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The process of neurogenesis in the brain, including cell proliferation,

differentiation, survival, and maturation, results in the formation of new

functional neurons. During embryonic development, neurogenesis is crucial

to produce neurons to establish the nervous system, but the process persists in

certain brain regions during adulthood. In adult neurogenesis, the production of

new neurons in the hippocampus is accomplished via the division of neural

stem cells. Neurogenesis is regulated by multiple factors, including gene

expression at a temporal scale and post-transcriptional modifications. RNA-

binding Proteins (RBPs) are known as proteins that bind to either double- or

single-stranded RNA in cells and form ribonucleoprotein complexes. The

involvement of RBPs in neurogenesis is crucial for modulating gene

expression changes and posttranscriptional processes. Since neurogenesis

affects learning and memory, RBPs are closely associated with cognitive

functions and emotions. However, the pathways of each RBP in adult

neurogenesis remain elusive and not clear. In this review, we specifically

summarize the involvement of several RBPs in adult neurogenesis, including

CPEB3, FXR2, FMRP, HuR, HuD, Lin28, Msi1, Sam68, Stau1, Smaug2, and SOX2.

To understand the role of these RBPs in neurogenesis, including cell

proliferation, differentiation, survival, and maturation as well as

posttranscriptional gene expression, we discussed the protein family,

structure, expression, functional domain, and region of action. Therefore,

this narrative review aims to provide a comprehensive overview of the RBPs,

their function, and their role in the process of adult neurogenesis as well as to

identify possible research directions on RBPs and neurogenesis.
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Introduction

Neurogenesis is the formation process of new neurons

derived from neural progenitor cells (NPCs), occurring in

several regions of the brain including the olfactory epithelium,

hippocampus, and subventricular zone (SVZ) (Kempermann

et al., 2004). It consists of four stages namely cell

proliferation, migration, differentiation, and integration into

the existing circuit (Ming and Song, 2011). In adulthood,

neurogenesis takes place mainly in two regions of the brain,

the SVZ and subgranular zone (SGZ) of the dentate gyrus in the

hippocampus (Sanai et al., 2004; Curtis et al., 2007; Semple et al.,

2013; Sánchez-Vidaña et al., 2019). Hippocampal neurogenesis is

a pivotal physiological process involved in the regulation of

cognitive and emotional behaviors such as the formation of

spatial memory in learning, the response to stress, and mood

(Yau et al., 2011; Chan et al., 2017; Fung et al., 2021). Various

gene modulatory pathways participate in the neuronal growth

process which consists of neuronal relocation, neuronal

plasticity, synaptic formations, and dendritic and axonal

outgrowth (Mills and Janitz, 2012; Qu et al., 2020). The

dynamic modulation of alternative splicing (AS) in the

nervous system is essential for the orchestrated regulation of

protein-protein interactions, transcription systems, and neuronal

growth (Qu et al., 2020).

More than 500 RNA-binding proteins (RBPs) have been

identified in the human genome (Vogel and Richard, 2012). RBPs

are in charge of complex RNA-protein and protein-protein

interactions to regulate RNA metabolism (Vogel and Richard,

2012). Each RBP interacts with RNA with different affinities

(Vogel and Richard, 2012). Gene expression is regulated by a

variety of proteins, but RBPs represent a distinct subgroup within

these proteins (Gerstberger et al., 2014). RBPs are responsible for

regulating gene expression in various ways, including splicing,

cleavage, polyadenylation, RNA stabilization, RNA localization,

RNA editing, and translation. Several genetic processes, e.g., AS

and the utilization of poly(A) sites mediated by the neuro-

oncological ventral antigen (NOVA) protein, an RBPs first

identified in autoimmune motor neuron diseases, involve

RBPs (Licatalosi et al., 2008; Eom et al., 2013; Tang et al.,

2020). Malfunctioning RBPs are associated with genetic and

somatic disorders, for instance neurodegenerative,

autoimmune, and cancer diseases (Lukong et al., 2008). As

post-transcriptional steps are usually carried out in

membrane- and phase-separated subcellular compartments,

RBPs’ regulatory functions are also impacted by their

subcellular localization.

Apart from RBPs, micro RNAs (miRNAs) are another

common type of gene expression mediators. The regulation of

gene expression by RBPs and miRNAs can take place in an

antagonistic fashion in which RBPs and miRNAs can act on the

same targets or nearby regulatory elements (Velasco et al., 2019).

For example, several miRNAs preferentially bind to Pumilio

(PUM), a group of the PUF family of sequence-specific RNA-

blinding proteins, and have binding motifs that complement the

PUM recognition sites in reverse order (Shao et al., 2013). Upon

binding, miRNA-binding efficiency increases due to PUM

binding to transcripts, which in turn leads to an increase in

shared target decay (Shao et al., 2013). Alternatively, they can

inhibit the expression of a common target, a single transcript,

which suggests that the interaction between RBPs and miRNAs

takes place in a complex manner (Velasco et al., 2019). These

regulators are involved in neurogenesis and brain development

processes (Velasco et al., 2019). Therefore, changes at functional

or gene expression levels caused by RBPs and miRNAs could

contribute to neurological disorders and brain tumors (Velasco

et al., 2019).

The translation of numerous mRNAs in the brain are

controlled by their interaction with ribonucleoprotein (RNP)

granules, which are made up of translational machinery, core

RBPs, and miRNAs (Kiebler and Bassell, 2006). RBPs regulate

the trafficking of certain mRNAs into dendrites, bundle them

into RNP granules, and may control the timing and location of

their translation in response to the synaptic activity (Kiebler

and Bassell, 2006). Due to these characteristics, RBPs are in a

special position to regulate developmental processes by

coordinating the translation of a group of functionally

linked mRNAs (Moore, 2005; Keene, 2007). Neurons have

the ability to adjust neuronal output and consolidate

alterations in synaptic connections thanks to local protein

synthesis (Bramham and Wells, 2007; Licatalosi et al., 2008).

The moderation of nervous system architecture is subjected to

a variety of spatio-temporal gene regulatory mechanisms,

including control of protein synthesis via RBPs (Conlon

and Manley, 2017; Qu et al., 2020). A comprehensive

analysis of RBPs involved in neurogenesis, their structure,

function, and RNA targets is presented below. A summary of

the function of RBPs at the different stages of neurogenesis as

well as the RBPs’ RNA targets and neurogenic regions are

shown in Figure 1 and the expression of RBPs in neurogenic

regions is illustrated in Figure 2.

