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Single cell ATAC-seq (scATAC-seq) has become the most widely used method

for profiling open chromatin landscape of heterogeneous cell populations at a

single-cell resolution. Although numerous software tools and pipelines have

been developed, an easy-to-use, scalable, reproducible, and comprehensive

pipeline for scATAC-seq data analyses is still lacking. To fill this gap, we

developed scATACpipe, a Nextflow pipeline, for performing comprehensive

analyses of scATAC-seq data including extensive quality assessment,

preprocessing, dimension reduction, clustering, peak calling, differential

accessibility inference, integration with scRNA-seq data, transcription factor

activity and footprinting analysis, co-accessibility inference, and cell trajectory

prediction. scATACpipe enables users to perform the end-to-end analysis of

scATAC-seq data with three sub-workflow options for preprocessing that

leverage 10x Genomics Cell Ranger ATAC software, the ultra-fast Chromap

procedures, and a set of custom scripts implementing current best practices for

scATAC-seq data preprocessing. The pipeline extends the R package ArchR for

downstream analysis with added support to any eukaryotic species with an

annotated reference genome. Importantly, scATACpipe generates an all-in-one

HTML report for the entire analysis and outputs cluster-specific BAM, BED, and

BigWig files for visualization in a genome browser. scATACpipe eliminates the

need for users to chain different tools together and facilitates reproducible and

comprehensive analyses of scATAC-seq data from raw reads to various

biological insights with minimal changes of configuration settings for

different computing environments or species. By applying it to public

datasets, we illustrated the utility, flexibility, versatility, and reliability of our

pipeline, and demonstrated that our scATACpipe outperforms other workflows.
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1 Introduction

Cell heterogeneity is a universal phenomenon in living

organisms (Altschuler and Wu, 2010; Martins and Locke,

2015; Goldman et al., 2019) and even in seemingly pure cell

lines cultured in vitro (Hastings and Franks, 1983; Toyooka et al.,

2008; Sato et al., 2016; SoRelle et al., 2021), intrinsically

contributing to tissue diversity and functionality. As cells are

the fundamental building blocks of multicellular organisms, it is

crucial to understand the mechanisms that control cell

heterogeneity. Besides diverse and delicate internal and

external cues, cell heterogeneity is largely controlled by

differences in gene expression, which are orchestrated by

intricate interactions among diverse trans-acting factors,

including transcription factors and chromatin remodelers, and

cis-regulatory elements (CREs), such as promoters, enhancers,

and insulators, which are interspersed throughout the genome

(Carter and Zhao, 2021). Large-scale studies have shown that a

majority of such functional CREs are located in open chromatin

regions, which are nucleosome-depleted and thus accessible to

trans-acting factors (The ENCODE Consortium, 2019). Single

cell ATAC-seq (scATAC-seq) (Buenrostro et al., 2015;

Cusanovich et al., 2015), a recent innovative combination of

the ATAC-seq (Assay for Transposase-Accessible Chromatin

using sequencing) method (Buenrostro et al., 2013) and single

cell technologies (Li and Humphreys, 2021), is currently the most

widely used approach for profiling the genome-wide landscape of

open chromatin regions at the single-cell level. An in-depth

analysis of scATAC-seq data can reveal distinct cell

populations, roles of key transcription factor, gene regulatory

programs underlying cell heterogeneity, and trajectories of cell

lineage differentiation (Baek and Lee, 2020; Granja et al., 2021).

So far, scATAC-seq has been used for investigating epigenetic

heterogeneity in complex tissues during normal development

and diseases, such as an array of adult tissues (Cusanovich et al.,

2018; Liu et al., 2019; Zhang K. et al., 2021; Chen et al., 2021; Fang

et al., 2021), developing tissues and embryos (Preissl et al., 2018;

Pijuan-Sala et al., 2020), immune cell development (Buenrostro

et al., 2018; Satpathy et al., 2019), spermatogenesis (Wu et al.,

2021), and tumor progression (LaFave et al., 2020; Taavitsainen

et al., 2021).

Over the past 6 years, different scATAC-seq technologies

have been developed with various throughput, including

nanowell-based (TaKaRa ICELL8 system) (Mezger et al.,

2018), circuit microfluidics-based (Fluidigm C1 system)

(Buenrostro et al., 2015), droplet microfluidics-based (10x

Genomics Chromium system) (Zheng et al., 2017), split-pool

combinatorial indexing-based (Cusanovich et al., 2015), and

more recent droplet-based combinatorial indexing ATAC-seq

technologies (Lareau et al., 2019). However, data generated by all

these different technologies are intrinsically very noisy, sparse,

and high dimensional (Chen et al., 2019), which makes it

challenging to obtain biological insights from the raw

sequencing data (Chen et al., 2019; Fang et al., 2021). To date,

more than a dozen of software tools, such as ArchR (Granja et al.,

2021), SnapATAC (Fang et al., 2021), and Signac (Stuart et al.,

2020), and a few pipelines, such as scATAC-pro (Yu et al., 2020)

and MAESTRO (Wang et al., 2020), have been adopted or

specifically developed for scATAC-seq data analyses. Some of

the tools have been benchmarked (Chen et al., 2019) and some

best practices have been established (Chen et al., 2019; Baek and

Lee, 2020; Yu et al., 2020). In general, each tool has a subset of

functionalities, and a chain of tools are needed for a

comprehensive analysis of the scATAC-seq data. We

summarized the properties of existing tools in Supplementary

Table S1. In short, only workflow-based approaches support end-

to-end analysis. However, none of them can handle large datasets

with millions of cells or support data analysis for species other

than the human and the mouse. Thus, what is still lacking is easy-

to-use, reliable, reproducible, and comprehensive pipelines that

integrate all best practices and functionalities.

