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Background: Lung adenocarcinoma (LUAD) is the most common type of lung

cancer with a complex tumor microenvironment. Neddylation, as a type of

post-translational modification, plays a vital role in the development of LUAD.

To date, no study has explored the potential of neddylation-associated genes

for LUAD classification, prognosis prediction, and treatment response

evaluation.

Methods: Seventy-six neddylation-associated prognostic genes were identified

by Univariate Cox analysis. Patients with LUAD were classified into two patterns

based on unsupervised consensus clustering analysis. In addition, a 10-gene

prognostic signature was constructed using LASSO-Cox and a multivariate

stepwise regression approach.

Results: Substantial differences were observed between the two patterns of

LUAD in terms of prognosis. Compared with neddylation cluster2, neddylation

cluster1 exhibited low levels of immune infiltration that promote tumor

progression. Additionally, the neddylation-related risk score correlated with

clinical parameters and it can be a good predictor of patient outcomes, gene

mutation levels, and chemotherapeutic responses.

Conclusion: Neddylation patterns can distinguish tumor microenvironment

and prognosis in patients with LUAD. Prognostic signatures based on

neddylation-associated genes can predict patient outcomes and guide

personalized treatment.
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Introduction

Lung cancer is a malignant tumor with high morbidity and

mortality worldwide (Ferlay et al., 2018; Cao et al., 2020).

Histological subtypes of lung cancer can be classified into

small cell lung cancer (SCLC) and non-small cell lung cancer

(NSCLC). NSCLC can also be divided into lung squamous cell

carcinoma (LUSC), lung adenocarcinoma (LUAD), and lung

large cell carcinoma (Denisenko et al., 2018). Among them,

LUAD is the most common histological subtype and patients

with advanced LUAD often have poor prognoses (Hirsch et al.,

2017). In addition, LUAD exhibits strong heterogeneity due to

the complex tumor microenvironment (TME) and gene

mutations (Wang et al., 2018; Jia et al., 2022). Therefore, early

risk stratification and individualized treatment have a realistic

value for patients with LUAD.

The pathogenesis of LUAD is complex and diverse. In recent

years, the role of post-translational modification (PTM) in LUAD

has been extensively studied (Park et al., 2020; Bajbouj et al., 2021;

De et al., 2021). PTMs can affect the occurrence and development of

LUAD by altering target protein activity, protein stability, protein

interaction, and intracellular distribution (Stram and Payne, 2016).

To date, more than 450 unique protein modifications have been

identified (Chen et al., 2020). Like ubiquitination, neddylation can be

divided into three steps. First, the neddylation E1 activating enzyme

(NAE; a dimer of NAE1 and UBA3) activates the Neural Precursor

Cell Expressed Developmentally Downregulated Protein 8

(NEDD8). The NEDD8 is then transferred to the neddylation

E2 binding enzyme (UBE2M or UBE2F), and finally to the

lysine residues of the target protein in the presence of

neddylation E3 ligase which usually contains the cullin structure

(Pellegrino et al., 2022). PTMs are involved in the activation of

oncogenes, inactivation of tumor suppressor genes, and continuous

activation of associated signaling pathways (Perkins, 2006;Han et al.,

2018; Chen et al., 2020). Additionally, studies also have shown that

many tumor-associated proteins have been reported to be

neddylated, but the specific role of neddylation is unclear (Zhao

et al., 2014).

The development of cancer is not only related to the

characteristics of tumor cells but also linked to the TME.

TME consists mainly of immune cells, such as T cells, B cells,

and NK cells, and stromal cells, such as fibroblasts and

endothelial cells (Domingues et al., 2016). The different

immune cells play varied roles in tumor cell proliferation,

apoptosis, and metastasis. Therefore, the number and

proportion of immune cells in metastatic tissues play an

important role in the classification of tumor subtypes

(Hanahan and Coussens, 2012; Gambardella et al., 2020). For

example, infiltration of CD8+ T cells is often associated with a

positive prognosis, whereas polarization of M2 macrophages is

considered a negative prognostic marker (Petitprez et al., 2020).

Numerous studies show that a wide range of proteins in immune

and tumor cells undergo extensive neddylation, and high

expression levels of many neddylation-associated proteins in

tumors were indicative of poor patient outcomes (Chang

et al., 2012; Li et al., 2013; Zhou L. et al., 2019). Therefore, by

regulating the abundance of immune cells in TME, neddylation

modification may provide new insights into the pathogenesis and

treatment of LUAD.

