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Inflammation is a common complication of many chronic diseases. It includes

inflammation of the parenchyma and vascular systems. Sirtuin 1 (SIRT1) is a

nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase,

which can directly participate in the suppression of inflammation. It can also

regulate the activity of other proteins. Among them, high mobility group box 1

(HMGB1) signaling can be inhibited by deacetylating four lysine residues (55, 88,

90, and 177) in quiescent endothelial cells. HMGB1 is a ubiquitous nuclear

protein, once translocated outside the cell, which can interact with various

target cell receptors including the receptor for advanced glycation end-

products (RAGE), toll-like receptor (TLR) 2, and TLR4 and stimulates the

release of pro-inflammatory cyto-/chemokines. And SIRT1 has been

reported to inhibit the activity of HMGB1. Both are related to the occurrence

and development of inflammation and associated diseases but show an

antagonistic relationship in controlling inflammation. Therefore, in this

review, we introduce how this signaling axis regulates the emergence of

inflammation-related responses and tumor occurrence, providing a new

experimental perspective for future inflammation research. In addition, it

explores diverse upstream regulators and some natural/synthetic activators

of SIRT1 as a possible treatment for inflammatory responses and tumor

occurrence which may encourage the development of new anti-

inflammatory drugs. Meanwhile, this review also introduces the potential

molecular mechanism of the SIRT1-HMGB1 pathway to improve

inflammation, suggesting that SIRT1 and HMGB1 proteins may be potential

targets for treating inflammation.
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1 Introduction

Inflammation is an innate host defense mechanism to

harmful stimuli and conditions, such as infection and tissue

injury, and is an adaptive response that acts to reestablish

homeostasis (Medzhitov, 2008). It involves the acute, chronic

and resolution phases, which can respectively figure out the

injury and initiate the healing process, lead to tissue damage

and fibrosis and protect host tissue from chronic or excessive

inflammation (Medzhitov, 2008). Acute inflammation

mediates innate and humoral immunity, which is the

body’s initial protective response, while chronic

inflammation leads to the pathology of blood vessels and

tissues and is related to various degenerative diseases

including arthritis, atherosclerosis, autoimmune diseases,

diabetes and cancer (Germolec et al., 2018; Ahmad et al.,

2019; Panigrahy et al., 2021). At the cellular level, acute

inflammation occurs when innate immune cells sense

infectious elements or tissue damage, leading primarily to

the recruitment and activation of neutrophils, while chronic

inflammation is characterized by a variety of cell types such as

neutrophils, monocytes, macrophages, and other immune

cells (Pellico et al., 2017). Chronic inflammation is

associated with the expression of chemokines, cytokines,

and adhesion molecules, which in turn form positive

feedback loops that enhance chronic inflammation (Zhang

FIGURE 1
Molecular structure and biological function of SIRT1. (A) SIRT1 is composed of N-terminal, C-terminal and NAD+ dependent catalytic core
region. The catalytic core region (C244-C512) is folded into two subdomains: Zn2+ binding ligands and Rossmann fold conformation. N-terminal
contains SBD and C-terminal contains CTR. (B) SIRT1, mainly located in the nucleus, deacetylates related proteins and reduces cell apoptosis by
inhibiting cellular oxidative stress, maintaining mitochondrial metabolic homeostasis, and promoting the repair of damaged DNA. SIRT1 activity
is dependent on NAD+. The activation of SIRT1 is facilitated by increasing NAD+ levels at the cellular level, which can lead to deacetylation and
modulated expression of many downstream targets. SIRT1 targets a variety of substrates and performs different functions. SIRT1 deacetylates
inflammation-related transcription factor NF-κB, which attenuates NF-κB driven inflammation. In addition, SIRT1 protects endothelial cells against
replicative senescence by deacetylating eNOS and downregulating PAI-1 expression. In the liver, SIRT1 deacetylates and activates the transcription
factor FOXO1 to stimulate gluconeogenesis. Similarly, SIRT1 regulates lipid metabolism by modulating LXR via deacetylation of this molecular
receptor. SIRT1, Sirtuin1; SBD, sirtuins-activating compounds binding domain; CTR, C-terminal regulatory segment; NAD+, nicotinamide adenine
dinucleotide; NF-κB, nuclear factor kappa B; eNOS, endothelial nitric oxide synthase; PAI-1, plasminogen activator inhibitor 1; FOXO1, forkhead box
O 1; LXR, liver X-receptor.
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et al., 2018). Therefore, finding appropriate means to control

chronic inflammation has always been a hot topic in current

research. To reduce chronic inflammation and thus treat

diseases caused or exacerbated by this process, a

comprehensive understanding of the pathways and

molecules involved in inflammation may provide essential

information for innovative therapeutic targets.

Some reports have suggested a link between sirtuin 1

(SIRT1) and high mobility group box 1 (HMGB1) regulation

on inflammation (Zhang et al., 2020; Shih et al., 2021). SIRT1 is

a nicotinamide adenine dinucleotide (NAD)-dependent histone

deacetylase, as a significant regulator of the transcriptional

networks that adjust metabolism and stress responses, having

a pivotal connection with human being health (Kemper et al.,

2013). (Figure 1) HMGB1 is a transcription factor deacetylated

by SIRT1. Deacetylated HMGB1 was restricted to translocation

out of the nucleus (Zainal et al., 2017). HMGB1 is involved in

various pathological and physiological processes. Under normal

physiological conditions, nuclear protein HMGB1 is expressed

in virtually all eukaryotic cells (Cottone et al., 2016) that

protects the cell from apoptotic cell death, which is an

integral part of the innate immune defense barrier of the

human body (Gong et al., 2009). During tissue injury,

HMGB1 is secreted by activated immune cells or passively

released into the extracellular environment by dying or

injured cells (Dai et al., 2018). It is a pocket-sized protein,

comprising 215 amino acid residues. Structurally, the protein is

divided into three areas: two tandem high mobility group box

domains (A and B) isolated by a short flexible linker, and a

30 amino acid, acidic C-terminal tail (Sims et al., 2010). It binds

to DNA to alter the physical structure of chromatin while

simultaneously maintaining genome stability and has roles in

DNA processing and repair, deficient mitochondria autophagy

clearance and autophagy control (Andersson and Tracey, 2011).