To fill this gap, we developed a scalable and robust pipeline

called scATACpipe (https://github.com/hukai916/scATACpipe)

for analyzing scATAC-seq data with a comprehensive set of

functionalities including raw sequencing data quality control

(QC), adaptor trimming, barcode correction, debarcoding,

read alignment, alignment file manipulation, global and cell-

level post-alignment QC and filtering, annotation file

preparation, feature-by-cell matrix formation, batch

correction, dimension reduction, visualization, clustering,

integration with scRNA-seq data, cell identity annotation,

differential accessibility analysis, transcription factor activity

inference and footprinting analysis, gene activity prediction,

co-accessibility inference, and cellular trajectory analysis.

scATACpipe can be easily adapted to data generated on most

single-cell platforms. The pipeline is powered by a state-of-art

workflow management engine, Nextflow (Di Tommaso et al.,

2017), making it easy to be deployed to a variety of computing

environments. In short, scATACpipe allows reproducible and

comprehensive analysis of scATAC-seq data from raw reads to

various biological insights. In this paper, we demonstrate the

application of scATACpipe using public scATAC-seq datasets

and its superior performance by comparing it with other two

major pipelines for scATAC-seq data analysis.

2 Methods and materials

2.1 Implementation

Powered by Nextflow, which was developed with a strong

focus on portability, reproducibility, scalability, and usability (Di

Tommaso et al., 2017), scATACpipe integrates many carefully

selected open-source software tools and custom scripts written in

R, Python, or Bash for a comprehensive analysis of scATAC-seq

data with up to millions of cells. Detailed information about the
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software adopted in the customized preprocessing workflow is

shown in Supplementary Table S2. In accordance with the best

practices of Nextflow, individual major processes focusing on

specific tasks are modularized in scATACpipe. While the custom

scripts are available as built-in workflow components, all third-

party software dependencies are built into individual Docker

images hosted in the Docker Hub (Merkel, 2014; Kurtzer et al.,

2017), and these Docker images can be automatically converted

into Singularity images if Singularity is set as the execution

environment. With minimal modifications of the

configuration files and/or command-line parameter settings,

the pipeline can be run on a local computer with a Unix-like

OS, such as Linux and Mac OS, a high-performance computing

cluster, or a cloud computing environment. Users can find

detailed instructions for setting up the running environment

in the usage documentation (https://github.com/hukai916/

scATACpipe/blob/main/docs/usage.md#custom-configuration).

To facilitate the preparation of the configuration file, we have also

implemented a web application (https://mccb.umassmed.edu/

scATACpipe/ConfigGenerator/index.html) for users to

interactively set parameters for running the pipeline in

different computing environments. Users can also download

the application (https://github.com/hukai916/

scATACpipe#web-gui) and run it locally.

ScATACpipe consists of two major groups of functional

modules, one for preprocessing scATAC-seq data from fastq

files to fragment files, and the other for downstream analysis

(Figure 1). Currently, scATACpipe provides three options for

data preprocessing: a default customized preprocessing sub-

workflow, the 10x Genomics Cell Ranger ATAC software-

based preprocessing sub-workflow, and the Chromap-based

(Zhang H. et al., 2021) preprocessing sub-workflow. The

pipeline uses mainly the R package ArchR (Granja et al.,

2021) for downstream analysis, which is the only tool that can

FIGURE 1
Schematic diagram of the scATACpipe workflow. The scATACpipe workflow is mainly composed of modules for the preprocessing sub-
workflow and the downstream analysis sub-workflow. The preprocessing sub-workflow offers three options: the 10x Genomics Cell Ranger ATAC
software-based preprocessing, the ultra-fast Chromap-based preprocessing, and the default preprocessing which implements the current best
practices for scATAC-seq data analysis. The preprocessing sub-workflow takes sequencing data (.fastq.gz files), a reference genome sequence
(.fasta file), and a genome annotation file (.gtf file) as inputs. The last two files can be automatically downloaded from the UCSC or Ensembl Genome
Browser. Alternatively, users can specify a genome index compatible with the mapper of the desired preprocessing option. The fragment file
generated from the preprocessing sub-workflow is passed along with an optional genome blacklist file and other custom inputs to the downstream
analysis sub-workflow for core analyses, including batch correction, clustering, integration with scRNA-seq data, cluster annotation, peak calling,
marker gene andmarker peak identification, motif enrichment and deviation analysis, footprinting analysis, integrated analysis, and trajectory analysis
using mainly the ArchR package. The alignment file (.bam) and fragment file (.tsv.gz) from the preprocessing sub-workflow are converted into
cluster-specific BAM, BED, and/or BigWig files for visualization in genome browsers. An interactive HTML report is generated at the end with all
analytic plots from the downstream analyses, and QC summaries from the default preprocessing sub-workflow if chosen.
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handle scATAC-seq data of millions of cells. Importantly, with

the help of our custom scripts, scATACpipe can process

scATAC-seq data from any eukaryotic species with an

annotated reference genome though ArchR currently only

supports four genome assemblies (human hg19 and hg38,

mouse mm9 and mm10) natively. In addition, a

comprehensive HTML report for both default preprocessing

and the entire downstream analysis is provided for easy

navigation and visualization. Furthermore, cluster-specific

BED, BAM and BigWig files are generated for visualization in

genome browsers.

Users can start their analyses by providing a sample sheet in

the CSV format, which specifies sample names, absolute paths to

fastq files of paired-end reads for genomic DNA inserts and cell

barcodes, and choosing one of the three preprocessing sub-

workflows. Subsequently, the downstream analysis is

performed using the ArchR package-based sub-workflow.

Alternatively, users can directly start the downstream analysis

with bgzip-compressed fragment files. With our pipeline, users

can easily rerun part of the analysis with fine-tuned parameters

by setting the command line option -resume. With this option,

only modules affected by updated parameters are rerun. As a

result, the pipeline can be efficiently executed multiple times to

achieve desired outcomes.

2.2 Description of scATACpipe modules

Each major task in scATACpipe has been modularized in

accordance with the best practices suggested by the Nextflow

community. This resulted in 89 individual modules that are

distributed across six sub-workflows: three for preprocessing,

one for downstream analysis, and two for input file validation.

The name, incorporated software, functionality, and Docker

image of each module are listed in Supplementary Table S2.

Detailed description of each module is available in the

Supplementary Methods (Supplementary File S1). To help

users write their Methods section, a template is provided at

https://github.com/hukai916/scATACpipe/blob/main/docs/

template_of_method.docx including citations to all incorporated

tools.