RNA-binding proteins involved in
adult neurogenesis

Cytoplasmic Polyadenylation Element
binding proteins—3

The RNA-binding protein known as the Cytoplasmic

Polyadenylation Element-Binding Protein (CPEB) family is

essential for synaptic plasticity (Fernández-Miranda and

Méndez, 2012). The CPEB family consists of four members

(CPEB1, CPEB2, CPEB3, and CPEB4) that recognize the same

Cytoplasmic Polyadenylation Element (CPE) found in the

3′untranslated region (3′UTR) of target mRNAs
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(Fernández-Miranda and Méndez, 2012; Parisi et al., 2021).

CPEBs 2–4 are highly related, while CPEB1 is the most distant

member (Wang et al., 2010; Fernández-Miranda and Méndez,

2012). These proteins are expressed in the brain (Theis et al.,

2003), and they share a similar structure (Huang et al., 2006)

with the carboxy-terminal region consisting of two RNA

recognition motifs (RRMs) and two zinc-fingers (Hake

et al., 1998). CPEB proteins (CPEBs) are capable of

repressing or activating the translation of target mRNAs by

shortening or stretching the poly-A tail (Wakiyama et al.,

2000).

A recent discovery of three later members in this family

(CPEB2-4) revealed the additional regulatory potential and

biological functions of cytoplasmic polyadenylation (Mendez

and Richter, 2001; Wang et al., 2010). By controlling the

translation of many plasticity-related proteins (PRPs) RNAs in

FIGURE 1
RBPs, their RNA targets, and the role of RBPs at different neurogenesis stages. RBPs acting on different stages of the neurogenesis process
appear on the dotted lines of the neurogenesis stages that they regulate. In SOX2, * indicates an indirect interaction with let7 as SOX2 suppresses the
expression of let7 expression by maintaining Lin28 expression.

FIGURE 2
Expression sites of RBPs in neurogenic regions. RBPs expressed in (A) the SVZ and (B) the hippocampus.
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neurons, CPEBs limit the strength of glutamatergic synapses

(Peng et al., 2010; Wang and Huang, 2012; Chao et al., 2013).

CPEBs regulate the translation of mRNA that has been made

inactive by closed-loop regulation. Translation is inhibited by a

closed-loop structure between the 3′UTR and 5′UTR (Kang and

Han, 2011).

In the process of establishing and maintaining neuronal

development and synaptosomes, CPEB3 regulates translation by

guiding necessary proteinmodifications (Qu et al., 2020). Therefore,

CPEB3 serves as a mediator of translational activity in neurons of

several identified mRNA targets (Ford et al., 2020). The function of

CPEB3-related translation in neuronal development, migration, and

synaptogenesis is modulated by several mechanisms (Peng et al.,

2010; Hosoda et al., 2011). Genes related to transcription,

neurodevelopment, and neurogenesis were enriched in CPEB3-

bound genes. Several identified mRNA targets in neurons are

translated by CPEB3. CPEB3 modulates the differential

expression of genes associated with neurogenesis in HT22 cells, a

mouse hippocampal cell line (Qu et al., 2020). CPEB3-regulated

alternative splicing on control and CPEB3 overexpressing cells was

examined using RNA-seq (Qu et al., 2020). By analyzing alternative

splicing and differential gene expression, global CPEB3-RNA

interaction has been elucidated using RNA-seq and iRIP-seq in

neurons (Qu et al., 2020). In HT22 cells, CPEB3 had an insignificant

impact on gene expression, involving 31 upregulated genes and

23 downregulated genes (Qu et al., 2020). Furthermore,

overexpression of CPEB3 increased LCN2 mRNA levels in

HT22 cells suggesting that CPEB3 modulates LCN2 pre-mRNA

splicing (Qu et al., 2020). LCN2 is an alternative pathway for the

delivery and uptake of physiological iron (Qu et al., 2020). The role

of LCN2 in cell iron transport and homeostasis has recently been

investigated (Devireddy et al., 2005; Bao et al., 2010). The LCN2 gene

encodes an iron-binding protein that has been shown to regulate the

density and morphology of hippocampal dendritic spines in the

brain (Mucha et al., 2011). In addition, LCN2 plays a crucial role in

neurogenesis, regulating NPCs maintenance, self-renewal,

proliferation, differentiation as well as hippocampal plasticity

(Mucha et al., 2011). Out of the four CPEBs, CPEB3 binds to

LCN2 more efficiently (Qu et al., 2020). CPEB3 overexpression

(CPEB3-OE) cell lines had an elevated level of SAA3, an acute-phase

protein with cytokine-like properties. As a key modulator of

neuronal survival and death, SAA3 is critical during

inflammation (Huang et al., 2006). These findings contribute to

the existing knowledge on the mechanisms that modulate

neurogenesis and neuronal development mediated by CPEBs

such as CPEB3 (Qu et al., 2020).

Fragile X-related proteins (Fragile
X-related protein 1, FXR1)

The family Fragile X-Related Proteins (FXRs) includes the

Fragile X Mental Retardation Protein (FMRP), involved in a

condition known as fragile X syndrome, and FMPR’s autosomal

paralogs, the RBPs Fragile X-related protein 1 and 2 (Li and

Zhao, 2014; Nishanth and Jha, 2022). FXRs are highly expressed

in cortical neurons, cerebellar Purkinje neurons, and the brain

stem (Patzlaff et al., 2018). FXRs are also expressed in dendrites,

presynaptic spines, and axons in the thalamus, the CA3 region,

and the olfactory bulb (Patzlaff et al., 2018). FXR2 is expressed in

neuronal RNA granules containing FXRs and plays a critical role

in the formation of such granules (Li and Zhao, 2014).

Structurally, FXR1 and FXR2 are very similar as they have

two RNA-binding domains that are highly conserved, namely the

polyribosome binding domain and the nuclear localization

sequence (NLS) domain (Fernández et al., 2015; Patzlaff et al.,

2017; Patzlaff et al., 2018). These proteins also contain an

N-terminal protein-binding domain (NTD), which is

responsible for the protein-protein interactions, two

heterogeneous nuclear ribonucleoprotein (hnRNP) homology

domains (KH), a nuclear export sequence (NES), and an

arginine-glycine-glycine box (RGG) (Patzlaff et al., 2018).