Apart from its role in sensing and coordinating the cellular

stress response inside the cell, on its secretion it also has

cytokine, chemokine, and growth factor vitality,

collaboratively coordinating the inflammatory and immune

response with other factors as a prototypic damage-

associated molecular pattern molecule (DAMP).

HMGB1 activity is regulated by acetylation/deacetylation and

methylation and its expression is promoted by serine

phosphorylation (Bonaldi et al., 2003; Youn and Shin, 2006;

Ito et al., 2007). Hyperacetylation of HMGB1 inhibits DNA

binding, thus redirecting this protein to the cytoplasm for

secretion (Lu et al., 2014). For example, ANG II can

promote M1 macrophage polarization by upregulating the

expression of HMGB1 and causing acetylation of

HMGB1 and inducing HMGB1 transfer from the nucleus to

cytoplasm and release by its dissociation from SIRT1 (Zhou

et al., 2018). This data indicates the vital role of HMGB1 in

maintaining inflammation. However, from a therapeutic

perspective, silencing HMGB1 may cause the host cells to

lose this protein’s key nuclear housekeeping functions. A

better approach may be to improve the intracellular

distribution of HMGB1 by stimulating the activity of SIRT1,

thereby retaining HMGB1 in the nucleus (Le et al., 2019). This

is greatly important in treating chronic diseases, especially

inflammation and cancer. HMGB1 is usually actively

secreted by macrophages or passively released from necrotic

cells and acts as a proinflammatory mediator to induce chronic

inflammation of macrophages based on the redox state causing

the production of cytokines such as tumor necrosis factor alpha

(TNF-α) or chemical attractants (Goto et al., 2021). Chronic

inflammation can induce cancer progression. HMGB1 is

secreted by cancer cells and promotes tumor growth,

invasion and metastasis by binding to a variety of cell

surface receptors (including receptors for advanced glycation

end products (RAGE) and Toll-like receptors) (Goto et al.,

2021). SIRT1 antagonizes macrophage inflammation and

cancer induced by chronic inflammation by increasing

SIRT1 activator NAD+ and inhibiting HMGB1 release (Yang

et al., 2012). Therefore, SIRT1 and HMGB1 are believed to be

important in improving chronic inflammatory degenerative

diseases.

HMGB1 and SIRT1 signaling pathways are evolutionarily

conserved, promoting the maintenance of homeostasis, and their

interaction directly regulates inflammatory responses. Thus, this

review aims to present the roles of SIRT1 and HMGB1 in

inflammation, emphasizing the SIRT1-HMGB1 correlation

and the resulting beneficial effects in the prevention of

diseases involving inflammation.

2 Effect of SIRT1 on HMGB1

SIRT1 can directly inhibit the HMGB1 signal pathway to

improve mammal metabolism and inflammation to maintain

internal environment stability. In response to inflammatory

signals, HMGB1 is hyperacetylated, resulting in its secretion

from the nucleus and allowing its release from the cell. The

mechanisms of signaling include lipopolysaccharide (LPS) and

tumor necrosis factor-α, which promote the acetylation-

dependent dissociation of HMGB1 from SIRT1, thereby

indirectly increasing HMGB1 binding to the protein

chromosome region maintenance 1 (CRM1), resulting in

HMGB1 translocation (Mai et al., 2005; Bernier et al., 2011;

Kemper et al., 2013). Substrates availability, post-translational

modifications and interaction with other proteins along with

changes in its expression levels co-regulate the activity of SIRT1

(Jiang W. et al., 2018; Jalgaonkar et al., 2022). SIRT1 then

physically interacts with multiple lysine residues of HMGB1 at

the nuclear localization signal (NLS) site through its N-terminal

lysine residues to deacetylate HMGB1, resulting in

HMGB1 remaining in the nucleus and reducing its cytoplasmic

translocation (Xu et al., 2014; Zainal et al., 2017; Wei et al., 2019).
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3 SIRT1-HMGB1 axis in inflammation

Many studies have shown that SIRT1 is a key to reducing the

translocation of HMGB1 in inflammatory responses, thus

improving inflammation. Therefore, in recent years, numerous

activators of SIRT1 have been investigated as potential

treatments and preventative agents for inflammation-related

diseases. Candidate therapeutic agents that act via this

mechanism are reviewed in this section, organized by the type

of inflammation and by disease (Figure 2; Table 1).

3.1 SIRT1-HMGB1 axis in
neuroinflammation

Neuroinflammation is a term used to describe the common

immune responses of the central nervous system, which is the key

to the pathological process of several acute and chronic brain

diseases including delirium and Alzheimer’s disease (Lyman

et al., 2014), primarily concerning the cells such as microglia

and astrocytes. Protein tyrosine phosphatase 1B (PTP1B), as a

regulator of activation of hypothalamic microglia, can enhance

the LPS-induced neuroinflammatory response of microglia (Lee

et al., 2020). Neuroinflammation is activated in response to

central nervous system injury to initiate repair mechanisms

acutely. Although acute neuroinflammation is protective,

chronic neuroinflammation is often considered harmful and

damaging to nerve tissue. That is, chronic neuroinflammation

can aggravate, spread, and prolong central nervous system injury

(Corwin et al., 2018).