2.3 Case study

To demonstrate the functionality and reliability of our

pipeline, we applied our pipeline to a public human scATAC-

seq dataset with matched scRNA-seq data, and a plant scATAC-

seq dataset without matched scRNA-seq data (Farmer et al.,

2021). For brevity, here we only present the results from

analyzing the human scATAC-seq data, while analysis results

of the plant data are available as part of the online pipeline

documentation (https://github.com/hukai916/scATACpipe#an-

example-using-plant-genome-without-matched-scrna-seq-

data).

2.3.1 scRNA-seq data analysis
Five scRNA-seq datasets (Supplementary Table S3) of

human peripheral blood mononuclear cells (PBMCs)

generated by 10x Genomics were analyzed using the 10x

Genomics Cell Ranger software (version 6.0.0, https://github.

com/10Xgenomics/cellranger) and the Seurat (version 4.0.2)

package (Hao et al., 2021). Briefly, using cellranger count with

default settings, the scRNA-seq data was mapped to the human

reference genome GRCh38 (Ensembl 98) (10x Genomics genome

index, 2020-A released on July 7, 2020) and per-cell gene

expression was quantified with the human GTF file

(GENECODE release 32). A SoupChannel object for each

sample was created from the 10x Genomics Cell Ranger

output directory “outs” and ambient RNA contamination of

each cell was determined and removed using SoupX (version

1.5.2) (Young and Behjati, 2020). A Seurat object was created by

combining the ambient RNA-adjusted count matrices of the five

samples. Subsequently, cells with fewer than 200 genes detected,

cells with more than 12.5% of read counts from mitochondrial

genes, and cells with fewer than 5% of read counts from

ribosomal genes were excluded. Additionally, genes with

detected expression in fewer than 0.1% of cells were removed.

The Seurat object was then split into five Seurat objects by sample

identities. Within each Seurat object, the ambient RNA-adjusted

gene-by-cell matrix was processed using the Seurat package as

follows. First, the matrix was log-normalized with the

NormalizeData function and top 2,000 highly variable genes

(HVGs) were identified using the FindVariableFeatures function.

Then the expression of those HVGs was scaled by regressing out

biases caused by cell-to-cell variations in the number of detected

genes and percentage of read counts for mitochondrial genes

using the ScaleData function. Dimension reduction was

performed on those scaled expression data of those HVGs

using the RunPCA function. UMAP embedding was

performed with the top principal components as determined

by the elbow method. Subsequently, doublets were determined

and removed using the doubletFinder_v3 function from the

DoubletFinder package (version 2.0.3) (McGinnis et al., 2019).

Each of the doublets-removed gene-by-cell matrices was re-

normalized and top 2000 HVGs were determined again for

each Seurat object as above. Common HVGs across the five

datasets were identified using the SelectIntegrationFeatures

function and integration anchors were determined with the

FindIntegrationAnchors functions using the Reciprocal PCA

method. Next, the five datasets were integrated using the

IntegrateData function. The integrated Seurat object

underwent scaling, dimension reduction and UMAP

embedding as above. A graph was constructed based on

shared nearest neighbors of each cell in the integrated object

using the FindNeighbors function. Cells represented by the nodes
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in the graph were clustered using the FindClusters function with

a resolution of 0.7. Inference of cell types of individual cells were

performed with bulk expression profiles of 29 purified human

immune cell types (Monaco et al., 2019) as reference using the

SingleR package (Aran et al., 2019). The cluster annotation was

verified with knownmarker genes specific to each type of PBMCs

(Zheng et al., 2017; Zhu et al., 2020; Cao et al., 2021; Liu et al.,

2021; Waickman et al., 2021; Wang et al., 2021). The Seurat

object was converted into a SummarizedExperiment object,

which was used for integration with the human PBMC

scATAC-seq data via scATACpipe. The Seurat object was

slightly modified to meet the specific requirements of

scATAC-pro for label transfer and MAESTRO for integration

analysis. Note that tools for analyzing scRNA-seq data are not

included in scATACpipe. Scripts for the scRNA-seq data analysis

are available at GitHub (https://github.com/haibol2016/PBMC_

scRNAseq_analysis).

2.3.2 scATAC-seq data analysis
A human PBMC scATAC-seq dataset consisting of eight

libraries generated by 10x Genomics (Supplementary Table S3)

was analyzed using our scATACpipe. The pipeline was executed

three times for comparisons, each using one of the three

preprocessing sub-workflows and the same downstream

analysis sub-workflow. Resource usage and time to run the

pipeline for this case study can be found at GitHub (https://

github.com/hukai916/scATACpipe#pipeline-info). Briefly, the

fasta sequence file (Ensembl release 98) and GTF annotation

file (GENCODE release 32) for the primary assembly of the

human reference genome GRCh38 were manually downloaded

from the Ensembl Genome Browser and GENCODE,

respectively, to match those used for the scRNA-seq data

analysis. The default module configuration (located under the

directory, conf/modules. config) was modified by supplying the

marker_genes parameter with a set of known marker genes of

different types of human PBMCs (Zheng et al., 2017; Zhu et al.,

2020; Cao et al., 2021; Liu et al., 2021; Waickman et al., 2021;

Wang et al., 2021). An initial analysis of the scATAC-seq data

was performed with paths to the reference genome sequence file

and the GTF file being specified via Nextflow’s command-line

parameters and the modified configuration file.

The HTML report from the initial analysis was examined to

identify problematic libraries, low-quality cells, and artificial

clusters. Specifically, the FastQC section was checked to

identify libraries of poor sequencing quality; the Qualimap

section was checked to identify libraries of poor alignment

quality; the barcode correction section was checked to identify

problematic libraries; the bivariate scattering plots and ridge

plots were examined to determine the optimal cutoffs for cell

filtering; the fragment size distribution per library was checked

for poor-quality libraries; the UMAP plots showing doublet

enrichment per library was checked to identify optimal

doublet filtering parameters; the UMAP and tSNE plots were

checked to optimize the parameter of clustering resolution; the

heatmaps showing the cluster-sample confusion matrix and

marker genes were checked to identify outlier libraries and

artificial clusters. Consequently, the module configuration file

was updated so that problematic libraries (PBMC_10K_C and

PBMC_10K_X), and cells of low-quality (cells with unique

nuclear fragment counts <3,000 or TSS enrichment

scores <10) or forming artificial clusters were excluded from

further analyses. The scATAC-seq data was re-analyzed with the

updated configuration files by resuming the previous run. As

such, a few rounds of exploratory downstream analyses were

conducted with the module configuration file being updated

according to the results of a previous run by resuming the

latest run of the pipeline. A final clustering was performed

with a resolution of 0.7. Unconstrained integration of the

scATAC-seq data with the matched scRNA-seq data were

performed with the SummarizedExperiment object for the

scRNA-seq data being specified in the module configuration

file. As a result of the unconstrained integration, the clusters of

scATAC-seq data were preliminarily annotated with cell types.

