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Purpose: Accumulating evidence suggests that solute carrier family 39member

1 (SLC39A1) conceivably function as a tumor suppressor, but the underlying

mechanism in renal cell carcinoma (RCC) is poorly understood.

Methods: OSRC-2 renal cancer cells were first transfected with

SLC39A1 overexpressed vectors and empty vectors and then used in

transcriptomics, proteomics, and metabolomics integrated analyses.

Results: SLC39A1 significantly altered several metabolisms at transcriptional,

protein and metabolic levels, including purine and pyrimidine metabolism,

amino acids and derivatives metabolism, lactose metabolism, and free fatty

acid metabolism. Additionally, SLC39A1 could promote ferroptosis, and

triggered significant crosstalk in PI3K-AKT signal pathway, cAMP signal

pathway, and peroxisome proliferators-activated receptor (PPAR) signal

pathway.

Conclusion: We found SLC39A1 transfection impaired tumor metabolism and

perturbed tumor metabolism-related pathways, which was a likely cause of the

alteration in cell proliferation, migration, and cell cycle progression in RCC cells.

These multi-omics analyses results provided both a macroscopic picture of

molecular perturbation by SLC39A1 and novel insights into RCC tumorigenesis

and development.
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1 Introduction

Renal cell carcinoma (RCC), the most universal renal

malignancies, ranked 8th in all estimated cancer cases in 2021.

The past few decades have witnessed steadily growing incidence

and mortality of RCC in worldwide (Siegel et al., 2021). The new

cases and new deaths of RCC on a global scale were 431,288 and

179,368 in 2020 (Sung et al., 2021). The blurred knowledge of

oncogenic molecular mechanism and the insensitivity to

chemoradiotherapy after metastasis contribute to inefficient

clinical management of RCC patients (Lalani et al., 2019).

Hence, there has been growing interest in understanding RCC

pathogenesis to enhance diagnostic sensitivity and improve

therapeutic outcomes.

Recently, increasing evidence indicated the relation

between tumorigenesis and intricate changes in metabolic

pathways, which was so-called metabolic reprogramming

(Wettersten et al., 2017). The Warburg Effect, an emerging

hallmark of tumor metabolism reprogramming, referred to the

phenomenon that tumor cells were prone to increasing glucose

absorption and facilitating its conversion to lactate regardless

of normal mitochondria and sufficient oxygen. The glycolytic

switch in cancer cells allowed glycolytic intermediates

metabolites to participate in nucleotide and amino acid

synthesis in vivo and therefore, sustained long-term tumor

growth, proliferation, and survival (Hanahan and Weinberg,

2011; Liberti and Locasale, 2016). A few studies had posed that

RCC was a metabolic disease. The development of RCC was

characterized by the alteration in glucose metabolism and

tricarboxylic acid cycle (TCA cycle). ATP and other organic

molecules produced in reprogrammed carbohydrate metabolic

processes, such as upregulated aerobic glycolysis and pentose

phosphate pathway, enabled renal cancer cells to tolerate

various stress and immune damage (Chakraborty et al.,

2021). And lipid synthesis was reported to be

downregulated and significant alteration in fatty acid (FA)

metabolism was discovered in RCC. Several FA metabolic

enzymes had been identified as potential clinical prognostic

markers (Zhao et al., 2019; Chakraborty et al., 2021).

Moreover, amino acid metabolism was also reprogrammed.

Arginine and tryptophan levels were reduced in RCC (Wise

and Thompson, 2010). The glutamine metabolism of renal

cancer cells had long been studied. Glutaminolysis generated

amount of α-ketoglutarate to maintain TCA cycle and

provides nitrogen for protein and nucleotide synthesis

(Weiss, 2018). It was also speculated that elevated

glutamine utilization facilitates RCC cells to attenuate

oxidative stress by feeding the glutathione/glutathione

disulfide (GSH/GSSG) antioxidant system, rather than for

energy production in TCA cycle, thereby obtaining survival

advantages (Wettersten et al., 2015). Notably, nucleotide

metabolism had received little attention, which needed

further research.

SLC39A1, also known as ZIP1, was responsible for

transferring zinc ions into cells. There are 14 protein

members in ZIP family. There were 8 transmembrane

domains in ZIP proteins and zinc transport was thought to be

related to an intracellular loop located between domains III and

IV (Guerinot, 2000; Milon et al., 2006). Native and endogenous

ZIP1 showed intracellular distribution and partly resided in

endoplasmic reticulum (ER) in epithelial cells and prostate

cancer cells, but in erythroid cells ZIP1 was sorted to the

plasma membrane (Milon et al., 2001). SLC39A1 was reduced

and inhibited tumor progression in prostate cancer (Golovine

et al., 2008). In ovarian, colon, stomach, and lung mucinous

carcinomas, SLC39A1 also showed significant and persistent low

expression (Desouki et al., 2015). Our previous work had

confirmed SLC39A1 demonstrated low expression in RCC

tissues and the expression of SLC39A1 was negatively

correlated with Fuhrman stage and clinical stage. Knocking

down SLC39A1 remarkably promoted tumor proliferation and

invasion ability and miR-223 was responsible for the

dysregulation of SLC39A1 in RCC (Dong et al., 2014; Dong

et al., 2018). Zinc was an essential microelement that was gaining

momentum for its anti-cancer activity in multiple cancers

(Hoang et al., 2016). Zinc took part in lipid and glucose

metabolism and impaired cellular energy production and

triggered accumulation of reactive oxygen species (ROS) via

inhibiting glycolysis and the mitochondrial electron transport

chain (Dineley et al., 2003; Olechnowicz et al., 2018a). Besides,

zinc altered choline metabolism, leading to lymphoma cell

apoptosis (Yoon et al., 2021). Thus, we hypothesized the

altered landscape of metabolism and signal transduction

pathways caused by SLC39A1 might lie behind its inhibition

effect on tumorigenesis and malignant progression in RCC.

In our work, transcriptomics, proteomics, and metabolomics

studies were performed on human renal cancer cell (OSRC-2)

samples, composed of cells transfected with the negative control

virus (NC) and SLC39A1 lentivirus (ZIP), aiming to identify key

alteration arising from SLC39A1 in RCC. Transcriptomics

analysis was applied to uncover the alteration in genes and

proteomics analysis indicated functional changes.

Metabolomics reflected specific metabolic changes. Finally, we

integrated three sets of data to figure out significantly perturbed

pathways at transcription, protein and metabolism levels and to

identify potential downstream molecules for SLC39A1 that may

aid in understanding its tumor suppression effects, thereby

providing new insights for RCC diagnosis and treatment.

2 Materials and methods

2.1 Cell culture

OSRC-2 cells were obtained from Type Culture Collection

Cell Bank of Chinese Academy of Sciences (Shanghai, China).
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RPMI-1640 medium (HyClone, Logan, UT, United States)

supplemented with 10% fetal bovine serum (FBS; Biological

Industries, Beit-HaEmek, Israel) was used to continuously

culture OSRC-2 cells. OSRC-2 cells were cultured in a

incubator with suitable humidity under normoxia (5% CO2

and 95% humidity).

2.2 Cell transfection

The transfection of overexpression plasmid with empty and

SLC39A1 vetors (GeneChem, Shanghai, China) was strictly

followed the manufacturer’s protocols. The accession number

of SLC39A1 was NM_014437. The transfected cells were

harvested for subsequent assays after selected with puromycin

(2 µg/ml) over 72 h.