Materials and methods

Data collection and processing

The LUAD expression profile, clinical information, and

mutation data were downloaded from the TCGA (The Cancer

Genome Atlas) database. After standardization and data collation,

500 tumor samples were eventually obtained from TCGA for further

study. Expression profile and clinical information data from the

GSE72094 dataset were obtained from the Gene Expression

Omnibus (GEO) database. After standardization and data

collation, 398 tumor samples from the GSE72094 dataset were

finally obtained. Neddylation-associated genes were obtained from

the Reactome database (https://reactome.org/). Genetic mutation

data and Copy Number Variation (CNV) data were downloaded

from the TCGA-LUAD. Public databases GeneMANIA (https://

genemania.org/) and STRING (https://cn.string-db.org/) are used

to analyze the protein-protein interactions.

Unsupervised consensus clustering

In this study, a Univariate Cox analysis of neddylation-associated

genes was performed and 76 prognostic genes based on the clinical

information and expression data were finally obtained from the

TCGA database. Unsupervised consensus clustering analysis based

on expression profile data from 76 prognostic genes was carried out

using the R package “ConsensusClusterPlus” (Wilkerson and Hayes,

2010). The optimal clustering number was selected based on the

Cumulative Distribution Curve. Principal Component Analysis

(PCA) further confirmed the validity of clustering. Consensus

clustering of differentially expressed core genes between two

neddylation patterns used the same approach, and two genomic

subtypes were eventually obtained.

Tumor immune microenvironment

In this study, ESTIMATE (Yoshihara et al., 2013), EPIC (Racle

et al., 2017), TIMER (Li et al., 2016), and single-sample Gene Set

Enrichment Analysis (ssGSEA) algorithms (Lin et al., 2021) were

used to determine the TME.TheESTIMATE algorithm evaluated the

ESTIMATE score, immune score, and stromal score, and analyzed

tumor purity. The EPIC algorithm was used to demonstrate the

infiltration abundance of seven immune cell types in the tumor. The
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TIMER algorithm was applied to evaluate the infiltration abundance

of six immune cell types. Additionally, the ssGSEA algorithm

calculated the infiltration abundance of 24 immune cell types

(Bindea et al., 2013).

Functional enrichment analysis and
identification of core gene networks

The gene set variation analysis (GSVA) algorithm was used to

analyze functional differences between two neddylation patterns

(Hanzelmann et al., 2013). Hallmark gene sets were downloaded

from the GSEAwebsite (Liberzon et al., 2015). The enrichment score

of each sample in the gene set was calculated using the R package

“GSVA,” resulting in enrichment score matrix. Mariathasan et al.

(2018) compiled nine tumor-associated biological pathways.

Differential genes between the two neddylation patterns were

obtained using the R package “limma” (Ritchie et al., 2015).

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene

Ontology (GO) databases were analyzed based on differentially

expressed genes (FDR < 0.05, |log2FC| > 1) between the two

patterns (The Gene Ontology, 2019; Kanehisa et al., 2021). KEGG

analysis was performed using the R package “Cluster Profiler”

(version 3.14.3). Metascape website was used to carry out GO

analysis (Zhou Y. et al., 2019). The protein-protein interaction

(PPI) network was constructed using the STRING database and

the network connection type to “physical connection” with a

confidence score of ≥0.4 was set (Szklarczyk et al., 2021). In

addition, to build the network, Cytoscape software was used to

calculate Degree scores and screen for core genes (Degree > 10)

(Shannon et al., 2003).

Construction of neddylation score

In this study, R package “glmnet” was used to perform LASSO-

Cox analysis (10-fold cross-validation). Multivariate stepwise

regression was then performed on 17 genes obtained from

LASSO. Finally, a prognostic signature consisting of 10 genes was

developed. The formula for the signature was computed as follows:

risk score = [Coef(1) × gene Exp(1)] + [Coef(2) × gene Exp(2)] +

. . .. . . + [Coef(i) × gene Exp(i)] (Tibshirani, 1997;Wang et al., 2019).

Prognostic analysis was performed by Kaplan-Meier curve using R

packets “survival” and “survminer.” The R packages “timeROC” and

“survival” were used to assess 1-, 3-, and 5-year survival.