To perform the constrained integration, we added to the module

configuration file the preliminary clustering information for

T cells, NK cells, and that for other cell types for the

scATAC-seq data. Constrained integration was performed

with the updated configuration file by resuming the pipeline.

As a result of the constrained integration, the cell types were

updated for the clusters of scATAC-seq data with added gene

expression information from the scRNA-seq data.

Without further modification of the module configuration

file, the following analyses were subsequently performed by the

pipeline. Pseudo-bulk replicates were generated based on the

cluster assignments and a set of reproducible peaks was identified

from the pseudo-bulk replicates. A PeakMatrix was then added to

the ArchR project and marker peaks were identified for each

cluster. Motif enrichment, motif deviation, and footprinting

analyses were performed for cluster-specific marker peaks.

Integrative analyses, including peak co-accessibility analysis,

peaks-to-gene linkage analysis, and positive TF regulator

analysis, were carried out to identify potential open chromatin

interaction, potential cis-regulatory elements, and positive TF

regulators in each cluster. The final pipeline configuration files

used for the scATAC-seq data analysis are available at GitHub

(https://github.com/hukai916/scATACpipe/tree/main#an-example-

using-human-genome-with-matched-scrna-seq-data).

2.4 Comparison of scATACpipe with
existing scATAC-seq data analysis
pipelines

To demonstrate the unique merits of our scATACpipe, we

compared its performance with that of two major pipelines for

scATAC-seq data analysis, scATAC-pro (v1.5.0) (Yu et al., 2020)
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and MAESTRO (v1.5.1) (Wang et al., 2020). The same human

PBMC scATAC-seq data mentioned in the case study was used

for this purpose. Whenever possible, the same software tools and

parameters were applied to the three comparative analyses that

were executed on the same high-performance computing

clusters. Parameter settings and analysis scripts for running

scATAC-pro and MAESTO are available in Supplementary

File S2, S3, respectively. The metrics we considered were ease

and flexibility of parameter configuration, usage of computing

resources, completeness of functionalities, and biological

relevance of final analysis outcomes.

We carried out all but footprinting analysis of the scATAC-

seq data with the debugged and modified scATAC-pro pipeline.

The reasons that we had to modify the scripts are as follows: 1)

parameters for setting memory and threads are hardcoded with

improper defaults in multiple modules; 2) the downstream

modules for differential accessibility analysis, GO term

enrichement analysis, and footprinting analysis failed due to

intrinsic errors.

MAESTRO (Wang et al., 2020) was applied to analyzing

both the human PBMC scATAC-seq data and the matched

scRNA-seq data, and integrating them together. Neverthless,

MAESTRO cannot properly handle multi-sample experiments

with batch effects for either scRNA-seq or scATAC-seq data.

To facilitate comparisons of the results generated from

different pipelines, we modified the Seurat object from the

analysis of scRNA-seq data for scATACpipe integration

analysis (see Section 2.3.1) in accordance with the

MAESTRO requirements for integration.

3 Results

3.1 Identification and characterization of
cell type-specific open chromatin
landscape in human PBMCs using the
scATACpipe

To facilitate comprehensive and reproducible analysis of

the most popular 10x Genomics scATAC data, we developed a

Nextflow pipeline, scATACpipe (Figure 1). As a

demonstration, we analyzed one human PBMC scATAC-

seq dataset from eight libraries generated by 10x Genomics,

using our scATApipe. We validated all preprocessing sub-

workflows and the common downstream analysis sub-

workflow. The three different preprocessing sub-workflows

produced largely similar fragment files (Supplementary Figure

S1) and cell barcodes (Supplementary Figure S2), from which

the common downstream analysis sub-workflow derived

consistent cell clusters (Supplementary Figure S3). For

simplicity, we mainly showed results from the default

preprocessing and its downstream analysis in the main text,

unless otherwise stated.

For any high-throughput sequencing data, library-level QC is

of general importance for assessing the overall sequencing quality

and library quality. Quality checking of the raw sequencing data

showed that all scATAC-seq data from the eight libraries had

high sequencing quality, although two of the libraries constructed

from only 500 and 1,000 nuclei had high percentages of over-

represented sequences. Additional support for high quality of the

libraries are that adaptor content was low (~2%) in all libraries

and only a small percentage of barcodes needed correcting.

For single cell sequencing data, QC at the single-cell level is

essential to exclude low-quality cells for further analyses. Single

cell QC showed that almost all cells in different libraries were of

high quality, i.e., TSS enrichment score >4 and unique fragment

count > 103, although all had a wide range of unique fragment

counts (103–105) (Figures 2A–F,H, Supplementary Figure S1, S4)

and a relative broad distribution of TSS enrichment scores

(Figures 2A–G, Supplementary Figure S1S4). Relationship

between TSS enrichment scores and the number of unique

fragments in individual cells for each library are shown in

Figures 2A–F, Supplementary Figure S1S4. All libraries had

similar distributions of insert sizes with expected laddering,

periodic patterns (Figure 2I, Supplementary Figure S1S4) and

insertion profiles (Figure 2J) around TSSs, indicating they were of

high quality ATAC-seq libraries. However, after an initial

analysis using the scATACpipe with the 10x Genomics Cell

Ranger ATAC-based preprocessing sub-workflow, we observed

that cells in 11 of the 25 clusters were predominantly from two

(PBMC_10K_C and PBMC_10K_X) of the eight libraries, while

cells in the other 14 clusters had similar representation across all

the eight libraries (Supplementary Figure S5). These results

suggest that those two libraries were different from the rest

and the batch effects could not be completely corrected by

Harmony (Zheng et al., 2017). Therefore, those two outlier

libraries were excluded from analyses by the other two

preprocessing sub-workflows and all downstream analyses.