2.3 Western blotting assay

The application of antibodies to SLC39A1 (sc-393345,

Santa Cruz Biotechnology) and ACTB (4970S, Cell

Signaling Technology) were under the manufacturers’

instruction. Western blotting assays was carried out as

previously mentioned (Dong et al., 2018). In brief, the

lysates (RIPA buffer: PMSF = 100:1) were used to extract

total proteins. 50 µg of standardized proteins was subjected to

SDS-PAGE (10%) in electrophoresis and then transferred onto

PVDF membranes (Bio-Rad, SA). The blocking solution, TBS-

T with 5% (w/v) skim milk powder, was used to block non-

specific binding. Then the membranes were applied with

incubated with primary and secondary antibodies. The ECL

reagents (TransGen Biotechnology, Beijing, China) on a DNR

Bio-Imaging Systems (Mahale HaHamisha, Israel) was used to

visualize immunoblot bands. The ImageJ 1.46r software

(Wayne Rasband, National institutes of Health, Bethesda,

MA, United States) was used to calculate densitometric

values. The tatistical analysis were performed on the ratios

of SLC39A1/ACTB.

2.4 RNA extraction and quantitative real-
time PCR assay

The RNAiso Plus was used to total RNA. The PrimeScript™
RTMaster Mix was used to synthesize cDNA. qRT-PCRwas then

performed using SYBR® Pre-mix Ex TaqTM (Tli RNaseH Plus)

on LightCyclerTM 480II system (Roche, Basel, Switzerland).

Reagents above were purchased from Takara Biotechnology

(Dalian, China). The primer sequences for SLC39A1 were as

follows: F: 5′-GCTGTTGCAGAGCCACCTTA-3’; R: 5′-CAT
GCCCTCTAGCACAGACTG-3’. The primer sequences for

ACTB were as follows: F: 5′-CATGTACGTTGCTATCCA

GGC-3’; R: 5′-CTCCTTAATGTCACGCACGAT-3’. The

-ΔΔCT method was applied to quantify the relative genes

expression in three independent experiments.

2.5 Transcriptomics analysis

2.5.1 RNA Extraction and RNA detection
3 pairs of samples were used for both transcriptomic and

proteomics analysis, transfected with empty vectors (NC) and

SLC39A1 overexpressed vector (ZIP), respectively. The

extraction of RNA was conducted as described above. The

integrity of RNA and the possibility of DNA contamination in

RNA samples were analyzed by agarose gel electrophoresis,

Qubit 2.0 fluorometer and Agilent 2100 bioanalyzer.

2.5.2 Library construction
Two approaches were taken to obtain mRNAs: Oligo (dT)

magnetic beads were used to enrich themRNAs with poly-A tails;

Ribosomal RNAs were removed from total RNA to purify

mRNAs. mRNAs were broken into short fragments by

fragmentation buffer. Short fragment RNA was served as

templates and the first strand cDNA was synthesized from

corresponding template RNA with Random Hexanucleotide

Primers. And two-strand cDNAs were synthesized with the

presence of buffer, dNTPs, and DNA polymerase I. AMPure

XP beads are used to purify the double-strand cDNAs. Then the

purified double-stranded cDNAs underwent the repair of cDNA

ends, the A-tail addition, and the ligation of sequencing adapter.

cDNA fragments with compatible length were selected by

AMPure XP beads and then enriched by PCR to obtain the

final cDNA library. The quality of cDNA library was tested by

following methods: Qubit2.0 was supplied for preliminary

quantification. Agilent 2100 was used to detect insert size of

the library in line with expectation. The effective concentration of

the library was accurately quantified through Q-PCR according

to the quality control metrics: the effective concentration of

library >2 nM.

2.5.3 Basic analysis
cDNA libraries were sequenced with the Illumina HiSeq

high-throughput sequencing platform to get image files, which

were transformed by CASAVA base identification to obtain raw

data in FASTQ format. Cutadapt (v1.15) software was used to

filter the sequencing data. The filtered data was qualitified

following QC metrics: 1) The sequencing error rate was

represented by e, and base quality value in Illumina was

represented by Qphred, Qphred = −10log10(e). The

sequencing error rates of samples was controlled below the

standard (0.05%); 2) the GC content distribution of samples

was controlled at around 50%. The qualified data were mapping

to the reference genome using HISAT2 (http://ccb.jhu.edu/

software/hisat2/index.shtml) and the default mismatch was
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controlled below 2. Then the alignment region distribution of

mapped reads was calculated.

2.5.4 mRNA analysis
First, HTSeq (0.9.1) statistics was used to compare the Read

Count values on each gene as the original expression of the gene,

and then FPKM was applied for standardization of gene

expression. Then differentially expressed genes (DEGs) were

screened by DESeq (1.30.0) with standards as follows: the

expression difference multiple |log2FoldChange| > 1 and

significant p-value < 0.05. R language Pheatmap (1.0.8)

software package was used to perform bi-directional clustering

analysis of all different genes of samples. The volcano map was

obtained according to the expression level of the same gene in

different samples and the expression patterns of different genes

in the same sample with Euclidean method to calculate the

distance and Complete Linkage method to cluster. Next, all

the genes were mapped to Kyoto Encyclopedia of Genes and

Genomes, the Gene Ontology and Reactome database to

annotate metabolic pathways and signaling pathways that

DEGs mainly participated in. Finally, Disease ontology (DO)

and DisGeNET databases were used to uncover human diseases

with DEGs altered.

2.6 Proteomics analysis

2.6.1 Sample preparation
Cell samples were mixed with reaction solution and

sonicated for 10 min in ice-water bath and the reaction was

performed at 60 °C for 30 min. Protein concentration was

measured by Bradford method. Trypsin was added at a

ratio of 1:50 (enzyme: protein, w/w) for overnight digestion

at 37 °C. After centrifugation (12,000×g, 15 min), the

supernatant was subjected to peptide purification using self-

made desalting columns and stored at −20 C for later use. The

peptides were reconstituted in TMT reagent buffer, and the

samples were separately labeled with different TMT labeling

reagents. The labeled samples were then mixed and subjected

to Sep-Pak C18 desalting and were fractionated using high

pH reverse phase chromatography and combined into

15 fractions. Media samples were filtered through

0.22 µm filters. Each filtered media was concentrated to a

final volume of 200 µL using 10 kDa AMICON Ultra-15

Centrifugal Filters. Concentrated media were mixed with

equal volume of 2X reaction solution (2% SDC, 20 mM

TCEP, 80 mM CAA).

2.6.2 LC-MS/MS analysis
LC-MS/MS data acquisition was carried out on a Q

Exactive plus mass spectrometer coupled with an Easy-nLC

1200 system (both Thermo Scientific). Peptides were first

loaded onto a C18 trap column (75 μm × 2 cm, 3 µm

particle size, 100 Å pore size, Thermo) and then separated

in a C18 analytical column (75 μm × 250 mm, 2 µm particle

size, 100 Å pore size, Thermo). Mobile phase A (0.1% formic

acid) and mobile phase B (80% ACN, 0.1% formic acid) were

used to establish the separation gradient. A constant flow rate

was set at 300 nL/min. For DDA mode analysis of TMT

samples, each scan cycle is consisted of one full-scan

mass spectrum (R = 70 K, AGC = 3e6, max IT = 50 ms,

scan range = 350–1800 m/z) followed by 15 MS/MS

events (R = 35 K, AGC = 1e5, max IT = 50 ms). HCD

collision energy was set to 32. Isolation window for

precursor selection was set to 1.2 Da. Former target ion

exclusion was set for 45 s.