Prediction of chemotherapeutic drug
sensitivity

R package “pRRophetic” was used to predict the efficacy of

chemotherapy drugs (Geeleher et al., 2014). Minimum drug

inhibition concentrations (IC50) were calculated for each

sample based on expression profile data from patients with

LUAD. By comparing chemotherapeutic drug sensitivity

between high- and low-risk groups, better personalization of

LUAD treatment was possible by selecting specific drugs.

Results

Prognostic value and genetic variation of
neddylation-associated genes in lung
adenocarcinoma

Various types of PTMs include hydroxylation, lipidation,

glycosylation, disulfide bond, ubiquitination, methylation,

phosphorylation, acetylation, SUMOylation, lactylation,

neddylation, etc. (Figure 1A). Studies have shown that protein

PTMs play a crucial role in many biological processes in cancer

malignancy. Neddylation is an important PTM, and a reversible

process regulated by NEDD8, neddylation E1 activating enzymes

(NAE1, UBA3), neddylation E2 binding enzymes (UBE2M, UBE2F),

neddylation E3 ligases, de-neddylation proteins, etc. (Figure 1B).

Neddylation affects the stability, conformation, and function of

substrate proteins, which in turn regulate nuclear localization,

intracellular signaling, DNA damage response, cell cycle,

apoptosis, and the TME. Based on the role of neddylation in

tumor progression, the gene set from the Reactome database was

obtained, and neddylation-associated proteins were selected for

further study. Figures 1C,D showed the flowchart of our study in

LUAD. In this study, a Univariate Cox analysis of neddylation-

associated genes was performed and 76 genes with prognostic values

were identified (Figure 2A). To further explore the value of these

76 genes in tumors, theirmutational status in LUADwas analyzed. A

total of 135 samples were found to have mutations in these genes in

500 tumor samples, with an overall incidence of 27%, mainly in the

form of missense mutations and nonsense mutations (Figure 2B). In

addition, CNV analysis of the prognostic genes was also conducted.

CNV amplifications were prevalent in many genes, especially

PMD4 and PMB4, whereas CNV deletions mainly existed in

PMA5, PMD13, and UBE2M (Figure 2C). CNV occurred on

many chromosomes but was mainly concentrated on

chromosomes 1, 2, 3, 7, 11, 12, 14, 15, 17, and 19 (Figure 2D). A

PPI network of neddylation-related prognostic genes was also

constructed. The protein network consisted of seven types of

connections: physical interactions, predicted, co-expression,

pathway, shared protein domains, co-localization, and genetic

interactions. The neddylation-associated genes were found to have

a common interaction and were predicted to play a synergistic role in

tumors. To further explore the function of 76 prognostic genes, an

enrichment analysis was performed usingmetascape (Supplementary

Figures S1A,B). The results showed that these genes play an

important role in biological processes such as neddylation, antigen

processing, protein modification, and negative regulation of the

immune system process.
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Identification of two different molecular
patterns of lung adenocarcinoma based
on neddylation-related genes

Based on consensus clustering, the TCGA obtained LUAD

samples were categorized into two patterns using neddylation-

associated prognostic genes (Figure 3A). The highest stability

between the two patterns existed when k = 2 (Figure 3B).

Principal component analysis (PCA) further validated the

significant differences between the two patterns (Figure 3C).

The two patterns were labeled as neddylation cluster1 and

neddylation cluster2, respectively. The two patterns differed in

clinicopathologic factors in patients with LUAD (Figure 3D).

Cluster1 had more male patients and also more patients

aged ≤65 years compared with cluster2. Considering

pathological stage, cluster1 had more patients with

FIGURE 1
Flow chart of the data analysis. (A) PTMs of proteins. (B) Process of neddylation modification. (C) LUAD classification based on neddylation-
related genes. (D) Prognosis signature based on neddylation-related genes.
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FIGURE 2
Genetic variants in 76 prognostic genes. (A) Univariate Cox analysis identifying 76 prognostic genes. (B) Mutation landscape of prognostic
genes. (C,D) CNV in prognostic genes. (E) PPI network of prognostic genes.
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FIGURE 3
Identification of two patterns associated with neddylation. (A,B) Consensus clustering of 76 genes in LUAD. (C) PCA in two patterns. (D)
Differences in clinical factors between the two patterns. (E) Differences in prognosis between the two patterns. (F,G) Expression of 76 prognostic-
related genes in two patterns.
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FIGURE 4
Two patterns revealed differences in TME and biological function. (A) ESTIMATE score, immune score, stromal score, and tumor purity of the
two patterns. (B) Abundance of infiltration of 24 immune cells calculated by ssGSEA algorithm. (C) Differences in immune infiltration abundance
between different patterns and clinical factors (EPIC, TIMER, ssGSEA algorithm). (D) Differences in expression of immune co-inhibitors between the
two subtypes. (E) Calculation of enrichment scores of nine gene sets using ssGSEA algorithm. (F) Statistical differential pathways obtained by
GSVA algorithm.
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pathological stage III and stage IV tumors compared with