3.1.1 SIRT1-HMGB1 axis in traumatic brain injury
Traumatic brain injury (TBI) can be defined as the

retardation of brain function, or other brain pathology

diseases, triggered by external physical forces (Khellaf et al.,

2019), resulting in death and disability in people with physical

trauma (Vella et al., 2017), and presenting in various forms

ranging from mild alterations of consciousness to a persistent

FIGURE 2
Macrophage can be influenced by surrounding necrotic cells and promote the interaction between HMGB1 and its receptor RAGEmediated by
TNF-α, releasing acetylated HMGB1 and enhancing inflammatory response. When macrophage is infected, C5a binding with its receptor
C5aR2 induces upregulation of HMGB1 expression in cytosyl and transfer of HMGB1 from cytosyl to the cell membrane in the vesicle. HMGB1 in the
cytoplasm can activate MyD88 through TLR and then activate downstream transcription factor NF-κB, make it transfer to the nucleus, and
finally promote the release of TNF-α, IL-6 and other inflammatory factors. HMGB1, as a substrate of SIRT1, can be inhibited the release under the
SIRT1 deacetylation, then improving inflammation. Thus, SIRT1 activators can be used as potential agents to control inflammation by increasing
SIRT1 expression. HMGB1, High mobility group box 1; RAGE, the receptor for advanced glycation end-products; MyD88, myeloid differentiation
factor 88; TLR, toll-like receptor; TNF-α, tumor necrosis factor alpha; IL-6, interleukin-6.
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comatose state and death. In the most severe form of TBI, the

whole brain is affected by diffuse injury and swelling (Galgano

et al., 2017). Neuroinflammation is an axiomatic physiological

response to TBI. Similarly, neuroinflammation is the major cause

of disability and death after TBI (Morganti et al., 2016; Tang

et al., 2016). It has been shown to play a part in inducing

secondary damage following brain injury that contributes to

chronic neurodegeneration and neurological impairments

associated with TBI (Kumar and Loane, 2012). Experimental

models of TBI upon post-traumatic neuroinflammatory

inhibition have been reported to improve neurological

parameters (Paudel et al., 2020).

HMGB1 is among the first pro-inflammatory cytokines

released following TBI, and has an initiating role in

neuroinflammation, acting as the “master-switch”

(Manivannan et al., 2021). Studies have shown that

nucleocytoplasmic translocation and extracellular secretion of

HMGB1 are increased after TBI, which activates the HMGB1/

nuclear factor kappa B (NF-κB)/P65 pathway and promotes the

expression of pro-inflammatory factors (Chen et al., 2018a).

Omega 3 polyunsaturated fatty acids (ω-3 PUFAs) have been

shown to have neuroprotective properties that regulate signal

transduction in brain cells, including monoamine regulation, and

are involved in the modification of receptor properties or

activation of receptor signal transduction (Agostoni et al.,

2017). Chen et al. (2018a) demonstrated that the treatment

with ω-3 PUFAs increased SIRT1 activity following TBI, thus

inducing SIRT1 to interact directly with HMGB1 and inhibiting

TABLE 1 Summary of direct and indirect SIRTI activators with therapeutic potential in inflammatory diseases.

Therapy Cell types Inhibition
of
HMGB1

Activated
transcription
factor

Main outcome Ref.

ω-3 PUFA Microglia Acetylation SIRT1 Produce neuroprotective effects for experimental
traumatic brain injury

Chen et al. (2017), Chen
et al. (2018a), Chen et al.
(2018b)

Oleanolic acid Brain injury cells in rats Transfer SIRT1 Play an anti-inflammatory role to alleviate early
brain injury after subarachnoid haemorrhage

Han et al. (2021)

Baicalin Microglia Release SIRT1 Reduce microglia-associated neuro inflammation
and improved cute neurocognitive deficits in LPS-
induced mice

Li et al. (2020)

Aloin Human umbilical vein
endothelial cells

Release SIRT1 Treat severe vascular inflammatory diseases like
sepsis and septic shock

Yang et al. (2019)

Kaempferol Lung suffered I/R Release SIRT1 Improve the lung pathological injury and inhibit
the release of inflammatory factors

Yang et al. (2020a)

Chrysophanol Heart tissue Activation SIRT1 Attenuate DM-induced heart damage and
inflammation of the heart

Xue et al. (2019)

Polydatin HK-2 cells Release SIRT1 Attenuate rats’ renal tubular epithelial cell
apoptosis, protect renal function and prolong
survival in haemorrhagic shock rats

Xu et al. (2019b)

Salvianolic
acid B

Hepatocytes Release SIRT1 Attenuate HFD-induced Meng et al. (2020)

Liver damage, hepatic steatosis, and inflammation

PKA Retinal endothelial Cells Translocation SIRT1 Reduce HMGB1-induced retinal inflammation Liu et al. (2018)

Resveratrol Microglia Release SIRT1 Exert neuroprotective effects by inhibiting the
inflammatory response of microglia

Le et al. (2019)

Murine macrophage-like
RAW264.7 cells with LPS

Expression SIRT1 Antagonize the inflammatory effects of LPS for
anti-inflammation effects

Yu et al. (2019),
Nebbioso et al. (2020)

Salidroside LPS-treated macrophages Translocation SIRT1 Protect against sepsis-induced acute lung injury
and mortality

Lan et al. (2017)

Cilostazol RA fibroblasts Expression SIRT1 Inhibit HMVECs tube formation Kim et al. (2014)

Epac1 Retinal endothelial cells Acetylation SIRT1 Reduce key inflammatory cascades in the retina Jiang et al. (2018d)

Emodin Murine alveolar epithelial
cell

Expression SIRT1 Alleviate sepsis-induced lung injury Liu et al. (2022)

Melatonin Murine BV2 microglia cell Release SIRT1 Ameliorate lipopolysaccharide-induced microglial
inflammation

Chibaatar et al. (2021)

Oleanolic acid Aneurysmal subarachnoid
haemorrhage rat model

Translocation SIRT1 Alleviate early brain injury after subarachnoid
haemorrhage

Han et al. (2021)

ω-3 PUFA, omega-3 polyunsaturated fatty acids; LPS, lipopolysaccharide; I/R, ischemia/reperfusion; DM, diabetes mellitus; HK-2, human proximal tubular epithelial-2; HFD, high-fat diet;

PKA, protein kinase A; RA, rheumatoid arthritis; HMVECs, human microvascular endothelial cells; EPAC1, exchange protein activated by cAMP 1.
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HMGB1 acetylation. These interactions were shown to inhibit

HMGB1 nucleocytoplasmic translocation and extracellular

release, preventing HMGB1-mediated activation of the NF-κB
signaling pathway after TBI-induced microglial activating and

thus suppressing the subsequent inflammation. Therefore, it can

inhibit TBI-induced inflammation, and this inhibitory

mechanism may be associated with microglial activation,

resulting in neuroprotective effects. Overall, the anti-

inflammatory and antioxidant effects of ω-3 PUFAs

demonstrated in this study show promise for the treatment of

neuroinflammation.