2.6.3 data Research and data analysis
MS/MS spectrum of the cell samples were analyzed with

MaxQuant (v1.6.6) using the Andromeda database search

algorithm (Tyanova, Temu, and Cox 2016). The MS1 match

tolerance was set as 20 ppm for the first search and 4.5 ppm for

the main search; the MS2 tolerance was set as 20 ppm. Then the

spectrum was filtered through Uniprot database search to obtain

peptides with more than 99% confidence and then the false

discovery rate FDR verification is performed. Peptides and

proteins with FDR greater than 1% were removed. Quality

controls were performed with criteria as follows: peptide

length distribution of 7-40 amino acids, missed cleavage

sites = 0, measurement error = ± 10 ppm. The identified

protein were annotated from the following database: GO,

KEGG and COG annotation were performed by BLAST

against the GO, KEGG and COG databases (blast, e-value ≤
1e−5), using BLAST and Uniprot, InterPro database for domain

annotation. Further analysis was performed using the

“proteingroups.txt” file produced by MaxQuant. The reporter

intensities were calculated. A student’s t-tests were performed

comparing the groups. Fold change and p-values of the proteins

were calculated. Proteins with a p-value <0.05 and fold

change >1.5 were identified as significant changed proteins

between groups.

2.7 Metabolomics analysis

2.7.1 Sample preparation and extraction
6 pairs of Cell samples subjected to metabolomics analysis for

more reliable and significant difference in metabolites and

metabolic pathways between NC and ZIP groups. Samples

were thawed on ice and added with 1 ml 80% methanol

aqueous solution, then whirled for 2 min. The mixture was

frozen for 3 min in liquid nitrogen and then whirled for

2 min (repeat 3 times). Then the mixture was centrifuged at

12,000 r/min for 10 min at 4 C. Finally, 200 μL of supernatant

was taken into the inner liner of the corresponding injection

bottle for on-board analysis.
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2.7.2 T3 UPLC
The sample extracts were analyzed by using LC-ESI-MS/MS

system (UPLC, ExionLC AD; MS, QTRAP® System). The

analytical conditions were as follows: UPLC column, Waters

ACQUITY UPLC HSS T3 C18 (1.8μm, 2.1 mm*100 mm);

column temperature, 40 C; flow rate, 0.4 ml/min; injection

volume, 2 μL or 5μL; solvent system, water (0.1% formic acid):

acetonitrile (0.1% formic acid); gradient program, 95:5 V/V at

0 min, 10:90 V/V at 10.0 min, 10:90 V/V at 11.0 min, 95:5 V/V at

11.1 min, 95:5 V/V at 14.0 min.

2.7.3 QTOF-MS/MS
The Triple TOF mass spectrometer was applied for

acquiring MS/MS spectra on an information-dependent

basis (IDA) during an LC/MS experiment. The acquisition

software (TripleTOF 6600, AB SCIEX) collects and triggers the

acquisition of MS/MS spectra depending on pre-selected

criteria. In each cycle, 12 precursor ions with intensity

greater than 100 were chosen for fragmentation at collision

energy (CE) of 30 V (12 MS/MS events with product ion

accumulation time of 50 msec each). ESI source conditions

were set as follows: Ion source gas 1 as 50 Psi, Ion source gas

2 as 50 Psi, Curtain gas as 25 Psi, source temperature 500°C,

Ion Spray Voltage Floating (ISVF) 5500 V or −4500 V in

positive or negative modes, respectively.

2.7.4 ESI-Q TRAP-MS/MS
LIT and triple quadrupole (QQQ) scans were acquired on a

triple quadrupole-linear ion trap mass spectrometer

(QTRAP). QTRAP® LC-MS/MS System was equipped with

an ESI Turbo Ion-Spray interface, operating in positive and

negative ion mode, and controlled by Analyst 1.6.3 software

(Sciex). The ESI source operation parameters were as follows:

source temperature, 500°C; ion spray voltage (IS) 5500 V

(positive), −4500 V (negative); ion source gas I (GSI), gas II

(GSII), curtain gas (CUR) was set at 50, 50, and 25.0 psi,

respectively; the collision gas (CAD) was high. Instrument

tuning and mass calibration were performed with 10 and

100 μmol/L polypropylene glycol solutions in QQQ and LIT

modes, respectively. A specific set of MRM transitions were

monitored for each period according to the metabolites eluted

within this period.

2.7.5 Quality control for MS/MS
Quality control was carried out with following 3 criteria:

1) the total ion chromatogram (TIC map) of the sample

mass spectrometry detection analysis was overlapped

to judge the repeatability of metabolite extraction and

detection; 2) QC samples were subjected to Pearson

correlation analysis (|r | →1); 3) the proportion of substances

with CV (Coefficient of Variation) value less than 0.3 in QC

samples was higher than 75%.

2.7.6 Qualitation and quantitation of metabolites
After LC-QTOF-MS/MS experiment, metabolites were to

accurately qualitied by MWDB and Maiwei integrated public

database MHK database and MetDNA. The multiple ion pair

information and retention time RT (Retention time) were

extracted for identifying metabolites. Simultaneously, Relative

quantification of population samples was proceeded through Q-

Trap performs combined with MWDB and MHK. The

quantification of metabolites was conducted by the multiple

reaction monitoring mode (MRM) analysis of triple

quadrupole mass spectrometry. The area under the peaks of

the extracted ion chromatographic peaks of all metabolites are

respectively integrated, and the chromatographic peaks of the

same metabolite in different samples are integrated and

corrected.

2.7.7 PCA, hierarchical cluster analysis and
Pearson correlation coefficients

PCA (principal component analysis) was performed by

statistics function prcomp within R (www.r-project.org). The

data was unit variance scaled before unsupervised PCA. The

HCA (hierarchical cluster analysis) results of samples and

metabolites were presented as heatmaps with dendrograms,

while Pearson correlation coefficients (PCC) between samples

were calculated by the cor function in R and presented as only

heatmaps. Both HCA and PCC were carried out by R package

ComplexHeatmap. For HCA, normalized signal intensities of

metabolites (unit variance scaling) are visualized as a color

spectrum.

2.7.8 Differential metabolites selection
Significantly regulated metabolites between groups were

determined by VIP ≥ 1 and absolute Log2FC (fold

change) ≥ 1. VIP values were extracted from OPLS-DA result,

which was generated using R package MetaboAnalystR. The data

was log transform (log2) and mean centering before OPLS-DA.

To avoid overfitting, a permutation test (200 permutations) was

performed.

2.8 Integrated analysis

Through Cytoscape 3.9.1 (https://js.cytoscape.org/), a

network of genes, proteins and metabolic compounds was

constructed to identify the pathways in which DEGs were

significantly enriched, and to reveal the potential regulatory

mechanisms between genes and metabolites. The differential

metabolites and DEG expression data between NC and ZIP

groups were imported into Cytoscape to comprehensively

understand the gene and metabolic changes and the

underlying mechanism through which SLC39A1 altered the

metabolism in renal cancer cells.
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2.9 Statistical analysis and bioinformatic
analysis

Statistical analysis methods and quantitative methods for

single-omics and multi-omics analysis could be found in

corresponding method section, including but not limited to

Student’s t-test, chi-square test, Fisher’s exact test, etc.

Statistical significance p-values were considered <0.05 and

were adjusted by the Benjamini–Hochberg FDR correction.