Although these proteins share some similar functional

domains, they differ in the C termini region and the NLS

domain (Li and Zhao, 2014). For instance, FXR2 contains an

RG cluster in the C-terminal region which is not the case with

FXR1 which contains an RGG box (Fernández et al., 2015). These

structural differences explain their different RNA-binding

properties (Fernández et al., 2015). The proteins of this family

are homologous in their RNA-binding domains and can form

hetero-multidimers. The heteromultimerization properties

suggest that FXR1 and FXR2 have similar binding abilities to

regulate protein translation (Patzlaff et al., 2018).

The members of this family can bind to RNA and associate

with polyribosomes (Guo et al., 2011), and they can mediate

RNA stability and translational efficiency (Patzlaff et al., 2018).

One mechanism of action proposed for FXR2 is the recruitment

of the translational machinery and therefore increase mRNA

translation (Fernández et al., 2015). FXR2 regulates the circadian

behavioral rhythms and plays a role in plasticity (Li and Zhao,

2014). FXR1 and FXR2 expression in the dentate gyrus is similar;

however, from the functional point of view, these proteins play

different roles (Patzlaff et al., 2017). FMRP, FX1, and

FXR2 regulate adult neurogenesis having different functions

(Guo et al., 2011; Li and Zhao, 2014; Patzlaff et al., 2017). For

example, both FMRP and FXR2 suppress cell proliferation while

FXR1 promotes it (Patzlaff et al., 2017). FXR2 is one of the several

RBPs regarded as a critical regulator of neurogenesis (Nishanth

and Jha, 2022).

FXR2 targets Noggin mRNA to regulate neurogenesis in the

dentate gyrus of the adult brain (Nishanth and Jha, 2022).

FXR2 inhibits Noggin protein expression by decreasing the

stability of Noggin mRNA (Guo et al., 2011). Noggin’s role is

to maintain cell pluripotency in stem cells (Guo et al., 2011). It

also acts as a bone morphogenetic protein (BMP) inhibitor to

trigger cell proliferation and neuronal differentiation (Guo et al.,
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2011). In the dentate gyrus NPCs lacking FXR2, the protein levels

of Noggin increase, and the BMP pathway is blocked (Patzlaff

et al., 2018).

In the dentate gyrus, the regulation of Noggin/BMPmediated

signaling via FXR2 only takes place in this neurogenic region

(Patzlaff et al., 2018) and FXR2 suppresses the expression levels

of Noggin leading to an antagonistic effect on BMP signaling

(Guo et al., 2011). On the contrary, this is not the case in the SVZ

as FXR2 and Noggin are expressed in different cell types (Patzlaff

et al., 2018). Consequently, the absence of FXR2 would not have

any effect on the levels of the Noggin protein in the SVZ (Guo

et al., 2011; Faigle and Song, 2013; Patzlaff et al., 2018).

Considering that Noggin is found in the ependymal cells

while FXR2 is expressed in neural progenitor cells, the

regulation of Noggin expression by FXR2 is not direct (Guo

et al., 2011). Noggin and FXR2 are colocalized in the dentate

gyrus cells, and the lack of FXR2 in this type of cell results in

increased cell proliferation of these cells (Guo et al., 2011).

Furthermore, the lack of FXR2 results in decreased levels of

PSD95 due to lower translational efficiency (Fernández et al.,

2015). Low levels of FXR2 can affect stem cell proliferation and

differentiation in the dentate gyrus of the hippocampus (Guo

et al., 2011). However, this phenomenon is not observed in the

SVZ (Guo et al., 2011; Faigle and Song, 2013).

Hu antigen D and Hu antigen R

Hu antigen R (HuR), also known as HuA or embryonic

lethal, abnormal vision-like 1 (ELAVL1), is an RBP member of

the protein family embryonic lethal abnormal vision, or ELAV/

Hu (Yao et al., 1993). The ELAV family also includes HuB, HuC,

and HuD, the latter also known as ELAVL4 (Yao et al., 1993;

McMahon and Ruggero, 2018). HuD is one of the earliest

markers of neuronal lineage and is abundantly expressed in

the mature nervous system (Bronicki and Jasmin, 2013) while

HuR is ubiquitously expressed and translocated between the

cytoplasm and the nucleus through the hinge region (Han

et al., 2022). HuD, as well as other members of the ELAV

family, is predominantly expressed in differentiated neurons

(Dell’Orco et al., 2020). Expression of HuD is mainly

restricted to particular neuronal populations such as the large

pyramidal-like neurons in the layer of the neocortex and the

Purkinje cells in the cerebellar cortex, the CA1-4 of the

hippocampus, dorsal root ganglia, motor neurons in the spinal

cord, mitral cells in the olfactory bulb, ganglion and internal

plexiform layers in the retina, and neurons in the enteric nervous

system (Bronicki and Jasmin, 2013). HuD is found in the mitral

cells of the olfactory bulb, which receive afferent fibers from

different cell types in the olfactory system and are crucial for the

analysis of signals at the olfactory bulb level (Tepper et al., 2021).

HuR is ubiquitously expressed (Dell’Orco et al., 2020). Within

the cell, HuR is abundantly found in the cytoplasm with low

expression in the nucleus ((Bronicki and Jasmin, 2013; Wang

et al., 2019). In adult NPCs, HuR is found in neurogenic regions

(Wang et al., 2019).

The members of the ELAV family have three RNA binding

domains which are known as RNA recognition motifs (RRMs)

(Burd and Dreyfuss, 1994). The RRMs are highly conserved in

these proteins, but the hinge region located between the second

and third RRM is different among them (Good, 1995). HuD and

HuR bind to adenosine/uridine (A/U)-rich elements (AREs)

(Fernández et al., 2015). Both proteins are involved in the

regulation of different functions such as splicing, translation,

and stability of several mRNAs (Fernández et al., 2015). The

RRMs in ELAV proteins are the recognition sites that bind to

specific target RNAs (Bronicki and Jasmin, 2013). ELAV proteins

can form homo- and multimers on target mRNAs which

indicates that this property has been evolutionarily conserved

(Bronicki and Jasmin, 2013). For instance, HuD interacts with

other proteins, including homo- and hetero-mutimerization with

other ELAV proteins, via the third RRM (Bronicki and Jasmin,

2013). HuD stabilizes target mRNAs by binding to the 3′UTR by

the first and second MMRs and the poly (A) tails by the third

MMR (Dell’Orco et al., 2020). For HuR to act, it translocates

from the nucleus into the cytoplasm where it regulates

transcription stability and translation (Ghosh et al., 2009).