3.1.2 SIRT1-HMGB1 axis in cerebral ischemia
Cerebral ischemia occurs when a blood vessel is blocked by a

thrombus or embolus [2], resulting in brain tissue damage,

including cerebral infarction and neuronal cell death, which

manifests clinically as ischemic stroke (Shin et al., 2020). Its

result depends on how many neurons die from hypoxia in the

ischemic area. After cerebral ischemia leads to brain damage and

neuronal loss, it can also lead to neuroinflammation that lasts for

months after stroke (Ahmed et al., 2016; Vay et al., 2018).

Neuroinflammation is one of the major aspects of cerebral

ischemia, and can adversely affect neurogenesis. Microglia, as

the resident innate immune cells of the brain, is in charge of

eliciting early and pronounced inflammatory response in the

immature brain after hypoxic-ischemic (HI) insult, rather than

infiltrating blood-derived macrophages (Kaur and Ling, 2009;

Shankaran, 2012; Umekawa et al., 2015). Paradol, as a

biotransforming metabolite of shogaol, can significantly

reduce microglial activation, TNF-α and nitric oxide synthase

(iNOS) expression, improve neuroinflammation and central

nervous system disorders, achieving the purpose of treating

cerebral ischemia (Subedi et al., 2021).

HMGB1 influences neuroinflammatory responses to cerebral

ischemic injury, which conduces to the pathogenesis of cerebral

ischemia. It has been suggested that HMGB1 may work as a pro-

inflammatory molecule, particularly through alarmin-driven

inflammatory feedback mechanisms, further exacerbating the

harm during cerebral ischemic injury (Singh et al., 2016). HI,

insult induces reactivity in microglia, which actively release

acetylated HMGB1 (Ac–HMGB1); this, in turn, motivates the

TLR4/myeloid differentiation factor 88 (MyD88)/NF-κB
signaling pathway in microglia, resulting in glial–neuronal

neuroinflammation, consisting of the production of a mass of

pro-inflammatory molecules and mediators including

interleukin (IL)-1β, IL-6, and TNF-α. It has been suggested

that the expression level of SIRT1 is declined in neonatal

Hypoxic-ischemic brain injury (HIBI) (Carloni et al., 2017).

SIRT1 is of great value for cognitive function, neuronal

plasticity, and prevention of aging-related neuronal

degeneration and cognitive decline (Ng et al., 2015). A key

role for SIRT1 in neuroprotection against cerebral ischemia,

via the deacetylation and inhibition of p53 and NF-κB-

induced inflammatory reaction and apoptosis, has also been

indicated (Hernández-Jiménez et al., 2013). Studies have

shown that resveratrol (RES) improves neurological function

and neuronal damage, inhibits inflammation and neuronal

apoptosis, and protects neurons from cerebral ischemia (Park

et al., 2019). Animal experiments have also shown that RES can

play neuroprotective and antioxidant effects on apoptosis

induced by cerebral ischemia rats by increasing

SIRT1 expression (Meng et al., 2015). Upregulation of

SIRT1 decreases the acetylation status of HMGB1, which in

turn plays a key role in the cellular response to inflammation

by deacetylation-mediated HMGB1 release (Lan et al., 2017).

RES treatment directly increases the interaction between

SIRT1 and HMGB1 by promoting the expression and activity

of SIRT1, inhibiting acetylation of HMGB1, restraining the

nucleocytoplasmic translocation and subsequent secretion of

HMGB1 from microglial cells, and finally weakening the

downstream inflammatory cascade such as TLR4 signaling

pathway caused by this molecule, ameliorating brain injury

and behavioral impairment attributing to HI insult (Le et al.,

2019). Therefore, RES could be investigated as adjunctive therapy

for neuroinflammation; however, further clinical research for this

is required.

3.2 SIRT1-HMGB1 axis in lung
inflammation

Lung ischemia-reperfusion injury (LIRI) is a complex,

inflammatory condition of the lung in the absence of

infection, which involves rapid oxidative stress and

subsequent responses by all cells in the lung. It ultimately

leads to the breakdown of endothelial and epithelial barriers,

resulting in life-threatening edema and defective gas exchange,

which poses a huge threat to graft and recipient survival, resulting

in ascending morbidity and mortality among lung transplant

patients (Trulock et al., 2006). Innate immune cells are rapidly

activated upon reperfusion, resulting in neutrophil influx,

pulmonary edema and succeeding lung dysfunction (Sharma

et al., 2007) via the production of pro-inflammatory cytokines

and the activation of intricate inflammatory signaling pathways.

Severe cases can cause direct tissue injury and augment

pulmonary inflammation (Laubach and Sharma, 2016).

Total and extranuclear HMGB1 levels were both greatly

increased after LIRI, causing lung injury in rats (Yang et al.,

2020a). At the same time, HMGB1 expression can be increased in

a variety of lung diseases, such as pneumonia (Ding et al., 2018),

pulmonary fibrosis (Zhao et al., 2017), and chronic obstructive

pulmonary disease (Jiang et al., 2019). This suggests that

excessive HMGB1 may produce tissue injury and organ

dysfunction in the pathogenesis of many illnesses, with either

sterile or infectious origins (Yang and Tracey, 2010).