And multiple databases were used to interpret the role of

SLC39A1 in RCC. KEGG (https://www.genome.jp/kegg/;

http://www.kegg.jp/kegg/compound/) was used to perform

functional annotation and enrichment analysis of

differential genes and differential metabolites in renal

cancer cells. GO (http://www.geneontology.org), KEGG

(http://www.kegg.jp/kegg/pathway.html), and COG (http://

www.ncbi.nlm.nih.gov/COG/) database were used for

protein function annotation. InterPro database (https://

www.ebi.ac.uk/interpro/) and MultiLoc2 (http://abi.inf.uni-

tuebingen.de/Services/MultiLoc2) were used for domain

annotation and subcellular localization analysis,

respectively. KEGG, GO and Reactome (https://reactome.

org) databases revealed signal transduction pathways

involved in differential genes. The DO (https://disease-

ontology.org) and DisGeNET (https://www.disgenet.org)

databases were used to reveal human diseases associated

with differential genes. In addition, the HMDB (https://

hmdb.ca) database suggested human metabolism, metabolic

disease pathways, metabolite signaling, and drug activity

pathways enriched by differential metabolites. MESA

analysis (https://www.gsea-msigdb.org/) was performed

using a metabolite database derived from MebaboAnalyst

(https://www.metaboanalyst.ca/). The datasets of known

interaction proteins of SLC39A1 can be obtained at https://

FIGURE 1
Transcriptomic analysis of SLC39A1-Overexpressed OSRC-2 cells. (A) The Volcano plot of differentially expressed genes. The Y-axis displays
-log10 (p-adj) and the X-axis the log2 fold change of DEGs. Green dots indicate downregulated genes, and red dots indicate upregulated genes. (B)
Gene Ontology enrichment analysis. Green bars indicate biological process (BP) category, purple bars indicate cellular component (CC) category
and pink bars molecular function (MF) category. (C) Reactome enrichment analysis of transcriptomic data. (D) Disease Ontology (DO)
enrichment analysis of transcriptomic data.
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www.ncbi.nlm.nih.gov/gene/27173. All analyses and graphs

were performed using R software (http://www.R-project.org,

version 3.5.2) unless otherwise stated.

3 Results

3.1 Transcriptomics analysis results of
SLC39A1-Overexpressed OSRC-2 renal
cancer cells

Two groups of OSRC-2 cells (NC and ZIP) were transfected

with empty vectors and SLC39A1 vector. Then rt-PCR assays and

western blot assays were conducted to test transfection efficiency

(Supplementary Figures S1A,B). There were 321 DEGs following

SLC39A1 overexpressed, with 71 upregulated and

250 downregulated (Figure 1A). The KEGG database was

applied to interpret the specific molecular functions affected

by DEGs. Altogether, 16 KEGG pathways were identified to

be enriched, including nicotinate and nicotinamide metabolism,

complement and coagulation cascades, neutrophil extracellular

trap formation, glutathione metabolism, Staphylococcus aureus

infection, etc. (Table 1). Subsequently, GO analysis was

performed by mapping DEGs to three functional terms in GO

database, and genes potentially regulated by SLC39A1 were

mapped to biological processes (BP) for extracellular structure

organization, multicellular organismal homeostasis, amino acid

import across plasma membrane, extracellular matrix

organization and wound healing; cell components (CC) for

extracellular matrix, apical part of cell, basolateral plasma

membrane and apical plasma membrane; molecular functions

(MF) for peptide binding (Figure 1B). In addition, Reactome

database integrated various reactions and biological pathways,

and the result revealed prominent changes in fibrin clot

formation, collagen degradation, and integrin cell surface

interactions (Figure 1C). DO database was able to provide

data in connection with human gene function and disease and

DisGeNET database integrated genes related to human diseases.

SLC39A1 triggered significant alteration in genes related to

urinary system and kidney disease, lung disease,

atherosclerosis, and stomach cancer (Figure 1D). Moreover,

DisGeNET analysis results demonstrated remarkable changes

were caused by SLC39A1 in genes associated with complement

Factor I (C3 inactivator) deficiency, ischemic stroke,

choriocarcinoma and hypertensive disease (Supplementary

Figure S2). Besides, among the differential expressed genes, a

known interaction protein of SLC39A1 was identified.

Completion C5a receiver 1(C5AR1), which was significantly

downregulated by SLC39A1, has been confirmed by Affinity

Capture MS to directly interact with SLC39A1

(Supplementary Table S1).

3.2 Proteomics analysis results of
SLC39A1-Overexpressed OSRC-2 renal
cancer cells

The volcano map integrally demonstrated the apparent

difference in protein expression levels between 2 groups, and

324 proteins were identified, with 124 upregulated and

TABLE 1 Significantly enriched pathways based on KEGG pathway analysis.

Pathway ID Pathway Description Up_gene Down_gene p value

ko04610 Complement and coagulation cascades F2R; F2RL2; CFI FGA; FGB; FGG; C5AR1 0.000218441

ko00760 Nicotinate and nicotinamide
metabolism

-- NMNAT2; QPRT; NNMT; ASPDH 0.001455373

ko04613 Neutrophil extracellular trap formation -- H2BC5; H4C8; H3C6; H2AC6;FGA;FGB;FGG;FPR1;
C5AR1

0.001721488

ko00480 Glutathione metabolism NAT8 GSTM4; GSTM3; CHAC1 0.008455026

ko05150 Staphylococcus aureus infection HLA-DPA1; CFI FGG; FPR1; C5AR1 0.01020849

ko04657 IL-17 signaling pathway FOS; MMP3; MMP9; FOSL1 IL6 0.011662293

ko05321 Inflammatory bowel disease HLA-DPA1 IL6; MAF; STAT4 0.012790546

ko04927 Cortisol synthesis and secretion LDLR CREB3L3; KCNK2; CACNA1H 0.013506465

ko04668 TNF signaling pathway FOS; MMP3; MMP9 CREB3L3; IL6 0.023397781

ko00983 Drug metabolism - other enzymes -- GSTM4; GSTM3; UPB1; XDH 0.027386036

ko04611 Platelet activation COL3A1; F2R FGA; FGB; FGG 0.032379347

ko04979 Cholesterol metabolism LDLR LIPC; ANGPTL4 0.034834683

ko04926 Relaxin signaling pathway COL3A1; COL4A4; FOS; MMP9 CREB3L3 0.039795617

ko05323 Rheumatoid arthritis FOS; HLA-DPA1; MMP3 IL6 0.040097286

ko04658 Th1 and Th2 cell differentiation FOS; HLA-DPA1 MAF; STAT4 0.041525252

ko05322 Systemic lupus erythematosus HLA-DPA1 H2BC5; H4C8;H3C6;H2AC6 0.044462747
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200 downregulated (Supplementary Figure S3A). KEGG

enrichment analysis revealed alteration in signal transduction

pathways and metabolic process with differential proteins

involved. The bubble chart indicated remarkable enrichment

in PI3K-Akt signal pathway, PPAR signal pathway,

complement and coagulation cascades and ferroptosis

(Figure 2A). In GO enrichment analysis, differential proteins

were mapped to three terms in GO database to define their main

biological functions. The pie chart showed that biological

processes (BP) SLC39A1 possibly regulated included but not

limited to: response to inorganic substance, proteasomal

ubiquitin-independent protein catabolic process,

morphogenesis of an epithelium (Figure 2B). SLC39A1 also

represented significant impact on molecular functions (MF)

such as signaling receptor binding, oxidoreductase activity,

cofactor binding, extracellular matrix structural constituent

(Figure 2C). Furthermore, SLC39A1 might contribute to the

formation of cell components (CC), including secretory granule

and vesicle, collagen-containing extracellular matrix, and

proteasome complex (Figure 2D). Cluster of Orthologous

Groups of proteins (COG/KOG) enrichment analysis revealed

SLC39A1 was related to nucleotide transport and metabolism,

metabolism extracellular structures, and inorganic ion transport

in OSRC-2 cell (Figure 2E). The discrepancy of between two

groups was presumably rooted in function or localization of

different domains. Subcellular localization analysis clarified

specific cellular localization of differential proteins, which was

closely linked to functions of proteins. Differential proteins were

mainly located in cytoplasmic, nuclear and ER (Supplementary

Figure S3B). And domain enrichment analysis exhibited domains

of differential proteins primarily contained proteasome subunit

A/B and EGF-like domain (Supplementary Figure S3C).