In the adult brain, HuD is involved in the regulation of

neuronal plasticity, nerve injury, learning and memory, and

neuronal diseases (Bronicki and Jasmin, 2013; Dell’Orco et al.,

2020; Tepper et al., 2021). HuD functions as a post-translational

regulator of mRNAs associated with neuronal differentiation and

synaptic plasticity, including STAB1, GAP-43, BDNF, CAMKII,

and HOMER1 as well as mechanisms of learning and memory

(Dell’Orco et al., 2020; Tepper et al., 2021). For instance, an

increase in HuD levels in the hippocampus has been found

during dissociative- and special-learning and memory

paradigms (Dell’Orco et al., 2020). HuD is known to regulate

about 131 non-coding RNAs such as Y3 RNA which is found to

interact with HuD, but its function remains unknown

(McMahon and Ruggero, 2018). HuD also plays a role in the

regulation of cell fate (Tebaldi et al., 2018).

HuD participates in different stages of neuronal

differentiation and maturation processes, including

neurogenesis, axonal and dendritic outgrowth, and cell

remodeling (Abdelmohsen et al., 2010; Dell’Orco et al., 2020).

Recently, HuD has been shown to be a key role player in adult

neurogenesis (Wang et al., 2015), particularly in NSC

differentiation into neuronal lineage. Mechanistically, HuD

enhances the stability of the pre-mRNA of special AT-rich

DNA-binding protein 1 (SATB1) by binding to the 3′UTR
(Wang et al., 2015). SATB1 is an essential component for

neuronal differentiation, and HuD deficiency would trigger a

decrease in SATB1, which would suppress NSC differentiation

(Wang et al., 2015). HuD promotes mRNA stability, and it also

mediates the localization and translation of transcripts in
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neurites and the cytoplasm (Bronicki and Jasmin, 2013). For

instance, GAP-43 and Tau are HuD target mRNAs that are

involved in axonal outgrowth (Bronicki and Jasmin, 2013). HuD

colocalizes GAP-43 and Tau during neuronal differentiation

(Bronicki and Jasmin, 2013).

In the dentate gyrus of the hippocampus, HuD and its target

mRNAs increase following neuro-toxin-induced injury (Bronicki

and Jasmin, 2013). HuD has also been shown to localize to

dendrite spines, and interact with mRNAs that encode synaptic

proteins (Bronicki and Jasmin, 2013). These findings suggest that

HuD is involved in neuronal plasticity mechanisms (Bronicki

and Jasmin, 2013). In the hippocampus, higher binding of

PSD95 mRNA and HuD takes place in the absence of FMRP

(Fernández et al., 2015). FMRP, HuR, and HuD colocalize in

different regions such as the neuronal cell bodies, dendritic

processes in the CA3 region of the dentate gyrus, and primary

neurons (Fernández et al., 2015). HuD acts by stabilizing

PSD95 mRNA (Fernández et al., 2015). Both FMRP and HuD

play an important role in the regulation of neuronal morphology,

maturation, differentiation, and cytoskeletal organization

(Fernández et al., 2015). Changes in the expression of HuD

can affect mechanisms of special learning and memory processes

in the hippocampus (Tepper et al., 2021).

HuD major effector is miR-375 which plays a role in neurite

growth and dendritic maintenance (Abdelmohsen et al., 2010).

Other HuD targets include those encoding for GAP-43,

p21Waf1, and acetylcholinesterase, among others

(Abdelmohsen et al., 2010). miR375 has an antagonistic effect

on HuD as it suppresses its expression by destabilizing HuD

mRNA which affects its translation (Abdelmohsen et al., 2010).

Downregulation of HuD alters target genes involved in neuronal

development, function, and neurite outgrowth (Abdelmohsen

et al., 2010). This antagonistic regulatory effect of miR-375 on

HuD affects translation processes that are essential for neurite

growth, dendrite stability, and synapses as well as maintenance

and plasticity of neuronal circuits (Abdelmohsen et al., 2010). For

instance, the brain-derived neurotrophic factor (BDNF) is

essential to maintaining neuronal mechanisms of plasticity,

neuronal outgrowth, and neuronal differentiation

(Abdelmohsen et al., 2010). Inhibition of BDNF mediated by

miR-375 takes place as a result of the downregulation of HuD

demonstrating that HuD can interact at posttranslational level

with BDNF signaling to regulate neuronal function and

morphology (Abdelmohsen et al., 2010).

HuR plays a role in adult neurogenesis (Wang et al., 2019) as

it is known to translocate to the nucleolus where it functions as a

regulator of alternative splicing processes (Nishanth and Jha,

2022). HuR also regulates the focal adhesion kinase (FAK)

mRNA which is an essential key player in neurogenesis

(Nishanth and Jha, 2022). HuR knockout in transgenic

animals leads to a phenotype of neurogenesis and

hippocampal-dependent learning in which defects can be

observed (Wang et al., 2019). Lack of HuR results in a

significant increase in the expression of the FAK isoform with

shorter 5′ UTR regions. As a result, FAK function is stimulated

which affects neurogenesis. On the other hand, FAK-mediated

decreased neurogenesis can be reverted by blocking FAK activity

(Bronicki and Jasmin, 2013).

Lin28

Lin28 is a highly conserved RNA-binding protein encoded by

the Lin28 gene (Rehfeld et al., 2015). The Lin28 family includes

the isoforms Lin28A and Lin28B, collectively known as Lin28

(Hennchen et al., 2015; Chen et al., 2019). Lin28 is often defined

as a pluripotency factor that stimulates cell proliferation, but it

also controls other mechanisms such as the timing of cell-time

and lineage-specific decisions (Romer-Seibert et al., 2019). The

lethal-7 (let7), a key pro-differentiation miRNA, orchestrates

posttranslational silencing of mRNAs of neural stem cells (NSC)

and acts as an interaction partner with Lin28 (Le Grand et al.,

2015; Rehfeld et al., 2015). The members of the let7 family of

miRNAs are abundantly expressed in adult tissues, including the

brain (Rehfeld et al., 2015), and participate in cell differentiation

processes (Hennchen et al., 2015). Lin28 is found in the

cytoplasm and cytoplasmic bodies such as processing bodies

and stress granules, and partially in the nucleus (Kawahara et al.,

2012). While Lin28 is expressed in cell-renewing cells to promote

cell proliferation, let7 is absent in stem cells (Rehfeld et al., 2015;

Jang et al., 2019). Lin28B can be found in progenitor cells and the

cerebral cortex whereas both Lin28A and Lin28B are expressed in

neural progenitor cells expressing nestin and Pax6 in the

ventricular and SVZ (Hennchen et al., 2015). The expression

of Lin28A and Lin28B is not restricted to progenitor cells, but

they can also be found in differentiated neuroblasts and

expressed at low levels in postmitotic neurons (Hennchen

et al., 2015). The expression pattern of Lin28 and let7 reflects

the antagonistic interaction between these two players (Rehfeld

et al., 2015). During neuron differentiation, let7 expression

increases and this overexpression hinders proliferation and

stem cell growth mechanisms (Hennchen et al., 2015). This

mechanism is implicated in cell proliferation and

differentiation of neural stem and precursor cells (Kawahara

et al., 2012).