cluster2. Cluster1 also demonstrated a worse prognosis than

cluster2 using patient outcomes (Figure 3E). The expression of

76 prognostic genes between the two patterns was explored. The

vast majority of neddylation-related genes are differentially

expressed in both patterns (Figures 3F,G). Therefore, further

exploring the two patterns of LUAD is of practical significance.

Immune landscape and functional
differences between the two patterns

The immune infiltration abundance of TCGA samples was

calculated using the ESTIMATE algorithm. By comparing the

scores of cluster1 and cluster2, cluster1 was found to have higher

tumor purity but conversely lower ESTIMATE, immune, and

stromal scores (Figure 4A). These results were further validated

by using ssGSEA, TIMER, and EPIC algorithms: results of the

ssGSEA algorithm, which calculated enrichment scores for

24 immune cell types, revealed that cluster1 generally had a

lower abundance of immune cells such as B cells, T cells, CD8+

T cells, cytotoxic cells, dendritic cells (DC), and mast cells

(Figure 4B); the TIMER and EPIC algorithms calculated

enrichment scores for six and seven immune cell types,

respectively, and results from both indicated that cluster1 had

a lower abundance of CD4+ T cells and B cells (Figure 4C). In

short, these four algorithms suggested that cluster1 had lower

levels of immune infiltration and was favorable for tumor escape.

These findings were consistent with the prognostic results

between the two patterns. Besides, immunotherapies targeting

immune co-suppressor molecules have become a very important

topic in the clinical treatment of lung cancer, particularly in

treating adenocarcinoma. The differences in immune checkpoint

expression levels between the two patterns were compared. As

shown in Figure 4D, cluster1 had higher expression levels of

LAG3, PDCD1, CD274, and PDCD1LG2 compared to cluster2,

suggesting that patients in cluster1 may benefit from

immunotherapies. To further investigate the differences in the

functional mechanism between the two patterns, the ssGSEA

method was used to compute nine gene sets reported by

Mariathasan et al. (Angiogenesis, Immune checkpoint, Cell

cycle regulators, Pan F TBRs, EMT1, EMT2, EMT3, Cell

cycle, DNA replication). Results showed that cluster1 had

higher levels of immune checkpoints, cell cycle regulators,

EMT2, cell cycle, and DNA replication (Figure 4E). This

meant that patients with LUAD in cluster1 had higher

expression of immune checkpoints and also enhanced

biological functions associated with cell proliferation and

metastasis. In addition, the GSVA analysis was used to

calculate scores for 50 gene sets from the Hallmark pathway

and ultimately found statistical differences in 37 pathways

between the two patterns (Figure 4F). Notably, cluster1 was

significantly enriched at G2M checkpoints, DNA repair, E2F

targets, MTORC1 signaling, MYC targets, Glycolysis, EMT,

TGF-β signaling, PI3K-AKT-MTOR signaling, and many

other tumor progression–related pathways (Supplementary

Figure S2). Combining the results of ssGSEA and GSVA

algorithms, cluster1 was found to exhibit a pro-tumor

progression pattern in molecular mechanisms, which better

explained the worse prognosis observed in the patients of this

pattern.

Construction of two genomic subtypes
based on differentially expressed genes

Using the R package “limma,” differentially expressed genes

between the two patterns (|log2FC| > 1, FDR < 0.05) were

identified. The red dots on the volcanic map were the

upregulated genes and the blue dots were the downregulated

genes (Figure 5A). Based on differentially expressed genes,

KEGG and GO analyses were performed. Eight pathways

were observed to be enriched by KEGG Figure 5B.

