almost

significantly) (Pan et al., 2021). NSUN6 expression could

predict prognosis in both breast and colorectal cancer.

However, NSUN6 expression was associated with a poor

prognosis in breast cancer, and with a more favorable

prognosis in colorectal cancer (Huang et al., 2021b; Fang

et al., 2022). In the present study, NSUN6 expression was

associated with a longer survival. Out of the seven genes

whose expression correlated with survival, only YBX1, an

m5C-binding protein, was significantly able to predict

prognosis in PDAC. Hence, it appears that while the

expression of m5C-regulators is often associated with

prognosis in several tumor types, which specific genes are

involved and the prognostic value of each single gene vary

from entity to entity.

Since only one single m5C-regulator (YBX1) could predict

prognosis in our study but a high level of correlation was

found between the expression of the different m5C-regulators,

we investigated whether m5C-regulator-associated expression

profiles were related to prognosis in PDAC. Patient clustering

according to m5C-regulator expression did not correlate with

survival in our PDAC cohort. However, we could identify up

to 100 genes differentially regulated between the three m5C-

clusters, that showed prognostic value. Based on these

prognostic DEGs, we identified three m5C-prognostic-gene

clusters, which could stratify PDAC patients. Notably, the

m5C-prognostic-gene cluster 2 was associated with high

prognostic DEG expression, and poor survival. In addition,

high expression of m5C-regulators was observed in the m5C-

prognostic-gene cluster 2, confirming the validity of the

clustering. These data are supported by the fact that the

expression of m5C-related long noncoding RNAs

(lncRNAs) were found to correlate with prognosis in

PDAC (Yuan et al., 2021; Liu et al., 2022). They also

indicated that, while m5C-regulators themselves could not

predict prognosis for PDAC patients, the profound pro-

tumorigenic transcriptional changes induced by m5C-

dysregulation could be used to stratify patients and predict

disease outcome. This effect might be attributed to the

redundancy of function of some m5C-writers, and/or to

compensatory mechanisms.
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In order to predict the prognosis of patients with PDAC based

on the expression of m5C-related prognostic DEG expression, we

constructed a risk score (m5C-score) including four prognostic

DEGs and classified patients into high- and low-risk groups.

Overall, the m5C-score was well suitable for patient stratification.

It significantly correlated with survival and successfully predicted

PDAC patient prognosis in our cohort, as well as two additional

independent cohorts. A similar approach was used by Li et al. (2021)

in papillary thyroid carcinoma based on DEGs between three m5C-

regulator clusters. In agreement with our results, a high m5C-score

correlated with a lower survival rate. In our study, the m5C-score

could independently predict prognosis in PDAC patients. It

represented a stronger prediction factor than tumor grade, stage

or classical PDAC markers such as CEA, MUC16, MUC1, CA199,

KRT19 and NSE, and also performed better than any m5C-score

gene taken individually. The comparison of high- and low-m5C-

score groups offered a further validation by revealing that a high

m5C-score was associated with a more aggressive tumor phenotype.

For instance, tumors with high-m5C-score displayed more

mutations, notably for KRAS, TP53, SMAD4 and CDKN2A, as

well as a higher KRAS expression. In addition, cancer pathway

expression including the Ras, p53, MAPK, ERBB and TGF-beta

PI3K-AKT pathways was enriched in the high-m5C-score

group. Furthermore, there was an association between high

m5C-score and the prognostically unfavorable squamous/basal

molecular pathway using all three PDAC classifications from

Bailey, Collisson and Moffitt (Collisson et al., 2011; Moffitt et al.,

2015; Bailey et al., 2016). Interestingly, therapy response prediction

showed that the high m5C-score group was more likely to respond

to therapy targeted at the PI3K-AKT, MEK, ERBB pathways. This

was well in agreement with the elevated activation of these pathways

in tumorswith highm5C-score. On the contrary, tumorswith a high

m5C-score were predicted to have a lower sensitivity to PARP

inhibition than low-m5C-score tumors. This might be explained by

the fact that m5C-methylation of mRNA is involved in DNA

damage repair, notably by promoting homologous recombination

(HR). Chen et al. have recently shown that the RNA

methyltransferase TRDMT1 is recruited to DNA damage sites to

promote m5C-methylation. Loss of TRDMT1 compromised HR,

increased cellular sensitivity to DNA double-strand breaks and

confered sensitivity to PARP inhibitors in vitro and in vivo

(Chen et al., 2020). Finally, a high m5C-score correlated with

more frequent immune exclusion, immune exhaustion (low

activated cytotoxic T-cells), and immune evasion (high PDL-1

expression). These findings indicated that m5C phenotype-

associated patterns also affect the TME, and that the m5C-score

might be used as a marker for immunologically “cold” cancers and

immune evasion. This is in line with the fact that m6A-regulators

have been reported to correlate with anti-tumor immunity in

PDAC, and have been proposed to regulate the immune

microenvironment (Xu F. et al., 2021). Notably, a high m6A-risk

signature associated with poor prognosis was found to correlate with

lower naive B cells and CD8+ T cells infiltration, similarly to what we

observed for the highm5C-score (Xu F. et al., 2021). More generally,

RNA methylation has been shown to inhibit RNA recognition by

Toll-like receptors or dendritic cells, to regulate T-cell differentiation

and expression of immune factors such as IL-17, or to modulate

macrophages polarization (Zhang M. et al., 2021).

When comparing YBX1 expression with the m5C-score, we

found that the m5C-score was a better predictor of prognosis

and drug sensitivity. YBX1 codes for the Y- box binding

protein-1, a multifunctional oncoprotein regulating cell

proliferation, survival, drug resistance in cancer (Kuwano

et al., 2019). YBX1 can act as transcription factor, but is also

involved in DNA repair and RNA splicing. In agreement with

our findings, overexpression of YBX1 has been reported in

PDAC, where it regulates cell-cycle progression and

proliferation through the expression of cell-cycle-related

cyclins and GSK3B (Liu et al., 2020). However, YBX1 is not

specific to m5C, can bind several other modifications or be

activated by oncogenic pathways (Ban et al., 2020; Alkrekshi

et al., 2021; Feng et al., 2021). In conclusion, even if

YBX1 represents a good prognostic marker, it is not specific

of m5C-methylation and could therefore complement but not

substitute the m5C-score.

Taken together, our results demonstrated that the m5C-score

represents a robust prognostic tool for patients with PDAC,

which correlates with molecular subtype as well as an immune-

deprived and immune-resistant tumor microenvironment.
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