Lin28 contains a unique combination of two coupled and

highly conserved functional domains, the N-terminal cold-

shock-domain and two retroviral type CCHC-zinc knuckles

(CCHCx2) (Rehfeld et al., 2015). Both domains participate in

Lin28-mediated posttranscriptional regulation of gene

expression as RNA binding takes place in these domains

(Rehfeld et al., 2015). Lin28 interacts with the immature let7,

also known as pre-let7, which contains the precursor element

(PreE) (Rehfeld et al., 2015). The preE has a highly variable

sequence structure constituting the loop of the precursor hairpin

structure in pre-let7 (Rehfeld et al., 2015). The preE sequence in
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pre-let7 shows higher sequence variability than the mature

let7 form (Rehfeld et al., 2015). Pre-let7 also contains a

conserved motif, the GGAG motif, which is highly enriched

in let7 family members and is located 3’ to the terminal loop

(Rehfeld et al., 2015). The GGAG motif is crucial for the Lin28-

mediated inhibition of the maturation of pre-let7 (Rehfeld et al.,

2015).

Lin28 participates in several processes such as the generation

of induced pluripotent cells from fibroblasts, glucose metabolism

regulation, regeneration mechanisms in tissues, body size

regulation, progression of cancer, and neurogenesis (Jang

et al., 2019). Lin28 acts as one of the regulators participating

in the reprogramming of adult cells and the modulatory

translational mechanisms of mRNAs, enhancing or

suppressing mRNA translation, by binding mRNAs (Parisi

et al., 2021). At the early stages of neurogenesis,

undifferentiated progenitor cells are present (Hennchen et al.,

2015). These cells can be stimulated to proliferate by the action of

several regulators. During neurogenesis, the expression of

let7 continuously increases until the cell composition is

resembling postmitotic neurons (Hennchen et al., 2015).

Within the scope of the regulatory mechanisms of

neurogenesis, the function of let7 is pivotal because it feeds

itself onto the miRNA pathway to prepare the stage for other

neurogenic miRNAs in charge of neuronal specifications and

outgrowth (Rehfeld et al., 2015).

Lin28-mediated suppression activity of the let7 family

promotes cell reprogramming to stimulate pluripotency

(Kawahara et al., 2012). Furthermore, Lin28 has demonstrated

regulatory effects of the neurite outgrowth process during

cortical neurogenesis (Jang et al., 2019). Cell renewal, an event

that involves dedifferentiation, is a useful mechanism in tissue

regeneration to replace cells that were lost or damaged, and the

ability of Lin28 in cell self-renewal could play an important role

in this process (Rehfeld et al., 2015). The Lin28-let7 axis in

neurogenesis regulates miRNA expression in terms of diversity

and abundance during neural differentiation (Rehfeld et al.,

2015). Lin28 plays an antagonistic role as it promotes the

expression of gene expression patterns specific to stem cells by

hindering let7 maturation (Cimadamore et al., 2013).

Lin28 suppresses the downstream events regulated by let7 by

interfering with the conversion of pre-let7 transcripts to mature

let7, which in turn prevents the initiation of the pro-

differentiation effect regulated by let7 (Rehfeld et al., 2015;

Chen et al., 2019).

Lin28 selectively and strongly binds the conserved terminal

loop site of pre-let7 through its specific RNA-binding activity

(Kawahara et al., 2012). The interaction of Lin28 with pre-let7

triggers the recruitment of the uridylytransferases Tut4 or Tut7

(Parisi et al., 2021). These transferases catalyze the

oligouridylylation of pre-let7 which leads to the degradation

of pre-let7 mediated by the exonuclease Dis312 (Parisi et al.,

2021). The interaction of Lin28 and let7 forms a self-amplifying

system in which cell differentiation is triggered by the lower levels

of Lin28 causing less repression of let7 processing and

consequently higher levels of let7 and lower levels of Lin28

(Rehfeld et al., 2015; Morgado et al., 2016). Low expression of

Lin28 decreases the expression of neuronal markers (Morgado

et al., 2016). In the opposite scenario, self-renewal and

pluripotency will take place as a result of high levels of

Lin28 which cause a reduction in let7 processing resulting in

lower levels of let7 and higher levels of Lin28 (Rehfeld et al., 2015;

Morgado et al., 2016). The self-reinforcing mechanism of the

interaction between Lin28 and let7, a double negative feedback

loop, forms a bi-stable switch with two mutually exclusive states,

that is, Lin28on-let7off and Lin28off-let7on (Kawahara et al.,

2012; Rehfeld et al., 2015). The Lin28-let7 switch mechanism is

one of the early events that take place at the onset of neurogenesis

(Rehfeld et al., 2015). Lin28 expression significantly decreases

during neural stem cell differentiation whereas higher expression

of let7 takes place (Morgado et al., 2016). The factors driving the

shift between the two interaction states have not been yet

identified (Rehfeld et al., 2015).

A challenge in the understanding of the players involved in

Lin28-let7 mediated mechanisms is the identification of mRNAs

targeted by let7 (Rehfeld et al., 2015). During neurogenesis, let7 is

upregulated and can act on important targets such as Lin28, Lin-

41, c-Myc, Hmga2, and Tlx (Rehfeld et al., 2015). Some of those

interactions participate in stem cell maintenance (Rehfeld et al.,

2015) and neurogenesis functions such as cell proliferation

(Lin28), axonal regeneration (Lin41), differentiation of Müller

glial cells into retinal progenitors and pluripotency networks

(c-Myc), stem cell plasticity in the SVZ (Hmga2), and cell cycle

progression of NSC (Tlx) (Liu et al., 2014; Rehfeld et al., 2015).