FIGURE 2
Proteomic analysis of SLC39A1-Overexpressed OSRC-2 cells. (A) KEGG pathway analysis of proteomic data. (B–D) Gene Ontology analysis of
DEGs. (B) Biological Process (BP) category, (C) Molecular Function (MF) category and (D) Cellular Component (CC) category. (E) COG/KOG
enrichment analysis of proteomic data.
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3.3 Metabolomics analysis results of
SLC39A1-Overexpressed OSRC-2 renal
cancer cells

Metabolomics data of RCC cell samples were analyzed to

assess the metabolic difference. Principal Component analysis

(PCA) and Orthogonal Partial Least Squares-Discriminant

Analysis (OPLS-DA) demonstrated comprehensive metabolic

change between two groups. The score plot of PCA (Figure 3A)

and OPLS-DA (Figure 3B) witnessed significantly separated,

indicating that SLC39A1 caused remarkable disturbance in

RCC metabolism. Based on FC (Fold Change) ≥
2 or ≤0.5 and VIP (Variable Importance in Projection) ≥ 1,

60 significant differential metabolites have been filtered out

(Table 2). Functional annotations on differential metabolites by

KEGG database was classified according to KEGG pathway

types, and multiple metabolism variations were discovered:

purine metabolism, pyrimidine metabolism, galactose

metabolism, glutathione metabolism, and cAMP signal

pathway (Figure 3C). MSEA enrichment analysis was able to

prevent omissions of unapparent differentially expressed

metabolites with important biological significance. The

analysis demonstrated that SLC39A1 triggered alteration in

more than 50 metabolism sets in MSEA (Figure 3D). In

addition, the human metabolome database (HMDB)

enrichment analysis revealed SLC39A1 also possessed

noticeable impact on spermidine and spermine biosynthesis,

lactose biosynthesis, GLUT-1 deficiency syndrome and

congenital disorder of glycosylation CDG IId (Figure 3E).

Then pathways involving no less than 5 differential

metabolites were selected to perform cluster analysis. The

heatmap displayed SLC39A1-regulated metabolites were

clustered in nucleotides and its metabolomics, sugar and its

derivatives, small peptide, and organic acid (Figure 4A).

FIGURE 3
Metabolic analysis of SLC39A1-Overexpressed OSRC-2 cells. (A) Principal Component analysis (PCA) and (B)Orthogonal Partial Least Squares-
Discriminant Analysis (OPLS-DA) score plots betweenNC and ZIP groups. (C) KEGG pathway analysis of metabolomic data. (D)HMDB enrichment of
metabolic data. (E) MSEA enrichment of metabolic data. The label to the right of the column chart indicates p-value.
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TABLE 2 Identification results of significant differential metabolites in cell samples.

Metabolites VIP p_value FC Log2FC Type

(R)-2-hydroxystearic acid 1.026262304 0.150466678 2.357333023 1.237155584 up

N-Oleoylethanolamine 1.794095424 0.003811691 0.382583326 −1.386154097 down

Uridine 1.862551429 0.003392615 0.44267699 −1.175673711 down

D-Trehalose 1.031047395 0.028538386 0.466447489 −1.100213419 down

Lactose 1.031047395 0.028538386 0.466447489 −1.100213419 down

Lactulose 1.031047395 0.028538386 0.466447489 −1.100213419 down

Maltose 1.031047395 0.028538386 0.466447489 −1.100213419 down

4-Guanidinobutyric Acid 1.644191608 0.006362563 0.478042103 −1.064790407 down

Phenyllactate (Pla) 1.174460381 0.022824344 0.484997939 −1.043949478 down

Uridine 5-Monophosphate 1.176790122 0.162335978 0.463132865 −1.110501956 down

N-lactoyl-phenylalanine 1.669737584 0.0098291 0.439787525 −1.185121413 down

D-Malic acid 1.627669732 0.018114668 0.495722017 −1.012396758 down

3-Methyluridine 1.929564294 0.002227522 0.319995889 −1.643874724 down

5-Hydroxy-2′-deoxyuridine 1.862551429 0.003392615 0.44267699 −1.175673711 down

Gly-Gly 1.571840697 0.002138695 0.430891368 −1.214603899 down

Adenosine 2′-Phosphate 1.316383154 0.152484703 0.41634288 −1.264155943 down

L-Methionine 1.776940312 0.00077552 0.492652152 −1.021358735 down

Asp-phe 1.046400676 0.358657024 0.495944425 −1.011749631 down

2′-Deoxyinosine 1.532960767 0.00715507 0.452891979 −1.142761107 down

2-Hydroxy-6-Aminopurine 1.155758566 0.241141732 0.465095063 −1.104402468 down

Oleamide 1.924806509 6.39059E-05 0.268566704 −1.896647638 down

Spermidine 1.396948582 0.025423149 0.420968131 −1.248217075 down

FFA (20:1) 1.727570459 0.002707229 0.265337637 −1.914098766 down

Gly-Phe 1.13556765 0.212600373 0.447247405 −1.160854984 down

N-(2-hydroxyethyl)stearamide 1.953727522 3.41233E-05 0.437311551 −1.193266638 down

2,4-diacetamino-2,4,6-triphenoxy-D-mannopyranose 1.071497895 0.281356736 0.492180041 −1.022741941 down

Guanine 1.155758566 0.241141732 0.465095063 −1.104402468 down

Ala-Phe 1.344414419 0.063840035 0.482970486 −1.049993067 down

Nicotinamide riboside (chloride) 1.309922868 0.063146704 0.333891167 −1.582550169 down

(E,Z)-2-Amino-3,14-octadecadien-1-ol 1.924806509 6.39059E-05 0.268566704 −1.896647638 down

Ile-Asp 1.010367737 0.40221139 0.496493079 −1.010154487 down

Bis(2-ethylhexyl) phthalate 1.887840954 0.000315942 0.456019919 −1.132831253 down

1-O-Hexadecyl-2-O-(2E-butenoyl)-sn-glyceryl-3-phosphocholine 1.498387225 0.015862398 0.497110428 −1.008361728 down

1-Oleoyl-2-acetyl-sn-glycerol 1.677918508 0.004816631 0.395767044 −1.337276614 down

5alpha-cholest-8-en-3-one 1.688626191 0.020456378 0.31539651 −1.664761398 down

Docosatrienoic acid 1.779951599 0.007774672 0.331983542 −1.590816375 down

Lagocholic acid 1.825654736 0.001145095 0.48324243 −1.049180963 down

Amastatin 1.319838137 0.460739062 0.439074016 −1.187463935 down

Cidofovir 1.089783659 0.351788917 0.478857045 −1.062333067 down

Macluraxanthone 1.709475948 0.014630029 0.402322996 −1.313573894 down

17-phenoxy trinor Prostaglandin F2 isopropyl ester 1.876280492 0.003048513 0.283684516 −1.817640687 down

Arg Tyr Ser 1.816846267 0.004637158 0.459449778 −1.122020924 down

Asp Ile Leu 1.238714749 0.253675276 0.455604991 −1.134144543 down

Asp-Ile 1.119726645 0.343004074 0.453756913 −1.140008473 down

Dihydro Isorescinnamine 1.889098004 0.001158257 0.263593609 −1.923612705 down

Glu Asn Ile Ile Asp 1.556418266 0.014100853 0.459065114 −1.123229293 down

Glu Glu Met Ile Ala 1.299664555 0.076952867 0.458315081 −1.125588337 down

Hexadecyl Acetyl Glycerol 1.881653456 1.20369E-05 0.425131424 −1.234019195 down

(Continued on following page)
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3.4 Integrated proteomics,
transcriptomics and metabolomics data

Transcriptomics and proteomics data described the

relationship between proteins and genes. The Venn diagram

illustrated that a total of 8 proteins were differentially expressed

at both mRNA and protein levels. The heatmap showed the

correspondence between regulation types of 8 proteins

(Figure 4B).