Substantial enrichment of the cell cycle–related pathways was

observed (Supplementary Table S1). Additionally, GO analysis

was performed using metascape and enriched modules were

exhibited in different color regions (Figure 5C). In these

modules, many biological functions such as cell cycle, DNA

replication, and cell cycle checkpoints were found to be involved;

these results were consistent with the KEGG analysis. To further

investigate the core genes that play a central role in these

differentially expressed genes, constructed a core PPI network

was constructed using the STRING database (network type:

physical subnetwork, the minimum required interaction score:

0.4) and Cytoscape software (Cytohubba plugin, Degree > 10).

Eventually, a core network of 62 genes was obtained (Figure 5D).

A Univariate Cox analysis was performed on 62 core genes and

all the core genes were found to be related to prognosis

(Figure 5E). To further investigate the overall role of core

genes, an unsupervised consensus clustering was used to

classify the patients with LUAD obtained from the TCGA.

Notably, patients with LUAD can be classified into two

genomic subtypes, called genesubtype-S1 and genesubtype-S2

(Figures 5F,G). Results from the PCA showed significant

differences between the two genomic subtypes (Figure 5H). It

was observed that the prognosis of patients in genesubtype-S1

was worse (Figure 5I). A Sankey diagram was drawn to better

understand the direct relationship between neddylation patterns

and genomic subtypes and observed that the vast majority of

neddylation cluster1 and a small fraction of neddylation

cluster2 made up genesubtype-S1 (Figure 5J). Whereas the

vast majority of neddylation cluster2 constituted

genesubtype-S2. These results suggested that differential

expressed genes obtained from neddylation patterns can

identify two genomic subtypes with underlying differences in

biological functions.
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FIGURE 5
Identification of neddylation-associated gene subtypes based on differentially expressed genes. (A) Volcano map showed differentially
expressed genes between two patterns (FDR < 0.05, |log2FC| > 1). (B) KEGG enrichment analysis of differentially expressed genes (FDR < 0.05, |
log2FC| > 1). (C) GO enrichment analysis of differentially expressed genes (FDR < 0.05, |log2FC| > 1). (D) Construction of core gene network using
STRING database and cytoscope software. (E) Univariate Cox analysis of core genes. (F,G) Consensus clustering based on core genes. (H) PCA
of gene subtypes. (I) Prognostic differences between two gene subtypes. (J) Sankey diagram based on neddylation patterns, gene subtypes, age,
gender, pathological stage, and survival status.
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FIGURE 6
Construction of prognostic signature. (A,B) LASSO regression analysis based on 76 prognostic genes. (C) Multivariate Cox analysis was
performed on genes obtained from LASSO. (D) The 10 genes that ultimately built the signature. (E) Differences in survival status and expression of
10 genes between high- and low-risk groups. (F)Multivariate Cox analysis of risk score and clinical factors. (G–J) Prognostic analysis of training set,
validation set, whole TCGA Set, GSE72094. (K–N) Time-dependent ROC analysis of the training set, validation set, whole TCGA set, and
GSE72094.
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Construction of neddylation-associated
prognostic signature

Based on the above analyses, we reconfirmed the biological

functions of neddylation-associated genes in LUAD. Therefore,

constructing a neddylation-associated prognostic signature was

relevant for more accurate risk stratification and personalized

treatment. First, conducted a LASSO-Cox regression analysis

was conducted of the 76 prognostic genes to rule out co-

linearity (Figures 6A,B). The obtained genes were then

subjected to Multivariate stepwise regression analysis and

10 genes were ultimately obtained (Figures 6C,D). Based on

the coefficients of these 10 genes, the following formula was

computed: risk score = 0.638868474 * (ASB1 expression) +

(−0.726359916) * (ASB2 expression) + 0.307518379 * (ELOB

expression) + (−0.210560286) * (FBXO44 expression) +

(−0.659933214) * (FBXO9 expression) + 0.344489376 *

(KLHL25 expression) + 0.258048126 * (PSMB8 expression)

+ 0.420743815 * (PSMC6 expression) + (−0.48641054) *

(SENP8 expression) + 0.421992563 * (UBC expression).