Extracellular HMGB1 is involved in promoting inflammation
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and oxidative stress by interacting with Toll receptors and RAGE

to activate NF-κB (Bortolotto and Grilli, 2017). SIRT1-related

pathways are also the core components of redox signaling

pathways. The ability of SIRT1 to resist oxidative stress in

vivo was first reported by Alcendor et al. (2007). Therefore,

SIRT1 can inhibit HMGB1 expression by protecting cells from

oxidative stress. Yang et al. (2020a) illuminated that dietary

flavonoid kaempferol significantly upregulates

SIRT1 expression in rat lungs of ischemia/reperfusion (I/R),

thereby reducing the expression level of HMGB1, inhibiting

the release of inflammatory factors, decreasing the activity of

NF-κB pathway, reducing malondialdehyde and superoxide

dismutase levels, and improving pathological injury.

Therefore, kaempferol may protect against LIRI and act as an

anti-inflammatory and anti-oxidative stress agent via the SIRT1/

HMGB1 axis. Kaempferol may therefore be a useful therapeutic

candidate in inflammation and infection of the lung.

3.3 SIRT1-HMGB1 axis in arthritis

Arthritis is defined as inflammation of joints causing pain,

swelling, and stiffness (Shrivastava and Pandey, 2013), used to be

thought of as a life-long illness. Current treatments for arthritis

have focused on disease control, and the cure still seems

unreachable. Therefore, life-long therapy is required to inhibit

the inflammatory process to effectively control further cartilage

and bone damage (Zaninelli et al., 2021). Arthritis is the leading

cause of disability in the United States (US) and other

populations (Basu et al., 2018). Although the etiology and

underlying mechanisms of arthritic conditions are complex,

evidence suggests that the progression of this condition may

be primarily driven by an increase in oxidative stress and

inflammation (Geyer and Schönfeld, 2018). Among these

conditions, rheumatoid arthritis (RA) has the characteristic of

uncontrolled proliferation of synovitis, and inflammatory

synovitis, accompanied by neutrophil infiltration, fibroblast

proliferation, and angiogenesis in patients with RA.

Uncontrolled proliferation of the synovial lining results in

microenvironmental variations, leading to the chronic

production of low oxygen tension and pro-inflammatory

cytokines. The normal cellular response to hypoxia is

mediated by hypoxia response genes, including hypoxia-

inducible factor (HIF), such as HIF-1α and HIF-2α (Semenza,

2007). The HIF-1 signaling pathway is activated under hypoxia

condition and subsequently induces downstream vascular

endothelial growth factor (VEGF) and Notch signaling, which

accelerates angiogenesis of articular cartilage. Therefore, it is a

target for anti-angiogenic therapy in RA (Chen et al., 2019).

Extracellular HMGB1 takes a part of a coupling factor

between hypoxia and inflammation in arthritis and localizes

preferentially to regions of tissue hypoxia in arthritic lesions

(Hamada et al., 2008). HMGB1 can be actively released by

macrophages and passively secreted from necrotic cells. That

is, molecules derived from exogenous pathogens stimulate the

innate immune system to promote the active release of

HMGB1. In the absence of invasion, ischemiaor cellular

injury and hypoxia can motivate the passive release of

HMGB1 (Andersson and Tracey, 2011), increasing

extracellular HMGB1. Kim et al. (2014) confirmed that the

signaling pathways associated with HMGB1-induced

downstream molecule HIF-1 expression and VEGF release

involve NF-κB activation in RA synovial fibroblasts (SF),

which results in the disruption of bone deformation,

articular cartilage and synovial proliferation, aggravating

the pathogenesis in RA disease (Kaur et al., 2020).

SIRT1 expression was found to be significantly decreased

between 3 and 24 h after exposure to HMGB1 (Pullerits

et al., 2003). SIRT1-induced deacetylation is involved in

restraining HIF1 signaling. Cilostazol is a vasodilating

antiplatelet drug, the effects of cilostazol mainly help to

stimulate NO production, inhibit platelet aggregation,

vasodilatation and enhance peripheral blood flow (Elrashidy

and Hasan, 2021). Cilostazol can activate SIRT1, and

therefore, induces dual effects in RA SFs: on one hand, it

increases HIF-1a deacetylation by enhancing SIRT1 activity,

thus blocking VEGF expression and leading to the suppression

of synovial angiogenesis; on the other, it inhibits

HMGB1 expression, thereby suppressing HIF-1a and VEGF

expression. It has therefore been shown to have anti-

angiogenic effects in vitro and in a collagen-induced

arthritis (CIA) mouse model. Cilostazol can be a potential

candidate drug for preventing and treating arthritis.

3.4 SIRT1-HMGB1 axis in hepatocyte
inflammation

Non-alcoholic fatty liver disease (NAFLD) is the main

cause of chronic liver disease and has become an increasingly

serious public health problem on a global scale (Tarquini et al.,

2010). Inflammatory reaction plays a key role in this disease.

One-quarter of NAFLD patients are judged with non-

alcoholic steatohepatitis (NASH), where histological

evidence shows not only the fatty accumulation of liver

cells but also hepatocyte damage and death because of the

long-term inflammatory response (Zhu et al., 2021). Both

hepatocyte injury and liver inflammation are implicated in

the pathogenesis of NASH, as damaged liver cells release

inflammatory factors that induce inflammation, and as a

result that downward spiral as inflammation further causes

hepatocyte damage (Zhu et al., 2021). Abnormal immune

responses and immune cell infiltration caused by various

liver injuries (such as viral or parasitic infection, drug

toxicity, alcoholism and metabolic diseases) can disrupt the

immune state of the liver and lead to liver inflammation.
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Mesenchymal stem cells (MSCs) are multipotent progenitor

cells that can differentiate into osteoblasts, adipocytes and

chondrocytes, and have unique immunomodulatory effects on

numerous effector immune cells such as T lymphocytes,

B cells and natural killer cells (Liu et al., 2021a). MSCs are

usually provided by isolating them and maintaining them in

human liver tissue culture, called liver MSCs (Kholodenko

et al., 2019). Preclinical and clinical studies have shown that

MSC transplantation can reduce liver inflammation and

thereby improve liver cell regeneration, which can help

patients with liver injury through an immune-mediated

pathway (de Miguel et al., 2019). Yang et al. (2021) also

indicated that Mesenchymal stem cells-conditioned

medium (MSC-CM) enhanced the biological functions of

mitochondria, inhibited inflammation, and prevented cell

apoptosis both in vivo and in vitro, which significantly

improved NAFLD. These positive effects were closely

related to the upregulation of SIRT1. SIRT1 has been

reported to have anti-steatosis and anti-inflammatory

movements in the pathogenesis of NAFLD (Meng et al.,

2020). Therefore, these results suggest that SIRT1 may be

closely related to the mechanism controlling hepatic steatosis

and inflammation in NASH.