Comprehensive analysis based on proteomics,

transcriptomics and metabolomics data interpreted

potential correlation between differentially expressed

metabolites and genes. The Enrichment analysis was

performed by mapping differential genes and metabolites to

the KEGG pathway. SLC39A1 caused significant disturbances

in metabolic pathways in renal cancer cells and altered

transcriptional and translational levels of 71 genes

(Supplementary Figure S4). The metabolism of several

substances was remarkably affected: purine metabolism,

pyrimidine metabolism, multiple amino acids metabolism,

lactose metabolism, and free fatty acid metabolism.

Combined data analysis showed that the increased

abundance of SLC39A1 caused significant metabolic

reprogramming.

TABLE 2 (Continued) Identification results of significant differential metabolites in cell samples.

Metabolites VIP p_value FC Log2FC Type

Huratoxin 1.659772823 0.000270397 0.470711454 −1.087085136 down

Lys Ile Val Lys 1.792448631 0.008780319 0.312597122 −1.677623601 down

N-dodecanoyl-L-Homoserine lactone-3-hydrazone-biotin 1.796933647 0.000749497 0.499898179 −1.000293823 down

Neomycin C 1.621473216 0.010855042 0.47575651 −1.071704698 down

Neurosporaxanthin;all-trans-Neurosporaxanthin 1.423578723 0.033931325 0.139068695 −2.846130392 down

Phe Lys Thr Glu 1.362690575 0.031184707 0.391329658 −1.353543642 down

Prephytoene diphosphate 1.930776567 1.06291E-06 0.418528927 −1.256600757 down

R-4-benzyl-3-((R)-3-hydroxy-2,2-dimethyloctanoyl)-5,5-dimethyloxazolidin-2-one 1.418030313 0.026251978 0.437099278 −1.193967099 down

Tyr Glu Gln Asp 1.815469014 4.49847E-05 0.464389266 −1.106593469 down

(6S,7R,8R,11S,12S,15R,16R)-7-(hydroxymethyl)-7,12,16-trimethyl-15-[(2R)-6-methyl-5-
methylideneheptan-2-yl]pentacyclo [9.7.0.01,3.03,8.012,16]octadecan-6-ol

1.220343105 0.030324096 0.204957094 −2.286606167 down

[(2S)-2-pentadecanoyloxy-3-tetradecanoyloxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-
4,7,10,13,16,19-hexaenoate

1.008314167 0.009203128 0.378689054 −1.400914373 down

(2R,3R,4S,5S,6R)-2-[[(3S,4S,4aR,6aR,6bS,8aR,9R,12aS,14aR,14bR)-9-hydroxy-4-(hydroxymethyl)-
4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]
oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

1.229648547 0.025360154 0.097710661 −3.355340208 down

FIGURE 4
Metabolic analysis and Integrated analysis of SLC39A1-Overexpressed OSRC-2 cells. (A) Metabolites cluster analysis based on KEGG
enrichment analysis result. (B) 8 genes have changes at both the transcriptional and protein levels.
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In nucleotide metabolism, significant downregulation of

uridine, UMP, as well as upregulation of 2′-Deoxyinosine were
observed (Figure 5A). Correspondingly, enzymes in

pyrimidine and purine metabolism also changed:

phosphodiesterase 2A (PDE2A), adenylate kinase 6 (AK6),

dihydropyrimidine dehydrogenase (DPYD), Deoxycytidine

kinase (DCK) expressions were decreased, and guanylate

cyclase 1 soluble subunit alpha 1 (GUCY1A1/GCYA1)

increased (Figure 5B). Galactose metabolism was also

transformed, in which lactose and lactulose were reduced

(Figure 5A). Aldoketo reductase family 1 member B

(AKR1B1) and galactose-1-phosphate uridylyltransferase

(GALT) were consumed, galactose mutarotase enzyme

(GALM) and glucose-6-phosphatase (G6PC) were activated

(Figure 5B). In amino acids and peptides metabolism,

SLC39A1 reduced methionine in RCC cells and decreased

cystathionine gamma-lyase (CTH) level (Figure 5A).

SLC39A1 also participated in GSH metabolism, reducing

spermidine production (Figure 5A).

SLC39A1 downregulated CHAC1 (γ-GCTs, the glutathione-

specific degradation enzymes) and isocitrate dehydrogenase-

like protein (IDHP), while promoted N-acetyltransferase 8

(NAT8) (Figure 5B). In lipid metabolism,

SLC39A1 significantly increased free fatty acids (Figure 5A),

FIGURE 5
Integrated analysis result of altered metabolites and genes in metabolism and signal pathways. (A) 8 metabolites were indicated to be
significantly altered and were all downregulated. The Y-axis displays the relative intensity and the X-axis the experimental groups. The upper and
lower horizontal lines represent the maximum andminimum values, the middle lines represent the median, and the dots represent the samples. *p <
0.05, **p < 0.01, ***p < 0.001, as determined by Student’s t-test. (B,C) The heatmap of altered genes in metabolism and signal pathways
triggered by SLC39A1 in OSRC-2 cells. Red indicates upregulated and green downregulated genes.
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and stearoyl-CoA desaturase (SCD) expression level increased

(Figure 5B).

Abnormal metabolic activities were generally accompanied

with dysregulated oncogenic signal pathways (Park et al., 2020).

SLC39A1 had been shown to regulate key genes in signal

transduction pathways closely associated with tumorigenesis

and development, involving PI3K-AKT signal pathway, cAMP

signal pathway, PPAR signal pathway, and ferroptosis. In PI3K-

AKT pathway, SLC39A1 reduced mature T cell proliferation 1

(MTCP1) and downregulated AKT downstream factor: cAMP-

response element binding protein (CREB) and cyclin-dependent

kinase inhibitor 1B (CDN1B), but up-regulated I-kappaB kinase

beta (IKKβ). In cAMP signal pathway, calcium/calmodulin

dependent protein kinase II gamma (CaMK) activity was

activated. Exchange protein directly activated by cAMP (Epac)

and PKA expression were upregulated. In PPAR signal pathway,

fatty acid binding protein (FABP), SCD, and acyl-CoA synthetase

long-chain (ACSL) were upregulated, with lower expression of

angiopoietin like 4 (ANGPTL4), perilipin 2 (PLIN2), and acyl-

CoA oxidase (ACOX). In addition, SLC39A1 also had important

regulation on ferroptosis-related factors: solute carrier family

7 member 11 (SLC7A11), nuclear receptor coactivator 4

(NCOA4), heme oxygenase 1 (HO-1), and ferritin were

decreased, and the expression of achaete-scute family bHLH

transcription factor 4 (ASCL4) and ceruloplasmin (CP) were

activated (Figure 5C).

To obtain a more intuitive demonstration of the association

between differential genes, proteins, and differential metabolites,

a correlation network was portrayed by Cytoscape (Figure 6).

Differential genes and proteins caused significant disturbance in

purine and pyrimidine metabolism, lactose metabolism, and

glutathione and methionine metabolism. Changes in the

mRNA or protein levels of enzymes (such as PDE2A, DPYD,

DCK, AKR1B1, CHAC1, CTH, etc.) triggered alteration in

several metabolites: uridine, deoxyinosine, spermidine,

methionine, lactose, which was consistent with the results above.