Based on this formula, LUAD samples from the training set

were classified into high- and low-risk groups. The heat map

showed the expression of 10 genes in the high- and low-risk

groups and a notably higher death rate was observed in the

high-risk group (Figure 6E). Furthermore, a Multivariate Cox

analysis was performed for patients with LUAD by risk score,

age, gender, and pathological stage. The results showed that risk

score can be an independent prognostic factor (Figure 6F). In

addition, using the same formula, risk scores in the validation

set, the entire TCGA database, and the external validation

dataset GSE72094, were calculated. Prognostic analysis of

four databases was conducted and significantly worse

outcomes in all datasets for the high-risk group were

observed Figures 6G–J. Additionally, a time-dependent

receiver operating characteristic (ROC) analysis was

performed on these four datasets to validate the predictive

efficiency of signatures. The survival rates in the training set

of 1, 3, and 5 years were 0.722, 0.734, and 0.860, respectively

(Figure 6K). The validation sets also showed good predictive

performance (Figures 6L–N). These results confirmed the

accuracy of the 10-gene signature in determining patient risk

stratification and prognosis. Moreover, to better investigate the

relationship between risk scores and clinical parameters, a more

refined examination was conducted. The results showed no

statistically significant difference in risk scores between patients

aged ≥65 years compared to those aged <65 years. However, in

terms of gender, male patients had significantly higher risk

scores than female patients. We also found that patients with

pathological stage III and IV had higher risk scores than

patients with pathological stage I and II (Supplementary

Figures S3A–C). In addition, we performed prognostic

analyses for patients with different clinical parameters.

Excitingly, the results revealed that patients with high-risk

scores in these clinical parameters all had a poorer prognosis

(Supplementary Figures S3D–I).

Predicting immune infiltration, genetic
mutations, and chemotherapeutic drug
efficacy based on the risk score

As discussed earlier, two molecular patterns and two genomic

subtypes associated with neddylation were identified. We further

analyzed the relationship between risk scores and different subtypes.

As shown in Figures 7A,B, neddylation cluster1 and genesubtype-S1

had a higher risk score; these findings were consistent with previous

analysis. After confirming the prognostic efficacy of the signature, we

further explored whether risk score can be used to determine

immune infiltration, gene mutation status, and chemotherapeutic

drug selection in patients with LUAD. The ESTIMATE algorithm

helped identify the high-risk group with higher tumor purity and

lower ESTIMATE, immune, and stromal scores. The high-risk group

exhibited lower levels of immune infiltration (Figures 7C,D). To

validate these results, ssGSEA analysis was performed on the training

set. Interestingly, except for Th2 cells, the majority of immune cells

exhibited a low abundance of immune infiltration (Figures 7E,F).

These results suggested that the high-risk group had a negative TME

that promotes tumor progression. Remarkably, the high-risk group

also displayed notable differences in the extent of mutations

compared to the low-risk group: mutations occurred in 145 of the

150 samples in the high-risk group, versus in 126 of the 150 samples

in the low-risk group. Additionally, heat maps identified the 20 genes

with the highest mutation rates in both groups, and significant

differences were observed in the frequency of mutations in these

genes (Figures 7G,H). Chemotherapeutic drug predictions were also

performed for patients with LUAD in the high- and low-risk groups

to provide options for personalized treatment. The high-risk group

responded better with A.443654, GNF.2, Paclitaxel, Parthenolide,

RO.3306, and Docetaxel, whereas the low-risk group responded

better with ABT.263, AS601245, Axitinib, GDC.0449, MK.2206,

PAC.1 (Figure 7I).

Building a more accurate nomogram that
combines clinical factors with risk score

To improve the accuracy of the predictive effect of the risk score,

the risk score was combined with clinical factors to construct a

nomogram (Figure 8A). By establishing a calibration curve, the

nomogram demonstrated good accuracy in predicting the 1-year,

3-year, and 5-year survival times (Figure 8B). The decision curve

analysis (DCA) and ROC curves for 5-year survival revealed that

nomo-scores and risk scores were better predictors for survival than

in the pathological stage (Figures 8C,D). These findings confirmed

that our signature has good prospects in clinical application.