During neurogenesis, Lin28 expression is downregulated

(Rehfeld et al., 2015).

Musashi1

Msi1 is a regulator that mediates the balance between self-

renewal and cell differentiation (Velasco et al., 2019). Msi1 is

expressed in neural stem/progenitor cells of the lateral ventricles,

the olfactory subependymal region, and astrocytes in the adult

brain (Toda et al., 2001; Takasawa et al., 2002). Low expression

levels of Msi1 have been reported in the brain and the expression

is limited to the SVZ (Kanemura et al., 2001; Toda et al., 2001),

but it can also be found in the subgranular zone of the

hippocampus (Ratti et al., 2006). The members of the

Musashi family contain two highly conserved tandem RRMs

(Toda et al., 2001). Msi1 functions by suppressing the translation

of specific mRNA targets, regulating mRNA decay and

polyadenylation by binding to transcripts with specific motifs

containing ARE at the 3′UTR (Takasawa et al., 2002; Ratti et al.,

2006). ARE can be recognized by numerous ARE-binding

proteins including the neuronal-specific ELAV (nELAV)
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RBPs, which are essential to induce neuronal differentiation

(Ratti et al., 2006). mRNAs of genes with high turnover rates

are known to contain ARE sequences which act as cis-acting

regulatory motifs (Ratti et al., 2006). The relationship between

Msi1 and nELAV proteins is shown by its co-expression and

colocalization with Msi1 in the SVZ (Ratti et al., 2006). Both

nELAV and Msi1 act as transcription regulators of Msi1 because

of their specificity and ARE-binding activity for the

Msi1 transcript (Ratti et al., 2006). nELAV, recognizes the

Msi1 transcript in an ARE specific and dependent manner, it

stabilizes Msi1 mRNA by decreasing its turnover rate, and this

interaction controls proliferation and differentiation activities of

neural stem/progenitor cells (Ratti et al., 2006). Therefore, the

ARE sequence in the Msi1 gene is involved in mRNA stability

and post-translational regulation of Msi1 (Ratti et al., 2006).

nELAV modulates actions of Msi1 at transcript and protein

levels, which could alternate the cell cycle by shifting the stem/

progenitor cells from cell proliferation to the cell differentiation

phase in both neurogenic regions (i.e., SGZ and SVZ). (Ratti

et al., 2006). The co-expression of these two proteins in the SVZ is

limited to the sub-ependymal cell layer which suggests that they

both may be involved in cell proliferation regulatory mechanisms

in NSC (Ratti et al., 2006). The functions of Msi1 and nELAV are

complementary and act differently on their target mRNAs. For

instance, nELAV is responsible for the stabilization of the

Msi1 transcript which in turn promotes its expression during

the transition from cell proliferation to cell differentiation (Ratti

et al., 2006). Overexpression of Msi1 is an indicator of the

proliferation state (Ratti et al., 2006). Therefore, transcription

and translational mechanisms regulating Msi1 expression will

have an effect on Msi1 levels during the cell proliferation phases

(Ratti et al., 2006). Msi1 is highly expressed during neurogenesis

(Pötschke et al., 2020). nELAV RBPs are expressed in the SVZ

and colocalize with Msi1 in neural stem/progenitor cells (Ratti

et al., 2006). The inhibitory effect of Msi1 on cell differentiation is

observed in neurogenesis. On the other hand, Msi1 is

upregulated in NPCs, which supports its role in cell

proliferation (Pötschke et al., 2020).

Msi1 expression during neurogenesis goes in the opposite

direction to the expression levels of miR-137 (Velasco et al.,

2019). In the SVZ, expression levels of Msi1 and miR-137 are

inversely correlated (Velasco et al., 2019). miR-137 decreases self-

renewal and cell proliferation while Mis1 increases cell

proliferation (Velasco et al., 2019). Msi1 expression is higher

in the SVZ where it promotes self-renewal and proliferation of

stem cells while the expression of miR-137 is also high as it is

required for lineage progression and cell differentiation (Velasco

et al., 2019). miR-137 drives cell differentiation and inhibits

Msi1 by suppressing the expression of shared targets (Velasco

et al., 2019). miR-137 shares targets with miR-124 and miR-128,

from which miR-128 is also known to regulate Msi1, and they all

work in a synergistic fashion regulating neurogenesis (Velasco

et al., 2019).

Msi1 acts on the Notch-mediated proliferation pathway in

NSC where it binds and prevents the translation of Numb

resulting in inhibition of Notch activation (Ratti et al., 2006;

Pötschke et al., 2020). Msi1 participates in the downregulation of

several regulators such as Numb, a negative regulator of Notch;

p21, an inhibitor of cyclin-dependent kinases, and doublecortin,

a microtubule-binding protein involved in cell migration (Glazer

et al., 2012). Conversely, Mis1 promotes the upregulation of

Rondabaout3 (Robo3), a receptor involved in axonal guidance

(Glazer et al., 2012).

Another mediator of Msi1 activity is HuD which participates

in the stabilization of Msi1 mRNA to promote Msi1-mediated

cell proliferation of NPCs (Ratti et al., 2006; Pötschke et al.,

2020). This mechanism allows the NPCs to keep dividing

disregarding the transcriptional inactivation of Mis1 (Ratti

et al., 2006). HuR positively regulates Msi1 expression

(Velasco et al., 2019). Msi1 also interacts with Lin-7 by

stimulating the inhibitory effect of Lin28 on let7 during cell

differentiation (Lang and Shi, 2012).

Sam68

Sam68, the Src-associated substrate duringmitosis of 68 kDa,

also known as the human KH domain containing RNA binding

signal transduction associated 1 (KHDRBS1), is a member of the

Signal Transduction Activator of RNA (STAR) family of RBPs

(Lim et al., 2006; Vogel and Richard, 2012; Danilenko et al.,

2017). The proteins of the STAR family are highly conserved and

participate in cell proliferation and cell differentiation processes

(Bielli et al., 2011). Sam68 is mainly found in the nucleus, but it

can also be expressed in the soma and dendrites of neurons in the

hippocampus, cortex, and the SVZ (Lim et al., 2006; Chawla et al.,

2009). Structurally, Sam68 has a 96-amino acid sequence at the

N-terminus followed by a STAR domain, which contains a KH

domain and flanking regions involved in protein-protein and

protein-RNA interactions, an arginine-glycine rich domain, and

a tyrosine-proline rich domain at the C-terminus (Huot et al.,

2009; Danilenko et al., 2017). The arginine-glycine and tyrosine-

proline domains are prone to posttranslational modifications

(Danilenko et al., 2017). The highly conserved N- and C-

terminal sequences are essential for RNA binding and

homodimerization, and they are harbored by a single KH

domain (Vogel and Richard, 2012).