4 Discussion

Worldwide, RCC represented the seventh in estimated new

cases and the eighth in estimated death, in all oncological

occurrence (Siegel et al., 2021). SLC39A1 was uncovered to be

low-expressed in a variety of tumors (Golovine et al., 2008;

FIGURE 6
Network diagram of the interaction among differential expressed genes, proteins, and differential metabolites. Diamonds represent differential
genes; circles represent differential proteins; hexagons represent differential metabolites. Realizations represent the interaction between differential
expressed genes and differential metabolites; dashed lines represent the interaction between differential proteins and differential metabolites. Red
indicates genes and proteins involved in lactosemetabolism. Blue indicates purine and pyrimidinemetabolism. Purple indicates glutathione and
methionine metabolism. Green indicates differential expressed genes and proteins involved in the regulation of more than 2 types of metabolites.
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Desouki et al., 2015). Our previous studies found that the

depletion of SLC39A1 promoted tumor proliferation and

invasion in RCC (Dong et al., 2014). However, the underlying

mechanism through which SLC39A1 inhibited tumor

progression remained unclear. In this paper, we performed

comprehensive analysis based on data form transcriptomics,

proteomics and metabolomics and found significant several

altered metabolism and signal transduction pathways in

SLC39A1-overexpressed renal cancer cells. As shown in

Figure 7, SLC39A1 caused significant alteration in metabolism

and signaling pathways in RCC cells.

Unrestricted proliferation was the hallmark of biological

function in tumor cells. Nucleotides are indispensable for cell

proliferation and survival and are required for the biosynthesis of

DNAandRNA, substancemetabolism in cells (DeVitto et al., 2021).

Purine metabolism and pyrimidine metabolism were perturbed in

SLC39A1-overexpressed OSRC-2 cells. In purine metabolism,

SLC39A1 reduced the synthesis of guanine and deoxyinosine. In

terms of mechanism, SLC39A1 downregulated PDE2A to reduce

the conversion of cGMP and cAMP intoGMP andAMP and caused

the upregulation of GCY1A to transform more GTP into cGMP.

GMP was gradually converted to guanine in subsequent enzymatic

reaction. Besides, AK6, in charge of converting AMP to

deoxyinosine, was also significantly downregulated. And

downregulation of uridine, UMP, and dCTP was observed in

pyrimidine metabolism. SLC39A1 deregulated DPYD to promote

the conversion of uracil to dihydrouracil, which increased the

consumption of uracil. Dihydrouracil was gradually turned into

β-alanine. The downregulation of DCK decreased the conversion of

deoxycytidine into dCMP, leading to a decrease in dCTP level. In

brief, we deduced that SLC39A1 impaired DNA and RNA

production in RCC. SLC39A1 inhibited PDE2A to decrease

UMP and subsequent UTP production. Downregulated DPYD

and DCK increased the consumption of uracil and then

diminished the production of dCMP, thereby reducing UTP,

GTP and dCTP production. Deoxyinosine was also declined with

augmented SLC39A1 and was reported to participate in DNA

damage repair (Biswas et al., 2013).

Amino acid Metabolism was also altered:

SLC39A1 decreased methionine, spermidine in renal cancer

FIGURE 7
Schematics illustrating the tumor-suppressive mechanisms of SLC39A1. Ovals represent metabolites, squares represent related enzymes and
regulatory proteins. Red indicates increased levels, green indicates decreased levels, and gray indicates temporarily unknown. Red arrows indicate
activation, green arrows indicate inhibition, and black arrows indicate involved in.
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cell. CTH was downregulated by SLC39A1 and thus less

cystathionine was turned into cysteine, resulting in the less

interconversion between cysteine and methionine. Besides,

SLC39A1 impeded GSH metabolism. The degradation of GSH

starts with its hydrolysis to cysteinyl-glycine and oxoproline by

CHAC1. After, cysteinylglycine was decomposed to produce

cysteine and glycine. 5-Oxoprolinase generated glutamate via

ATP hydrolysis (Traverso et al., 2013). NADPH acted as a

hydrogen donor and promoted the transformation of GSSG

into GSH, maintaining the reduce form of GSH (Kirsch and

De Groot, 2001). SLC39A1 promoted the expression of IDHP,

which converted NADP+ to NADPH, which might drive the

interconversion between GSSG and GSH. Here, we found

SLC39A1 reduced cysteine production by inhibiting CTH,

impeding de novo synthesis of GSH, and upregulated

CHAC1 to fuel the degradation of GSH.

In the classic Leloir pathway, galactose converted into UDP-

glucose through enzymatic reactions. This four-step reactions were

respectively mediated by GALM, galactokinase (GALK), GALT and

UDP-galactose4-epimerase (GALE) (Demirbas et al., 2018).

SLC39A1 induced significant decrease in lactose in RCC cells.

Mechanistically, the downregulation of AKR1B1 brought about

decrease the conversion of galactose into galactitol, raising the

accumulation of galactose. The activation of GALM triggered

lifted α-lactose production, which boosted amino sugar and

nucleotide sugar metabolism. Downregulated GALT limited the

production of UDP-galactose, consequently reducing lactose derived

from UDP-galactose. In addition, SLC39A1 increased lactose

consumption by upregulating G6PC to increase the conversion of

lactose into glucose-6-phosphate (G-6-P), which was proverbially

involved in glycolysis.

PI3K-AKT signal pathway, a classic cancer driver, was often

abnormally activated in renal cell carcinoma (Guo et al., 2015). We

observed that SLC39A1 inhibited PI3K-AKT signal pathway. The

decreased MTCP1 suppressed the activation of AKT and AKT

downstream factors, such as CREB, CDN1B and IKKβ, were also
reduced. CREBwas a transcription factor that largely high-expressed

in RCC tissues. And CREB knock-down displayed inhibition on

tumor proliferation in vitro and on tumor xenograft formation in

vivo (Zhuang et al., 2016; Friedrich et al., 2020). Activated PI3K/

AKT/CREB signal can promote cancer cell tumor proliferation,

invasion, and cell cycle progression in pancreatic and prostate

cancers (Tao et al., 2020; Meng et al., 2021). IKKβ was known as

the key transcription activator of NF-κB and upregulated IKKβ
protein expression is correlated to higher nuclear grade and

significantly shorter survival (Krazinski et al., 2019). In cervical

cancer, the activation of NF-κB by PI3K/AKT/IKKβ signal

promoted the EMT process (Zhang et al., 2020). Besides,

SLC39A1 downregulated GALT and knocking down GALT

simultaneously deregulates multiple players in PI3K-AKT signal

pathway (Tang et al., 2016). The cAMP signal pathway is another

process significantly disturbed by SLC39A1. Besides, we speculated

that cAMP signal was likely to be enhanced. Because

SLC39A1 reduced conversion of cAMP into AMP by

deregulating PDE2A, and upregulated CaMK to increase its

phosphorylation inhibition on this conversion. Correspondingly,

enhanced Epac and PKA levels, two commonly recognized cAMP

receptors (Cheng et al., 2008), were also observed. Epac has

contradictory effects in different cancer types and its function in

renal carcinoma is rarely known (Wehbe et al., 2020). Taken

together, our data suggested that SLC39A1 may suppress tumor

proliferation, migration, and cell cycle by interfering PI3K/AKT and

cAMP/Epac pathway in RCC cells.

Another significant altered pathway was PPAR signal

pathway. We first noticed the high expression of FABP. FABP

could bind to a variety of PPARs to stimulate PPAR signal

pathway (Li et al., 2020). SLC39A1 upregulated FABP, which

might allow more PPAR signal flowing into RCC cells.