Additionally, we also constructed nomograms for the validation
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FIGURE 7
Differences in TME, mutation levels, and chemotherapeutic drug sensitivity among high- and low-risk patients. (A) Risk score between the two
different neddylation patterns. (B) Risk score between the two different gene subtypes. (C,D) Tumor purity, estimate score, immune score, and
stromal score between high- and low-risk groups. (E,F) Correlation between risk score and abundance of 24 immune cell types. (G,H) Correlation
between risk score and genetic mutation. (I) Prediction of chemotherapeutic drugs in high- and low-risk groups.
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FIGURE 8
Construction of nomogram based on risk score and clinical factors. (A) A more predictive nomogram. (B) Calibration curve of 1-year, 3-year,
and 5-year survival time. (C) Nomogram’s 5-year survival time ROC curve. (D) Nomogram’s 5-year survival time DCA curve. (E–H) Time-dependent
ROC curves of the training set, validation set, entire TCGA set, and GSE72094 (based on nomo-score). (I–L) Kaplan-Meier analyses of the training set,
validation set, entire TCGA set, and GSE72094 (based on nomo-score).
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set, the entire TCGA dataset, and the external validation set

GSE72094 to further confirm the validity of our nomogram and

validated the prognosis accuracy across the four datasets (Figures

8E–H). The results revealed that the prognosis of patients with

LUAD could be significantly distinguished based on the nomo-score:

patients with a high nomo-score had a worse prognosis. Time-

dependent ROC curves were also used to further validate the

predictive efficiency of the nomogram and find that the nomo-

score has higher AUC values than the risk score (Figures 8I–L).

Taken together, these results further confirmed that risk score can be

used not only as a prognostic factor alone but also in combination

with other clinical factors to substantially improve the accuracy of

prognosis determination in patients with LUAD.

Discussion

Cancer is an extremely complex entity.Many studies have shown

that multiple factors are involved and controlled in tumorigenesis.

Sustained growth signaling, unlimited replication potential,

antiapoptotic factors, acquisition of invasive metastasis,

reprogramming of cell metabolism, and TME are major

hallmarks of cancer malignancy (Hanahan and Weinberg, 2011;

Wong, 2011; Mossmann et al., 2018; Xiao and Yu, 2021; Yin et al.,

2022). However, tumors exhibit extreme heterogeneity, which is

characterized bymutations in genes and alterations in the TME (Paul

et al., 2019; Zhang et al., 2022). Therefore, finely tailored therapeutic

strategies are required for tumor treatment.

Neddylation is a type of protein PTM that increases proteomic

diversity. Increasing evidence suggests that neddylation is aberrantly

activated in a wide range of tumor types, consequently affecting

tumor progression and altering the TME (Xie et al., 2021; Zhou et al.,

2021). Further research on neddylation-related genes is warranted to

provide new treatment strategies for cancer treatment (Zheng et al.,

2021). Lung cancer is one of the leading causes of human death

worldwide and has a high incidence and mortality rate. LUAD is the

most common histological type of lung cancer and has a highly

complex TME. Few studies have been conducted on neddylation

modification in LUAD, andmost of the existing literature focuses on

the mechanisms and effects of one particular gene in the neddylation

modifications (Zhou et al., 2017; Lee et al., 2018). Therefore,

systematically investigating the role of neddylation-associated

genes in predicting the prognosis of tumor progression and TME

is of practical significance. Furthermore, using neddylation-

associated tumor classification and risk stratification, determining

the prognosis of LUAD and providing personalized treatment

options might be possible.

In this study, 76 neddylation-associated prognostic genes in

LUAD were first identified and their mutation frequency and

CNV were analyzed. Based on prognostic genes, patients with

LUAD were successfully classified into two patterns, viz.,

cluster1 and cluster2. Cluster1, when compared with cluster2,

exhibited a higher proportion of patients with pathological stage

III and IV LUAD, thus presenting a more pronounced malignant

state with a worse prognosis. Using four immune infiltrating

algorithms (ESTIMATE, EPIC, ssGSEA, and TIMER), it was

noted that the levels of numerous immune cell types, including

B cells, DC, mast cells, CD4+ T cells, and CD8+ T cells, were

significantly lower in cluster1. Based on these results, we can

conclude that the immune state in cluster1 promotes tumor

progression and tumor escape, whereas, in cluster2, it showed

inhibition of tumor progression. However, high levels of immune

co-inhibitory molecules, such as LAG3, PDCD1, CD274, and

PDCD1LG2, were also expressed in cluster1. This may be

suggestive of a better response to immunotherapy among patients

with LUAD in cluster1 (Schnell et al., 2020). To further investigate

the potential mechanism of action of these two patterns in biological

function, the ssGSEA algorithm was used to analyze the nine gene

sets identified byMariathasan et al. as well as Hallmark’s 50 gene sets

from the GSEA website. The ssGSEA algorithm analysis, and later

confirmed by GSVA, showed that cluster1 demonstrated a tendency

to favor tumor proliferation and metastasis, as evidenced by the

higher enrichment scores for gene sets of cell cycle regulators, cell

cycle, DNA replication, EMT2, immune checkpoints, etc.