HMGB1, an inflammatory mediator, secreted by damaged

liver cells, prolongs the inflammatory response, playing a key

role in diverse pathogenic mechanisms in liver disease, such as

inflammation, fibrosis, steatosis and tumorigenesis (Li et al.,

2011; Gan et al., 2014; Vicentino et al., 2018). Liu et al. found

that the translocation of HMGB1 from the cytoplasm to the

nucleus increased in acute liver failure (Wang et al., 2008; Liu

and Yao, 2010); overexpression of HMGB1 in hepatocytes also

particularly enhanced the risk of liver injury when sepsis

happened (Xu et al., 2014). Recent studies have reported

that HMGB1 levels are enhanced in NAFLD in both animal

models and a clinical setting in humans and that inhibiting

HMGB1 leads to a remarkable decrease in inflammatory

responses in NAFLD (Li et al., 2011; Montes et al., 2015).

Also, Rauh et al. (2013) indicated that HMGB1 was one of the

main SIRT1 substrate candidates. Rabadi et al. (2015) have

also demonstrated that the inflammation-induced suppression

of SIRT1 inhibits HMGB1 deacetylation and promotes its

nuclear-to-cytoplasmic translocation and systemic secretion,

therefore keeping inflammation. Meng et al. (2020) indicate

that salvianolic acid B (SalB), can suppress the relocation and

secretion of HMGB1 by upregulating SIRT1 in the liver

parenchymal cells during NAFLD. Meanwhile, SIRT1-

mediated deacetylation can result in the resveratrol-

mediated suppression of HMGB1 nuclear-to-cytoplasmic

translation in sepsis-induced liver injury (Xu et al., 2014).

Therefore, the anti-inflammatory SIRT1/

HMGB1 pathway may act as a typical pharmacological

target to attenuate the progression of NAFLD for the

development of new drugs.

3.5 SIRT1-HMGB1 axis in inflammatory
responses during pregnancy

Preeclampsia (PE), a pregnancy-specific disorder linked to

inadequate maternal inflammation, oxidative stress, placental

ischemia, vascular endothelial cell dysfunction and injury of

the blood vessel (Feng et al., 2016a), can result in high

maternal and perinatal morbidity and mortality (Feng et al.,

2016b). Pregnant woman with PE is prone to autoimmune

diseases, maternal renal disease and metabolic syndromes.

This aberrant inflammatory activation can also result in

harmful pregnancy outcomes, such as preterm birth or

miscarriage (Nadeau-Vallée et al., 2016). Recently, a growing

number of researches suggest that PE possibly originates from

poor placental development. The placenta protects the fetus from

maternal immune responses owing to its biological barrier

between the mother and the fetus. It has been believed that

HMGB1 levels are enhanced in the syncytiotrophoblast of the

placenta, and in the serum in both severe PE and early onset PE,

the expression of serum cytokine and chemokine levels is also

significantly elevated (Chen et al., 2016). This indicates that

HMGB1 plays a crucial pathogenic role in PE. In this

condition, excessive inflammation and oxidative stress can

give rise to the dysfunction of vascular endothelial cells,

triggering their death. Necrotic cells release HMGB1, further

contributing to the inflammation, in a positive feedback loop

(Yin et al., 2017). Yin et al. (2017) found that SIRT1 can inhibit

HMGB1 release in cell models of PE and further suppress the

pro-inflammatory effects of HMGB1. Increasing SIRT1 levels has

been shown to improve inflammatory and stress responses and

prevent vascular endothelial cells from death. Therefore,

placental SIRT1 is likely protective against PE. The SIRT1/

HMGB1 pathway may therefore be a potential therapeutic

target for alleviating inappropriate inflammatory responses

during pregnancy.

3.6 SIRT1-HMGB1 axis in sepsis

Sepsis, infected with systemic signs of infection, is

characterized as a systemic inflammatory response

syndrome (Galtrey et al., 2015). The characteristics of

sepsis are physiologic, biochemical and pathologic

abnormalities induced by infection, also include

dysfunctional blood coagulation, dysregulated

inflammation, and multiple organ damage, and severe

sepsis is characterized by sepsis plus sepsis-induced organ

dysfunction or tissue hypoperfusion (Lan et al., 2017). The

morbidity and mortality related to severe sepsis are enhanced

and sepsis can lead to death in intensive care (Gentile and

Moldawer, 2014). Sepsis has a biphasic inflammatory process:

producing pro-inflammatory cytokines in the early phase,

including TNF and interleukins, and the late phase is
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mediated by HMGB1 (Abraham et al., 2000).

HMGB1 rearranges the actin cytoskeleton into a contractile

phenotype through the downstream effector of late action,

disrupting the endothelial cell barrier and increased mortality

in sepsis (Galtrey et al., 2015). In addition, HMGB1 expression

was found to be increased in septic acute kidney injury (AKI)

mouse models, and serum HMGB1 levels were positively

correlated with the severity of sepsis (Xu et al., 2020).

Therefore, therapeutics targeting this protein may be a new

method for targeting persistent inflammation in people with

sepsis.