We performed dimension reduction, batch correction, and

clustering analyses of data from the remaining six libraries, and

identified similar numbers of clusters and cluster-specific

marker genes using the three different preprocessing sub-

workflows. Specifically, we identified 18 (Supplementary

Figure S5), 17 (data not shown), and 16 (Figure 2L) clusters

from fragment files generated by the 10x Genomics Cell Ranger

ATAC software-based preprocessing sub-workflow, the

Chromap-based preprocessing sub-workflow, and the default

preprocessing sub-workflow, respectively. Supplementary

Figure S5 shows that all clusters except C10 and C15,

derived from fragment files via 10x Genomics ATAC

software-based preprocessing sub-workflow, were well

represented by cells from each of the six libraries. Similarly,

we found one and two clusters, not well represented by cells

from each library, among clusters derived from the default

preprocessing sub-workflow and the Chromap-based

preprocessing sub-workflow, respectively. Those clusters not
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well represented by cells from every individual library were

most likely technical artefacts, possibly formed by unremoved

doublets. This observation is further supported by cluster-

specific marker gene analysis, which revealed atypical

clusters with noisy and weak patterns of marker genes in a

gene heatmap (e.g. cluster C9 in Figure 2M). After excluding

those atypical clusters, we identified 15 highly reproducible

clusters by each of three preprocessing sub-workflows. The

marker gene analysis based on the GeneScoreMatrix identified

8,668 cluster-specific marker genes, including many known cell

type-specific marker genes, such as CD79A, CD14, and CD8A

(Figure 3A).

To enhance the analysis of the scATAC-seq data, we

performed an integrated analysis with matched PBMC

scRNA-seq data. Cell clusters identified from scRNA-seq data

were annotated by using a correlation-based method (see Section

2.3.1) (Supplementary Figure S6). After the initial unconstrained

integration and the subsequent constrained integration,

FIGURE 2
Cell- and library-level QC of the human PBMC scATAC-seq data. Fragment files were generated for the six samples (outliers excluded) by the
default preprocessing sub-workflow, and analyzed by the common ArchR-based downstream analysis sub-workflow. (A–F) Scatter plots showing
bivariate distributions of TSS enrichment scores and log10 (unique fragments) of individual cells in each of the six libraries. (G,H) Ridge plots showing
distributions of TSS enrichment scores and log10 (unique fragments) of individual cells per library, respectively. (I) Density plots showing insert
size distributions per library. (J)Normalized insertion profiles along ±2-kb regions flanking TSSs. (K)Clustered heatmap showing proportions of cells
per cluster from each library, with each row summing up to 1. (L) UMAP plot showing 16 clusters identified from the scATAC-seq data. (M) Heatmap
showing cluster-specific marker genes across 16 clusters. Noticeably, cluster C9 has a noisy, weak pattern of marker genes, which suggests that it is
very likely formed by doublets.
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11,022 marker genes from the GeneIntegrationMatrix

(Figure 3B) were identified in the 15 clusters. As expected,

integration with the scRNA-seq data resulted in more marker

genes identified from the scATAC-seq data. The annotation

labels of scATAC-seq cell clusters were deduced from those of

the matched scRNA-seq cell clusters (Figure 4A), resulting in

13 annotated cell clusters (Figure 4A). With the multiple pseudo-

bulk replicates for each cell cluster, 260,168 reproducible peaks

were identified. The distribution of reproducible peaks across

different genomic features is shown in Figure 4B. Figure 4C

displays a MA plot showing 9,874 peaks preferentially detected in

intermediate and non-classic monocytes, while Figure 4D

displays 80,475 marker peaks across the 13 annotated cell

clusters.

With those 80,475 marker peaks, we identified potential

transcription factors playing roles in each cell types by motif

enrichment, motif deviation, and footprinting analyses. Top

enriched motifs among marker peaks of intermediate and

non-classic monocytes are shown in Figure 4E, while top

enriched motifs across cluster-specific marker peaks are

shown in Figure 4J. Motifs of large ChromVAR deviation

scores across all marker peaks are shown in Figure 4F. SPI1

(also known as PU.1), a key TF controlling differentiation of

myeloid and lymphoid cells (Scott et al., 1994; DeKoter and

Singh, 2000), is one of the cell type-preferred transcription

factors identified here. It is highly expressed in monocytes

and dendritic cells, lowly expressed in mature B cells, but not

expressed in T cells or NK cells (Lloberas et al., 1999; DeKoter

FIGURE 3
Marker genes across clusters identified in the human PBMC scATAC-seq data. (A) Heatmap showing standardized gene scores (Z-scores) of
8,668 marker genes across the 15 clusters. (B)Heatmap showing standardized pseudo expression (Z-scores) of marker genes across the 15 clusters.
Known marker genes in the form of gene symbol-Ensembl ID are labelled on the right of each heatmap.
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FIGURE 4
Functional analysis of annotated clusters of the human PBMCs. (A) UMAP plot showing annotated clusters identified in the human PBMCs by
integrating with the human PBMC scRNA-seq data. cMN, classic monocytes; h_fhT, T helper and T follicular helper cells; MAIT, mucosal-associated
invariant T cells; mB, memory B cells, mDC, myeloid dendrtic cells; Naive B, naive B cells; NaiveCD4+, naive CD4+ T cells; NaiveCD8+, naïve CD8+

T cells; ncMN_interMN, non-classic monocytes and intermediate monocytes; NK, natural killer cells; pDC, plasmacytoid dendritic cells;
te_emCD8_gdT, terminal effector CD8+ T cells, effector memory CD8+ T cells and γδT cells; Treg, T regulatory cells. (B)Distribution of reproducible
peaks among different genomic features (promoter, intronic, exonic, and distal regions) in each cell type. (C) MA plot showing peaks preferentially
accessible in intermediate and non-classic monocytes (FDR <0.01 and log2FC ≥ 1). (D) Heatmap showing 80,475 marker peaks across the
13 annotated clusters. (E) Dot plot showing top motifs enriched among marker peaks of intermediate and non-classic monocytes (ncMN_interMN).
(F)Dot plot showingmotifs of top variability scores across all the 13 cell types determined by ChromVAR. (G) Ridge plots showing distributions of the
Z-score of motif deviation scores for SPI1_322 in each cell type. (H,I) UMAP plots showing gene scores and pseudo expression of a monocyte-
specific TF, SPI1, whosemotif is highly enriched inmonocytes (cMN, interMN, and ncMN) and dendritic cells (mDC and pDC) and is of high deviations
across clusters. (J) Heatmap showing normalized enrichment score, -log10 (adjusted p-value), of top TF motifs across the different cell types. (K)
Aggregate footprints of SPI1_322 in each cell type.
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and Singh, 2000) (https://www.proteinatlas.org/