Cluster1 pattern shows activity across a wide range of pathways

and demonstrated high enrichment scores for G2Mcheckpoints, E2F

targets, unfolded protein responses, MYC targets, oxidative

photography, mitotic spindle, DNA replay, glycolysis, and other

tumor progression–associated biological functions. Notably, the

cluster1 pattern was significantly enriched in the following

signaling pathways: TNF-α, TGF-β, IL6-JAK-STAT3, PI3K-AKT-
mTOR, and MTORC1. Numerous studies have shown that aberrant

activation of these signaling pathways substantially contributes to

growth, migration, and invasion of tumor cells, thus reshaping the

TME and exhibiting worse prognosis (Kim et al., 2017; Johnson et al.,

2018; Saito et al., 2018; Cruceriu et al., 2020; Iksen et al., 2021).

Additionally, cluster1 also demonstrated notably increased

adipogenesis, fatty acid metabolism, and cholesterol homeostasis;

abnormal levels of metabolism play an important role in tumor

progression as has been confirmed by previous studies (Li andZhang,

2016; Ghaben and Scherer, 2019; Liu et al., 2021).

As there were differences in biological functions across the two

neddylation patterns, differential expression analysis was performed

which helped to further identify cell cycle-related genes that may play

a central role in tumor progression and metastasis. Building and

analysis of the core network helped to identify the 62 most critical

genes. Additionally, through an unsupervised consensus clustering

approach, LUAD was subdivided into two genomic subtypes, viz.,

genesubtype-S1 and genesubtype-S2. Genesubtype-S1 demonstrated

a worse prognosis compared with genesubtype-S2, again

demonstrating the importance of neddylation-associated genes in

classifying patients with LUAD. Furthermore, for accurate risk

stratification of patients with LUAD, a neddylation-associated

prognostic signature was constructed. The signature was highly

predictive: considerably worse outcomes were observed in patients

with a high-risk score in the training set, validation set, whole TCGA
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set, and GSE72094. The ROC analysis also showed high predictive

accuracy. Notably, most immune cell types had low infiltration

abundance in patients with LUAD with high-risk scores,

suggesting tumorigenesis and tumor progression were favored in

these patients. Genetic mutation analysis revealed that patients with

high-risk scores had higher mutation frequency versus those with the

low-risk score. Increased genetic mutations may lead to cellular

physiological dysfunction and enhanced tumor metastasis. Finally,

the sensitivity to chemotherapeutic agents was analyzed and

appropriate chemotherapeutic agents were screened for both high-

and low-risk groups of patients with LUAD to provide for a more

refined treatment strategy.

Many LUAD-associated prognostic models have been made

available previously; for example, an immune-related prognostic

signature constructed by Yi et al. (2021), a ferroptosis-associated

prognostic signature introduced by Wang et al. (2021), an

autophagy-related prognostic signature developed by Li et al.

(2022), and an inflammatory-associated prognostic signature

identified by Zhai et al. (2021) have identified. Compared with

these models, our study reported a prognostic model based on

neddylation-associated genes which shows promising prognostic

accuracy. To our knowledge, this study is the first of its kind. The

10-gene prognostic model constructed in this study aids in

determining prognosis. Risk-score outperforms pathological

stage in terms of predicting prognosis accurately. As an

independent prognostic factor and clinically useful indicator, a

risk score can be combined with other clinical factors to construct

nomogram with increased accuracy and potential clinical

application. However, this study has limitations. Our analysis

was based primarily on TCGA and GEO databases, and further

validation of the accuracy of our model in larger sample sizes

observed in clinical studies would be required.

Conclusion

In summary, this study aimed to classify patients with LUAD

into two patterns based on their neddylation-associated prognostic

genes which potentially indicates the nature of TME. Significant

differences were observed between the two patterns in the

activation of the signaling pathways associated with tumor

proliferation and metastasis. Prognostic signatures based on

neddylation-related genes can help stratify patients with LUAD,

guide personalized treatment, and provide a preliminary

exploration for clinical use.
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