SLC39A1 showed differential regulation on PPAR targeted

enzymes involved in lipid metabolism: SCD and ACSL were

upward regulated, which might drive lipogenesis and fatty acid

transport and ACOX was downregulated. Also, ANGPTL4 and

PLIN2 that took part in adipocyte differentiation were

deregulated (Monsalve et al., 2013). The transcriptional

regulation of ANGPTL4 and its resulting expression could be

determined by several transcription factors, including PPARα,
PPARγ, PPAR-β/δ (La Paglia et al., 2017). Renal cell carcinoma

was often characterized by hypoxia and HIF-drived increased

tumor angiogenesis, glycolysis, and aberrant lipid metabolism

(Inoue et al., 2014). In addition to HIF-1α, however,

ANGPTL4 had also been confirmed as a conventional

hypoxia-driven proangiogenic factor in renal cancer cells and

this process could induced by PPAR signal pathway (Le Jan et al.,

2003). Although ANGPTL4 was differentially expressed in both

mRNA and protein levels in integrated analysis result and was

also likely to participate in lipid metabolism (Monsalve et al.,

2013), our present data was not able to prove this linkage.

Overall, we suggested that tumor angiogenesis in renal cancer

cell could be inhibited by SLC39A1 through downregulating

ANGPTL4, and inactivated PPAR signal pathway was the

underlying mechanism.

Ferroptosis referred to an iron-dependent cell death mode

induced by the accumulation of intracellular lipid peroxides,

which was remarkably different from classical apoptosis and

necrosis in mechanism and implications. (Hirschhorn and

Stockwell, 2019). The linkage between GSH and ferroptosis

was inseparable: ferroptosis was mainly caused by lipid

hydroperoxides overload in cellular membrane. GSH reduced

lipid hydrogen peroxides to lipid alcohol by glutathione

peroxidase 4 (GPX4), thereby suppressing ferroptosis

(Koppula et al., 2021). Our data showed that

SLC39A1 targeted serial key factors in ferroptosis.

SLC39A1 downregulated SLC7A11 and raised

ACSL4 expression. SLC7A11 could transfer extracellular

cysteine into cytoplasm to facilitate glutathione synthesis and

promoted the anti-lipid peroxidation effect of GPX4 (Stockwell
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et al., 2017; Koppula et al., 2021). ASCL4 was considered as a

sensitive monitor as well as an important contributor of

ferroptosis and eliminated the inhibition of GPX4 on

ferroptosis in osteosarcoma cells, and overexpression of

ACSL4 in glioma significantly reduced GPX4 level and

contributes to ferroptosis (Yuan et al., 2016; Cheng et al.,

2020). We also found that ferritin and HO-1 were

downregulated by SLC39A1. Ferritin served as major storage

of intracellular iron (Hou et al., 2016). The declining expression

of ferritin upregulated intracellular iron, which triggered

oxidative injury and induced ferroptosis (Dowdle et al., 2014).

HO-1 produced Fe2+ by decomposing heme and was therefore

considered to be an accelerator of ferroptosis. In summary, we

speculated that SLC39A1 inhibited glutathione anabolism and

accelerated its decomposition, resulting in impaired the adaption

to oxidative stress of RCC cells, and promoted ferroptosis by

deregulating the GSH-GPX4 system and altering other key

proteins (such as SLC7A11, ACSL4, HO-1, and ferritin),

ultimately fostering apoptosis in RCC cells.

ROS had long been associated with cancer and an augmented

in various types of tumors (Panieri and Santoro, 2016). Elevated

ROS levels damage DNA, proteins, and lipids to foster

tumorigenesis, but excessive accumulation of ROS induces

apoptosis in cancer cells (Liou and Storz, 2010). The

antioxidant defense system in tumor cells was generally

activated to scavenge superfluous ROS to maintain a certain

level of ROS that promoted tumorigenesis and disease progress

and meanwhile obtained apoptosis resistance (Gorrini et al.,

2013). And GSH was regarded as the most important non-

enzymatic antioxidant and therefore, utilized to attenuate

oxidative stress (Kennedy et al., 2020). Recent study also

demonstrated all types of RCC possess reduced oxidative

phosphorylation capacity and dysregulated respiratory chain

leading to electron leakage and excessive ROS. The level of

GSH in RCC was tremendously increased to counteract the

surge of ROS (Xiao and Meierhofer, 2019). Zn2+ could

prevent cells from metabolic syndrome-associated oxidative

stress (Olechnowicz et al., 2018b). SLC39A1 was essential for

maintaining intracellular Zn2+ level and our data suggested that

GSH biosynthesis was impeded by SLC39A1 in RCC cells. Thus,

SLC39A1 possibly allowed RCC cells to poorer compatibility

with high oxidative stress through regulating Zn2+ level and

suppressing GSH abundance, the underlying mechanism of

which required further research.

In addition, our study has some limitations. Our integrated

analysis identified 8 proteins differentially expressed at both mRNA

and protein levels, but these 8 proteins were not involved in

SLC39A1-induced metabolic changes in RCC cells, which needed

further exploration. Only one RCC cell line was involved in our

research, and the findings of omics analysis and the specific role of

Zn2+ in RCC needed to be proven in future experiments.

5 Conclusion

The present study illustrated that SLC39A1 functioned as a

tumor suppressor in RCC. Integrated transcriptomics,

proteomics and metabolomics data indicated that the anti-

tumor effect might be related to altered purine and

pyrimidine metabolism, glutathione metabolism and

ferroptosis, generation of ROS, intervened PI3K-AKT,

cCAMP-Epac and PPAR signal pathways. However, whether

Zn2+ was an indispensable intermediary in the process of

SLC39A1 inhibiting tumor progression remained to be

explored. Our work drew a comprehensive blueprint for the

underlying mechanism through which SLC39A1 suppresses

renal cell carcinoma progression and provided novel insight

into the development of therapeutic targets and potential

biomarkers for this disease.
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Glossary

ACOX acyl-CoA oxidase

ACSL Acyl-CoA synthetase long-chain

AK6 adenylate kinase 6

AKR1B1 aldoketo reductase family 1 member B

ANGPTL4 angiopoietin like 4

ASCL4 achaete-scute family bHLH transcription factor 4

CaMK calcium/calmodulin dependent protein kinase II gamma

CDN1B cyclin-dependent kinase inhibitor 1B

CHAC1 γ-GCTs the glutathione-specific degradation enzymes

CP ceruloplasmin

CREB cAMP-response element binding protein

C5AR1 completion C5a receiver 1

CTH cystathionine gamma-lyase

DPYD dihydropyrimidine dehydrogenase

Epac Exchange protein directly activated by cAMP

ER endoplasmic reticulum

FA fatty acid

FABP fatty acid binding protein

G-6-P glucose-6-phosphate

G6PC glucose-6-phosphatase

GALE UDP-galactose4-epimerase

GALK galactokinase

GALM galactose mutarotase enzyme

GALT galactose-1-phosphate uridylyltransferase

GPX4 glutathione peroxidase 4

GSH glutamine

GSSG glutathione disulfide

GUCY1A/GCYA guanylate cyclase 1 soluble subunit alpha 1

HO-1 heme oxygenase 1

IDHP isocitrate dehydrogenase-like protein

IKKβ I-kappaB kinase beta

MTCP1 mature T cell proliferation 1

NAT8 N-acetyltransferase 8

NCOA4 nuclear receptor coactivator 4

PDE2A phosphodiesterase 2A

PLIN2 perilipin 2

PPAR peroxisome proliferators-activated receptor

RCC Renal cell carcinoma

ROS reactive oxygen species

SCD stearoyl-CoA desaturase

SLC39A1 solute carrier family 39 member 1

SLC7A11 solute carrier family 7 member 11

TCA cycle tricarboxylic acid cycle
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