ENSG00000066336-SPI1). Consistent with the literature, we

successfully identified SPI1_322 as one of the top enriched

motifs in monocytes, dendritic cells, and B cells (Figure 4E

and data not shown), and one of the motifs with top

variability in terms of ChromVAR deviation scores

(Figure 4F). Additionally, the standardized ChromVAR

deviation scores (Z-scores) are very high in dendritic cells and

monocytes, slightly high in naïve and memory B cells, but

extremely low in T cells and NK cells (Figure 4G).

Consistently, plots showing gene activity scores (Figure 4H),

pseudo gene expression (Figure 4I), and aggregated footprints of

SPI1 (Figure 4K) also indicate that SPI1 is highly expressed in

dendritic cells and monocytes, lowly expressed in B cells, but not

expressed in T cells or NK cells.

Next, we identified genome-wide potential chromatin

interactions and potential gene expression regulation

mechanisms by performing a series of integrative analyses,

including co-accessibility analysis, peak-to-gene linkage

analysis, and positive TF regulator analysis. Here we use the

IL1B gene as an example. IL1B is a key pro-inflammatory

cytokine, mainly expressed in monocytes and mDCs among

human PBMCs (https://www.proteinatlas.org/

ENSG00000125538-IL1B) (Gardella et al., 2000; Hadadi et al.,

2016). It triggers monocyte activation, inducing cytokine release

and differentiation into macrophages and dendritic cells (Schenk

et al., 2014). Furthermore, in monocytes, IL1B is a direct target of

SPI1, which constitutively binds to two distinct sites

(−50 to −39 and −115 to −97) upstream of the TSS of IL1B

(Kominato et al., 1995; Adamik et al., 2013). Shown in Figure 5

are normalized coverage for each cell type, peaks across all cell

types, peak co-accessibility, and peaks-to-gene (IL1B) links in a

100-kb genomic region, centering on the TSS of the IL1B gene.

Those peaks linked with IL1B are potentially involved in

regulating IL1B expression (Shirakawa et al., 1993; Kominato

et al., 1995; Adamik et al., 2013). In line with that the model used

by ArchR to infer gene activity is accurate (Granja et al., 2021),

we found gene scores and pseudo expression of genes associated

with 97,308 peak-to-gene links were highly consistent (Figure 6).

It is also worth mentioning that we identified 53 and 36 positive

TF regulators by positive TF regulator analysis based on gene

scores and pseudo expression of TFs, respectively, with

17 positive TF regulators in common (Figures 7A,B). Among

the common positive TF regulators were ATF4, BCL11A,

NFKB1, NFKB2, EOMES, STAT2, PAX5, RUNX3, LEF1, and

SPI1. The cell types where these positive TF regulators play their

regulatory roles were corroborated by footprinting analysis.

Figures 7C–K shows footprints of nine positive TF regulators

that are preferentially active in different cell types. The results of

our positive TF regulator analysis are consistent with previous

publications (Gupta et al., 1999; Park et al., 2000; Hayden et al.,

2006; Cobaleda et al., 2007; Medvedovic et al., 2011; Yu et al.,

2012; Steinke and Xue, 2014; De Silva et al., 2016; Boto et al.,

2018; Dorrington and Fraser, 2019; Shimizu et al., 2019;

FIGURE 5
Co-accessibility and peak-to-gene links in a IL1B-containing genomic region. The top panel shows the normalized read coverage in the
genomic region of each cell type. The second panel shows peaks represented by red boxes. The third panel shows peak pairs, linked by colored
arches, with co-accessibility scores (Pearson correlation coefficients) greater than 0.5. The fourth panel shows peaks linked to the IL1B promoter
peak with co-accessibility score greater than 0.5. The fifth panel shows gene models of IL1B and AC079753 in this region.
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Mukherjee et al., 2020; Qiu et al., 2020). Here we just take

PAX5 as an example. In peripheral blood, PAX5 is only

expressed in B cells (https://www.proteinatlas.org/

ENSG00000196092-PAX5) (Fuxa and Busslinger, 2007), as the

guardian of B cell identity and function (Cobaleda et al., 2007;

Medvedovic et al., 2011). In consistency with the literature, we

identified PAX5 as a B cell-specific transcription factor by

positive TF regulator analysis (Figures 7A,B) and footprinting

analysis (Figure 7I).

3.2 Comparison of scATACpipe with other
pipelines

We carried out all but footprinting analysis of the scATAC-

seq data with the debugged and modified scATAC-pro pipeline,

and all analyses implemented in MAESTRO. In summary, both

scATAC-pro and MAESTRO successfully preprocessed data of

all six samples, and performed sample-level and cell-level QC

(Supplementary Figure S7, S8). scATAC-pro properly integrated

FIGURE 6
Gene scores and pseudo expression of genes linked with peaks are highly consistent in different types of the human PBMCs. Heatmaps on the
left and right panels show gene scores (derived from the scATAC-seq data) and pseudo expression (transferred from the scRNA-seq data) of genes
linked to the peaks, respectively. Color bars on the top of each heatmap represent the PBMC clusters derived from the scRNA-seq data.
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the individual samples (Supplementary Figure S7), but