Sam68 plays a role in RNA metabolism including polysomal

recruitment of mRNAs and alternative splicing (Vogel and

Richard, 2012). Sam68 regulates alternative splicing through

the recognition of RNA sequences rich in adenine and uracil

neighboring the included/excluded exons (Vogel and Richard,

2012). Sam68 can be subjected to post-translational

modifications such as phosphorylation (serine/threonine and

tyrosine), acetylation (lysine), methylation (arginine), and

sumoylation (arginine) that regulate its subcellular
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localization, interactions with signaling proteins, and affinity for

target RNAs (Bielli et al., 2011; Vogel and Richard, 2012). For

instance, the proline and tyrosine-rich regions make Sam68 a

substrate of many kinases such as the Scr family kinases,

phospholipase Cγ1, Grb2, Nck, and Csk (Huot et al., 2009).

The tyrosine phosphorylation of Sam68 by Scr-related kinases

greatly affects its ability to form homodimers and interact with

target RNAs in the cell (Bielli et al., 2011). The arginine-rich

region of Sam68 undergoes methylation by the methyltransferase

PRMT1 (Bielli et al., 2011). The nuclear translocalization of

newly formed Sam68 is affected by the arginine

methyltransferase PRMT1 mediated methylation of Sam68,

which hinders the interaction of Sam68 with SH domains

(Bielli et al., 2011). Arginine methylation of Sam68 is a

prerequisite for its successful nuclear localization (Côté et al.,

2003).

Sam68 participates in the alternative splicing of mRNAs

involved in neurogenesis (Huot et al., 2009). In neuronal cells, a

set of 24 novel exons regulated by Sam68-mediated splicing had

been identified and associated with neurogenesis (Chawla et al.,

2009). Genes carrying Sam68 targets exons act in processes involved

in neurogenesis such as cytoskeletal organization (Numa1, Clasp2,

and Sgce), biogenesis, and transport of organelles (Bin1, Km1,

Kifap3, and Opa1) and synaptogenesis (Cadm1, Dlgh4, and

Sorbs1) (Chawla et al., 2009). Furthermore, Sam68 mediated the

maintenance of splicing patterns needed after cell differentiation

(Vogel and Richard, 2012). Sam68 is one of the 11 splicing factors

highly expressed in the SVZ and the olfactory bulb core implicated

in adult SVZ neurogenesis (Lim et al., 2006). Neuroblasts born in the

SVZ can either integrate into the granule cell layer or migrate to the

periglomerular layer in the olfactory bulb (Lim et al., 2006). Because

alternative splicing allows the cells to regulate the same set of

transcription factors that can affect the generation of different

phenotypes of newborn neuroblasts in the SVZ, this mechanism

may determine neuroblast migration or the cell fate choice (Lim

et al., 2006). In the olfactory bulb core, Sam68 changes its subcellular

localization, interaction with the spliceosome, and splice site

selection upon phosphorylation by the kinase Fyn (Hartmann

et al., 1999). Fyn overexpression in the olfactory bulb leads to

changes in the Sam68-mediated mRNA splicing in type A cells

resulting in cell cycle exit, radial migration, and integration of cells

into local circuits (Lim et al., 2006). Furthermore, Sam68 associates

the SVZ precursor RNA splicing machinery with the extracellular

environment (Lim et al., 2006). For instance, the splicing activity of

Sam68 in the SVZ is regulated by the extracellular signal-regulated

kinase (ERK) (Lim et al., 2006).

Staufen 1

Stau1 and Stau2 are involved in RNA transport as well as

mRNA stability and translation (Almasi and Jasmin, 2021). The

Stau1 gene encodes the Stau1 protein (Bondy-Chorney et al.,

2016). The five alternative splice variants produced by mature

Stau1 mRNAs differ in their 5′UTR regions (Almasi and Jasmin,

2021). While Stau2 is abundant in the brain and only weakly

expressed in other tissues, Stau1 is present in the majority of cell

types, including neurons (Duchaîne et al., 2002). In mature

hippocampus neurons, Stau1 is known to localize mRNA. The

two proteins are mostly present in separate particles in the

dendrites of hippocampal neurons, which may indicate that

they have different roles (Duchaîne et al., 2002). Stau1 is also

preset in the SVZ (Moon et al., 2018).There are two major kinds

of Stau1 binding sites. Pairs of Alu elements in 3′ UTRs are

included in the first class while non-Alu sequences are the second

kind of Stau1-binding site (Almasi and Jasmin, 2021). Several

target mRNAs have been found to include non-Alu 3′UTR
binding sites (Almasi and Jasmin, 2021).

Stau1 and Stau2 are crucial for the transport and localization

of certain mRNAs into the dendrites of adult hippocampal

neurons and their knockdown in these cells impairs synaptic

plasticity (Goetze et al., 2006; Vessey et al., 2008). Stau1 is

involved in cell growth (Ghram et al., 2020), differentiation

(Gautrey et al., 2005), migration, apoptosis (Gandelman et al.,

2020), autophagy (Paul et al., 2021), and the stress response

(Thomas et al., 2009; Bondy-Chorney et al., 2016; Paul et al.,

2021). Stau1 is crucial for NPCs’ development since over-

expressing Stau1 in NPC cultures improves the detection of

neuron-specific genes (Crawford Parks et al., 2017). In NPCs,

Stau1 moves back and forth between the cytoplasm and nucleus

(Kusek et al., 2012; Vessey et al., 2012). Stau1 can proceed via

nuclear import and export in NPCs. Stau2 plays a critical role in

the determination of cell fate during neurogenesis (Kusek et al.,

2012; Vessey et al., 2012). Stau1 regulates neurogenesis by

interacting with mRNA targets such as Dlx1, Dlx2, and Tuj1

(Moon et al., 2018). Stau1 acts by promoting the degradation of

Dlx1, Dlx2, and Tuj1 mRNAs while knocking down Stau1 results

in the inhibition of the degradation of target mRNAs suggesting

that Stau1 is involved in the stability of those target mRNAs

associated with neurogenesis (Moon et al., 2018).