Extracellular HMGB1, a mediator of late sepsis, acts as a

major mediator in both acute and chronic inflammation

(Abraham et al., 2000). Nuclear-to-cytoplasmic

HMGB1 translocation is increased in acute lung injury, and in

this context, inhibiting HMGB1 secretion improves sepsis-

induced organ injury and systemic inflammatory response

syndrome (Wang et al., 2009). Accordingly, inhibition of

HMGB1 translocation and/or secretion therapeutically may

have a protective effect on acute lung injury induced by

sepsis. Wei et al. (2019) found that SIRT1 activation resulted

in deacetylation of HMGB1 and attenuation of its nuclear-to-

cytoplasmic translocation, both in vivo and in vitro in a model of

sepsis-associated AKI. Besides, the deacetylation of

HMGB1 mediated by SIRT1 inhibited inflammation,

attenuated renal function, and crucially lengthened survival

time in septic mice. Activated SIRT1 has been shown to

directly interact with HMGB1 by its NH2-terminal lysine

residues 28–30, and then suppressing the secretion of

HMGB1 and improving survival time in an experimental

model of sepsis (Wei et al., 2019). On the contrary,

inflammatory stimulation accelerates the acetylation of

HMGB1 and promotes its secretion by eliciting its separation

from SIRT1 (Wei et al., 2019). Lan et al. (2017) indicated that

salidroside was found to prohibit the expression of pro-

inflammatory cytokines (TNF-α and IL-6) via SIRT1-mediated

suppression of the NF-κB activation pathway in the early septic

phase. In the late septic phase, salidroside also prevented acute

lung injury via the SIRT1-mediated HMGB1 nucleocytoplasmic

translocation pathway induced by sepsis. Salidroside has a

bipartite curative effect, ameliorating both early and late phase

inflammation associated with sepsis. Therefore, salidroside is

expected as a therapeutic agent in a septic mouse model. Overall,

this research demonstrates that salidroside may play a protective

therapeutic role in attenuating the progression of sepsis via the

anti-inflammatory SIRT1/HMGB1 pathway.

3.7 SIRT1-HMGB1 axis in diabetes-related
inflammation

Diabetes, a metabolic disease caused by defects in insulin

secretion and/or action and characterized by chronic

hyperglycemia, can facilitate atherosclerotic illness and

improves the brain, heart and lower limb arteries

(Mäkimattila et al., 1996). It has a series of features

including hyperglycemia, insulin resistance, insulin

deficiency, and varied pathologies in many organs, such as

the liver, the nerves, and the glomeruli in the kidneys. The

importance of the role of inflammation in diabetes and

diabetic complications, particularly in the retina and

myocardial injury, is becoming increasingly evident.

Increasing patients and the defect of pretreatments with

this condition demonstrates a pressing requirement for the

progress of novel targeted agents for metabolic pathways

resulting in diabetes and diabetic complications. Many

signaling cascades have been shown to play a role in this

condition; however, no therapeutic agents currently exist.

Therefore, more additional targeted treatment still needs to

be identified. Some research has indicated that the SIRT1-

HMGB1 axis can play a major pathway for novel beneficial

adjustment.

3.7.1 SIRT1-HMGB1 axis in retinal complications
Diabetic retinopathy (DR), as a frequent complication

especially in type 2 diabetes, has been more and more

associated with inflammation (Zhang et al., 2012). It is

characterized by abnormal retinal neovascularization,

endothelial dysfunction and vascular inflammation

(Robinson et al., 2020). It has been reported that insulin-

like growth factor binding protein 3 (IGFBP3) is

neuroprotective in the retina, reducing retinal

inflammation induced by injury (Jiang Y. et al., 2018). It

has also been shown that IGFBP3 reduces hepatic

inflammatory response via the reduction in the activity of

NF-κB and Janus kinase (JNK). Simultaneously, exchange

protein activated by cAMP 1 (EPAC1), a guanine nucleotide

exchange factor, can prohibit inflammatory pathways, block

retinal leukostasis, and decrease entire HMGB1 levels in

retinal capillary endothelial cell (REC) (Jiang et al., 2017).

HMGB1 can directly bring about apoptosis in REC and

diabetic human and rat retinas (Mohammad et al., 2015).

Lossing EPAC1 statistically greatly cuts down IGFBP3 levels

in the retinal vasculature in the mouse. EPAC1 activates

IGFBP3 to raise SIRT1, reducing the acetylation of HMGB1.

High glucose levels were also shown to increase the

acetylation of HMGB1 in RECs, and this effect was

inhibited by the EPAC1 agonist (Jiang Y. et al., 2018).

Protein kinase A (PKA) can also mediate reductions in

cytoplasmic HMGB1 by increasing the activity of both

IGFBP3 and SIRT1, which has a protective effect on the

DR. Thus, SIRT1 and HMGB1 axis is a promising pathway

for the development of a therapeutic intervention for

vascular inflammation. Simultaneously resveratrol

replenishes the expression of retinal SIRT1. Consequently,

resveratrol could be considered a novel therapeutic
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candidate in the context of DR through the SIRT1/

HMGB1 pathway.

3.7.2 SIRT1-HMGB1 axis in myocardial injury
Myocardial injury is another serious complication of

diabetes, leading to the death of the myocardial cell (MC) and

harming the prognosis of patients. Inflammatory cytokines

promote the initiation and development of heart injury.

HMGB1 has been shown to participate in varied

pathophysiological signaling pathways caused by the

physiological environment of diabetes, and perform various

functions such as activating endothelial cells, expressing

chemokine receptors, producing inflammatory factors, and

promoting cardiomyocyte necrosis or necroptosis (Ghigo

et al., 2014). Cardiomyocytes and cardiac fibroblasts can

release HMGB1, and HMGB1 can, in turn, facilitate cardiac

injury or cardiac fibrosis. Reactive oxygen species (ROS) resulting

from heart injury can promote HMGB1 translocation from the

nucleus to the cytosol, and then boost autophagic flux, suggesting

that translocation of HMGB1 induces autophagy after long-term

cellular stress. In addition, HMGB1 facilitates the recruitment of

inflammatory cells, including macrophages and neutrophils, to

the injured heart through chemokines [e.g., chemokine ligand 12

(CXCL12)]/chemokine receptor 4 (CXCR4). After heart injury,

macrophages in the cardiac resident migrate to external immune

organs. Stressed cardiomyocytes or immune cells produce

HMGB1 and angiotensin Ⅱ (ANG II), which can gather Ly6C

+ monocytes into the heart of injury and recombine the

infiltrated monocytes into M1 macrophages. The recombined

M1 macrophages can contribute to CD4 (+) T cell extension and

cardiac injury (Lu et al., 2019). Besides, HMGB1 activates NF-κB
to promote the expression of pro-inflammatory factors (Lotze