MAESTRO failed to do so because it lacks the functionality to

remove the batch effects (Supplementary Figure S8). As a result,

the major cell types in the human PBMCs were tightly clustered

into 19 groups by scATAC-pro, though some potential doublets

(some cells in clusters 10, 15, 16, 17 and 18) were carried over to

the final analysis (Supplementary Figure S7). Annotation of most

cell types were further supported by GO term enrichment

analyses of genes preferentially expressed in each cluster

(Supplementary Figure S7 and data not shown). However, the

same PBMCs were clustered in 42 groups by MAESTRO, with

the cells of the same types forming smaller clusters far from each

other in the UMAP plots (Supplementary Figure S8). Both

scATAC-pro and MAESTRO identified candidate TFs playing

FIGURE 7
Identification of positive TF regulators in PBMCs based on gene scores or pseudo gene expression. (A,B) Positive TF regulators with red labels
were identified by correlating gene scores and pseudo gene expression of TFs with deviation scores of their motifs across all human PBMCs,
respectively. Seventeen positive TF regulators were identified by both methods. (C–K) Aggregate footprints of nine positive TF regulators
preferentially functioning in different cell types.
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roles in each cell cluster using different methods (Supplementary

Figure S7, S8). The candidate TFs identified in each cell type by

the three pipelines were largely similar. Like scATACpipe,

scATAC-pro predicted co-accessibility between regional open

chromatin regions (Supplementary Figure S7), but MAESTRO

lacks this functioinality. Apparently, the co-accessibility between

open chromatin regions predicted by scATAC-pro looks very

different from that predicted by our scATACpipe for the

genomic region containing the IL1B gene (Supplementary

Figure S7 and Figure 5).

It is worthmentioning that the three pipelines called different

numbers of cells in each sample (Supplementary Table S4).

scATACpipe and the Cell Ranger ATAC software report

similar cell numbers, while MAESTRO reports systematically

higher cell numbers than 10x Genomics Cell Ranger ATAC

software with default parameters by 10–20%. Surprisingly,

scATAC-pro called 57.2–189% more cells than 10x Genomics

Cell Ranger ATAC software even though it uses the Cell Ranger

cell calling algorithm re-implemented in scATAC-pro.

Additionally, these pipelines detected very different numbers

of consensus peaks. scATAC-pro detected only

123,909 consensus peaks, while our scATACpipe and

MAESTRO detected 260,168 and 388,730 consensus peaks,

respectively.

Besides comparing the biological relevance of the final output

of the three pipelines, we also considered other important

metrics: ease and flexibility of parameter configuration,

completeness of functionalities, and usage of computing

resources. Here, we focus on comparing their usage of

computing resources while leaving the rest to the Discussion

section. A summary of computing resources and runtime of the

scATAC-pro and MAESTRO is shown in Supplementary Table

S4, while that of our scATACpipe is available as online

documentation (https://github.com/hukai916/

scATACpipe#pipeline-info). In short, MAESTRO required the

largest memory for its SingleQCMappability step when

processing sample PBMC_10K_N (347 GB) whereas scATAC-

pro used the longest CPU time for preprocessing sample PBMC_

10K_V (225 h). As for runtime, scATACpipe and MAESTRO

with the chrommap option are faster than other settings, and

scATAC-pro is the slowest.

4 Discussion

ScATAC-seq has become one of the most widely used

methods for deciphering the role of chromatin accessibility in

regulating gene expression at the single-cell level. Data generated

by scATAC-seq is extremely sparse, noisy, and high-

dimensional, which poses analytic challenges (Chen et al.,

2019; Fang et al., 2021). To overcome these challenges, we

have built a scalable, portable, and comprehensive pipeline,

scATACpipe, using the Nextflow workflow management

system. Our pipeline provides three options for preprocessing

10x Genomics scATAC-seq data from raw fastq files to filtered

fragment files. Depending on users’ preference, raw scATAC-seq

data can be processed using the carefully tailored default sub-

workflow which integrates the current best analytic practices, the

commercially supported 10x Genomics Cell Ranger ATAC

software-based sub-workflow, or the recently developed

Chromap-based sub-workflow (Zhang H. et al., 2021). The

fragment files generated by the three sub-workflows are

largely similar, with slight differences due to the adoption of

different tools and parameters (Zhang H. et al., 2021)

(Supplementary Figure S1, S2). The default preprocessing

option allows users to configure the largest number of

parameters, while the Cell Ranger ATAC-based sub-workflow

provides the least control over parameter settings. In light of that

the Chromap-based sub-workflow is the most time-efficient

(Zhang H. et al., 2021), we implemented functionalities in the

default sub-workflow to enable users to split large fastq files into

smaller chunks to speed up preprocessing. All three sub-

workflows support adapter trimming, read alignment,

alignment deduplication, barcode correction, cell calling, and

fragment file generation.

Compared to preprocessing, the downstream analysis of

scATAC-seq data is more data-driven, requiring more step-

specific inputs from users. Our pipeline implemented an

ArchR-based sub-workflow for downstream analysis with each

major function as an individual module. This sub-workflow not

only generates gene annotation and genome annotation objects

for species that ArchR does not internally support, but also

creates Arrow files, identifies and removes doublets/multiplets,

creates ArchR project, and performs cell QC and filtering.

Moreover, it also provides a wide variety of core analysis

modules, such as dimension reduction, batch correction,

clustering and embedding, optional integration with matched

scRNA-seq data, marker gene identification, peak calling, marker

peak identification, differential peak analysis, peak-set based

analyses (motif enrichment analysis, motif deviation analysis

and footprinting analysis), co-accessibility analysis, peak-to-

gene linkage analysis for gene activity inference, positive TF

regulator inference, and potential cell trajectory inference.

Nevertheless, due to the uniqueness of each dataset, the

default configuration of our scATACpipe for the downstream

analysis is meant for users to get some preliminary results.

Following an initial run, users are advised to modify the

configuration file by tuning relevant parameters meticulously

and resume the downstream analysis, which might need to be

performed iteratively to achieve optimal results. It is worth

mentioning that we added quite a few functionalities to

enhance the usage of the ArchR package. We implemented a

few R functions to streamline the process of generating and

installing BSgenome packages for any sequenced genome

assemblies and preparing gene annotation and genome

annotation objects for any annotated genome assemblies.
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These functions make it easier for users to apply ArchR to any

eukaryotic species with annotated genomes. Compared to the

original ArchR, our downstream sub-workflow also provides

additional flexibility for doublet identification and cell

filtering. Particularly, besides the ArchR’s built-in functionality

for doublet removal, it utilizes the AMULET package to

determine multiplets based on read count per genomic locus

(Thibodeau et al., 2021). Additionally, our scATACpipe allows

users to exclude cells in certain clusters determined by

preliminary analyses, along with low-quality cells.