SRY (sex-determining region)-box 2

The Sry (Sex-determining Region Y) gene was found as an

initial member of the SOX gene family capable of determining

the male phenotype (Gubbay et al., 1990). While members of the

SOX family share similar DNA-binding properties, individual

SOX proteins bind specific partner proteins to regulate their

target genes (Kamachi et al., 2000; Tanaka et al., 2004). The SOX

genes are divided into subgroups B1 (SOX1, SOX2, and SOX3)

and B2 (SOX14 and SOX21) (Uchikawa et al., 1999). The SOX

family of proteins contains a domain of 79 amino acids that

allows them to bind specifically to the sequence (A/T A/T CAA

A/T) (Harley et al., 1994) and two domains that function in

transcriptional regulation (Pevny and Lovell-Badge, 1997). The

Frontiers in Cell and Developmental Biology frontiersin.org09

Chan et al. 10.3389/fcell.2022.982549

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.982549


SOX proteins bind to the minor groove and, upon binding,

induce strong bends in DNA (Michael, 1999).

Two types of NPCs express SOX2, the quiescent radial NPCs

(type 1) and the amplifying progenitors (type 2a) (Ellis et al.,

2004; Ferri et al., 2004; Garcia et al., 2004; Seri et al., 2004; Suh

et al., 2007). Throughout life, SOX2 is expressed in the

developing hippocampus, cortical hem (CH), and dentate

neural epithelium (DNE), and then continues to be expressed

in the dentate gyrus (Mercurio et al., 2022). Compared to

surrounding tissues, SOX2 expression is significantly enriched

in the CH (Ferri et al., 2004; Favaro et al., 2009; Mercurio et al.,

2022), suggesting a critical role for SOX2 in this area. NPCs

express SOX2 before turning it off in differentiated neurons

(Hodge and Hevner, 2011). SOX2 expression decreases during

differentiation when progenitor cells become postmitotic during

their final cell cycle (Graham et al., 2003). A cell expressing

SOX2 is capable of producing both identical cells and

differentiated neural cells, two hallmarks of stem cells (Liu

et al., 2019).

SOX2 is a well-known regulator of cell proliferation and

neurogenesis, and it participates in the upstreaming events of the

Lin28-let7 axis (Mukherjee et al., 2011; Rehfeld et al., 2015). In

adult NSC in the subgranular zone of the hippocampus and the

SVZ, Lin28 expression correlates with increased SOX2 activity

(Rehfeld et al., 2015). SOX2 binds to the Lin28 promoter

triggering the recruitment of histone deacetylase complexes

which upregulates Lin28 expression (Rehfeld et al., 2015). The

loss in neurogenesis caused by depletion of SOX2 can be partially

compensated by overexpression of Lin28 by interfering with the

functional maturation of let7 (Cimadamore et al., 2013; Rehfeld

et al., 2015; Morgado et al., 2016). Another event demonstrating

the cross-talk interaction of SOX2 and the Lin28-let7 axis in

neurogenesis is that let7 downregulates the neurogenic basic-

helix-loop-helix transcription factors Ascl1/Mash1 and

neurogenin (Rehfeld et al., 2015). These series of events

suggest that suppression of let7 expression by maintaining

Lin28 expression is a requirement, at least in part, for

SOX2 in neurogenesis (Rehfeld et al., 2015).

Discussion

In this review, RBPs involved in the different stages of the

adult neurogenesis process were discussed. RBPs such as

Sam68 and Msi1 are involved at all stages of neurogenesis

(Figure 1). The regulatory specificity of Sam68 and Msi1 in

neurogenesis may be driven by the interaction of these RBPs

with different target mRNAs. The role of specific mRNA

partnerships at each stage of neurogenesis suggests the

possibility to manipulate a particular stage via a specific

regulatory partnership. However, it can also be observed that

the same RBP-mRNA partners (e.g., Msi1-miR137, Sam68-

Fyn, HuR-Fak, Lin28-let7) also have the ability to act on

different neurogenesis phases through the same mRNA

targets. This phenomenon invites to ask whether other

regulatory mechanisms are involved and whether there is

a cross-talk among RBPs contributing to the regulation at

each stage of the neurogenesis process. A clear case of an

RBP-RBP cross-talk mechanism was shown in SOX2 in

which this RBP interacts with the Lin28-let7 axis. Some

RBPs such as HuD, Sam68, Msi1, and Stau1 act on

multiple mRNA targets to regulate a specific stage of the

neurogenesis process which raises the question whether

there could be more target mRNAs that have not yet been

identified for the other RBPs. At times, the process to activate

or deactivate RBP mediated function has been clearly

identified such as in Lin28 case, but often times the

activation-deactivation process is not well understood.

What is clear from the analysis presented in this review is

that there is an intricate RBP-mediated regulatory network

taking place in neurogenesis. Tracing the regulatory network

mediated by RBPs in neurogenesis will potentially contribute

to understanding the impact and clinical implications on

cognition and mood. Therefore, efforts should be made to

clarify the RBP-mediated regulatory mechanisms and to

identify relevant mRNAs involved in neurogenesis.

Conclusion

Gene expression mechanisms, including the control of

mRNA synthesis via RBPs, are backbone mechanisms that

shape the architecture of the CNS. Several RBPs are involved

in the intricate regulation of neurogenesis at all stages from, cell

proliferation, migration, and differentiation, to integration into

the existing circuit in both the SVZ and the dentate gyrus of the

hippocampus (Ming and Song, 2011).

It is important to note that identifying potential

therapeutic targets to modulate neurogenesis at a genetic

level demands our understanding of RBPs considering 1)

the bidirectional regulation of neurogenesis (e.g., agonistic

and antagonistic regulatory effect on neurogenesis), 2) self-

amplification effect (e.g., Lin28), 3) overlapping RBPs targets

and effectors (e.g., Lin28 and Msi1, miR-145 mediating the

downregulation of SOX2 and Lin28), and 4) complementary

actions among RBPs (e.g., Msi1 and nELAV) as discussed in

the review. Furthermore, the degree of understanding of the

RBP mechanism, their molecular regulatory partners, and

neurogenic region of action has been slowly emerging being

HuD, HuR, FXR2, Lin28, Msi1, and Sam68 the most

characterized RBPs to date. Despite the advances to

understand the complex RBP-mediated regulation of

neurogenesis, more research is needed to trace a clear map

of the molecular regulatory mechanisms and the critical

players to identify potential therapeutic neurogenic

promoting targets.
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