Also importantly, while Cell Ranger ATAC software-based

sub-workflow outputs an interactive HTML report, our pipeline

generates a comprehensive, interactive HTML report for both the

default preprocessing sub-workflow and the downstream

analysis sub-workflow. This comprehensive report includes

sections on QC for raw sequencing data, adaptor trimming,

barcode correction, read alignment, alignment deduplication,

valid cell filtering, and each major ArchR analysis

step. Furthermore, our pipeline generates cluster-specific BED,

BAM, and/or BigWig files for visualization in genome browsers,

in addition to generating track views for specific genomic regions

of interest by using ArchR functions.

In terms of ease and flexibility of parameter configuration,

our scATACpipe is the best, followed by MAESTRO, and then

scATAC-pro. Our scATACpipe allows users to configure nearly

every possible parameter, including those for specifying

computing resources, by setting command-line parameters,

and by editing configuration files including workflow-level

configuration file (nextflow.config) as well as module-level

configuration files (conf/base.config and conf/modules.config).

In addition, scATACpipe provides an intutitive web application

for setting major parameters and generating a configuration file.

In contrast, MAESTRO produces a configuration file for each

sub-workflow via running a corresponding initiation command,

where a set of command-line parameters can be set. The resulting

configuration file can be further edited before executing the sub-

workflow. However, many other MAESTRO parameters are not

configurable. Especially, MAESTRO offers neither parameters

for setting default resource usage of individual tasks nor a retry

mechasim that automatically requests for more resources once

the last limits are reached. As for scATAC-pro, although it is

flexible in terms of software selection for each step, it only allows

a very limited set of parameters to be configured mainly via

editing a configuration file (configure_user.txt). Some important

parameters, including those for specifying memory and threads,

are hard-coded and thus are not configurable unless users modify

the module scripts. In addition, it is not managed by any

workflow management engine. Thus, it is not robust and

cannot resume an analysis from where errors occur.

Our scATACpipe is the most functionality-rich and optimal

workflow among all existing tools and workflows for scATAC-

seq data analysis (Supplementary Table S1), followed by scATA-

pro (Yu et al., 2020) and then MAESTRO (Wang et al., 2020).

Noticeably, the latter two pipelines can only support human and

mouse scATAC-seq data analysis. The three pipelines share a

majority of functionalities for preprocessing. However, unlike

scATACpipe and MAESTRO, scATAC-pro does not have a

module for cell barcode correction. One common weakness of

scATAC-pro and MAESTRO is that they do not make full use of

parallel computing. They merge fastq files from different lanes/

runs for the same library at the beginning, which makes

subsequent processing time-consuming and more memory-

demanding, especially during BAM file sorting. As a

consequence, they cannot efficiently handle large scATAC-seq

data. Our scATACpipe and scATAC-pro, unlike MAESTRO,

does not have a sub-workflow for analyzing scRNA-seq data,

output of which can be integrated with scATAC-seq data to

facilitate the analysis of the latter. However, the scRNA-seq sub-

workflow of MAESTRO is not well implemented since it cannot

correctly handle multi-sample experiments with batch effects

(Supplementary Figure S9). All the three pipelines have

functionalities for peak calling, generating count matrices,

integrating multi-sample scATAC-seq data, differential

accessibility analysis, and integrating scRNA-seq data with

scATAC-seq data. The underlying algorithms used by

scATAC-pro and MAESTRO are similar and not optimal,

which are very different from those of scATACpipe (Granja

et al., 2021). Specifically, both scATAC-pro and MAESTRO

perform initial peak calling and generate a count matrix using

aggregated data from cells in each sample separately and then

merge those individual peak files to get consensus peaks and

reconstruct a count matrix for clustering. The sparsity and

noisiness of scATAC-seq data make peak calling based on

individual samples, especially those with lower sequencing

depth and cell numbers, less robust and sensitive (Fang et al.,

2021; Granja et al., 2021). In contrast, scATACpipe divides a

genome into non-overlapping 500-bp bins and generates a bin-

by-cell count matrix for dimension reduction and clustering

(Granja et al., 2021), followed by peak identification for each

cluster and consensus peak generation. Consequently,

scATACpipe generates the most accurate results of

downstream analysis. Neither scATAC-pro nor MAESTRO

fully leverages the matched scRNA-seq data. Instead, they

only use the transferred scRNA-seq labels and/or expression

data for the visualization of cell clusters. On the contrary,

scATACpipe utilizes integrated scRNA-seq data for more

comprehensive analysis such as cluster annotation,

peak2GeneLinkage analysis, positive TF regulator analysis, and

trajectory inference. Furthermore, it is not appropriate that both

scATAC-pro and MAESTRO directly apply Seurat’s algorithms

for scRNA-seq data analysis to differential accessibility analysis,

given that scATAC-seq data is essentially binary in nature. When

it comes to other downstream analyses, MAESTRO cannot

perform doublet removal, batch effect correction, footprinting

analysis, ChromVar-based motif deviation analysis, co-

accessibility analysis, or trajectory inference, which are all
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offered by scATACpipe. On the other hand, scATAC-pro does

not provide trajectory inference, although it has exclusive GO

term enrichment analysis. Its modules for differential

accessibility analysis and footprinting analysis are currently

not functional and its downstream analysis sub-pipeline

cannot be directly applied to analyzing integrated data of

multiple samples.

In conclusion, scATACpipe is an open-source Nextflow-

based pipeline for performing end-to-end analysis of large-

scale scATAC-seq data. It enables users to conduct flexible

preprocessing, all-level QC, and comprehensive downstream

analysis of 10x Genomics scATAC-seq data for different

species across various computing environments. With all

functionalities implemented in one pipeline, it eliminates the

need to use multiple tools to perform step-by-step analysis, which

is both time consuming and error prone. In this work, we

illustrated the utility, flexibility, versatility, and reliability of

our pipeline, and demonstrated that our scATACpipe

outperforms two other workflows in terms of configurability,

scalability, accuracy, and streamlined downstream analysis. We

foresee that it will benefit many researchers seeking to

understand how chromatin accessibility relates to cellular

heterogeneity.
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