and Tracey, 2005). SIRT1 reduces the production and activation

of inflammatory cytokines, resulting from inhibiting NF-κB
transcriptional activity through deacetylation of the

p65 subunit. Xue et al. (2019) indicated as an anti-

inflammatory drug, chrysophanol has a protective effect on

heart damage induced by diabetes, suggesting that this drug

may attenuate inflammatory responses through upregulation of

SIRT1, resulting in downregulation of the HMGB1/NF-κB

pathway. All this evidence indicates that chrysophanol can be

a useful agent for the treatment of myocardial illness resulting

from diabetes.

3.8 SIRT1 in HMGB1-mediated tumor
occurrence

Globally, cancer incidence and mortality are on the rise (Xu

et al., 2019a). Cancer is one of the principal causes of death

worldwide in countries of all income levels (Jemal et al., 2011). In

the United States, up to 25% of deaths in humans presently are

distinctly related to cancer (Balachandran and Govindarajan,

2005). Cancer is typically treated with a combination of surgery,

chemotherapy, ionizing radiation therapy, hormonal therapy,

and targeted therapy. Recently, there have also been profound

breakthroughs in cancer treatment including checkpoint

blockade immunotherapies (Siegel et al., 2020). Though there

have been many recent therapeutic advances in cancer treatment,

it is still considered an incurable disease in many instances

(Wang et al., 2018). Thus, more effective or adjunctive

therapies are needed to prevent and treat these currently

intractable cancers. Some potential anticancer drugs that act

via the HMGB1 and SITR1 pathways have been identified.

The following sections provide an overview of these drugs

(Table 2).

Traditional anti-inflammatory drugs have anti-cancer and

anti-tumor properties. For example, numerous epidemiological

studies have revealed that malignancy and cancer incidence are

credibly reduced after using nonsteroidal anti-inflammatory

drugs (NSAID) for a long time, including aspirin, celecoxib,

diclofenac, diflunisal, sulindac, and tolmetin (Khandia and

Munjal, 2020). So cancer is closely related to inflammation.

Chronic inflammation is involved in all stages of cancer

development and the inflammatory tumor microenvironment

is a hallmark of cancer. According to epidemiological and clinical

estimation, about 25% of cancers are associated with chronic and

acute inflammation (Wu et al., 2017). Therefore, our

understanding of the pathological mechanisms of cancer can

contribute to recognizing the link between cancer and

TABLE 2 Summary of direct and indirect SIRTI activators with therapeutic potential in tumor occurrence.

Therapy Cell types Inhibition of
HMGB1

Activated
transcription
factors

Main outcome Ref.

Resveratrol Liver cell Overexpression and
hyperacetylation

SIRT1 Reduce liver damage after liver resection Yu et al. (2019)

Doxorubicin Ovarian cancer
cell

Expression or acetylation SIRT1 Suppress migration, invasion or angiogenesis
of ovarian cancer cells

Zhu et al. (2017), Jiang W.
et al. (2018)

Emodin Osteosarcoma
cell

Acetylation SIRT1 Alleviate tumour angiogenesis Qu et al. (2015)
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inflammation. In 1863, Virchow hypothesized that the sites of

cancer occurrence are triggered by chronic inflammation and

that some classes of irritants enhance cell proliferation by

eliciting tissue injury and inflammation (Balkwill and

Mantovani, 2001). Indeed, it is now clear that sustained cell

proliferation in an environment rich in inflammatory cells,

growth factors, activated stroma, and DNA damage-

promoting agents promotes and/or maintains neoplastic risk

(Singh et al., 2019). The pro-tumor activity of inflammatory

cells includes stimulating growth and survival factors secretion,

spurring DNA damage, motivating angiogenesis and

lymphangiogenesis, remodeling the extracellular matrix to

facilitate invasion, disseminating tumor cells via lymphatic

vessels and capillaries, and avoiding host defense mechanisms

(Singh et al., 2019). Susceptibility to cancer and subsequent

disease severity may be associated with functional

polymorphisms of inflammatory cytokine genes; experimental

genetic deletion or inhibition of these cytokines inhibits the

development of cancer (Balkwill and Mantovani, 2001). Anti-

inflammatory therapy is effective during the early neoplastic

progression and malignant conversion stages of cancer

development. For instance, ulcerative colitis and Crohn’s

disease can increase the neoplastic risk and this process is,

reduced by the use of anti-inflammatory agents for colitis

(Zappavigna et al., 2020). Also, the use of NSAIDs decreases

the number and size of colonic polypsin in patients with familial

adenomatous polyposis; similarly, aspirin has also been found to

confer a protective effect on the colorectum in patients with

Lynch syndrome (Park et al., 2014). Therefore, anti-

inflammatory therapy may be a useful option for treating

early-stage diseases and precancers.

3.8.1 SIRT1 in HMGB1-mediated hepatocellular
carcinoma

Hepatocellular carcinoma (HCC), or primary liver cancer, is

one of the major causes of death related to cancer worldwide

(Gravitz, 2014). Although great progress has been made in the

diagnosis and treatment, the treatment difficulty and morbidity

of liver cancer are still high (Ferlay et al., 2010). Hepatectomy is

the most commonly used and effective treatment for liver cancer

in the clinic (Wang et al., 2013). However, this may change the

structure and function of the liver, leading to liver failure (Jin

et al., 2013). Accordingly, it is still important to develop new

therapeutic methods to treat postoperative liver failure.

HMGB1 is released by injured liver cells, which may prolong

inflammatory responses and promote the progression of liver

disease. SIRT1 levels in normal liver tissue are very low, but

overexpression in liver cancer tissues and cell lines shows that

SIRT1 has a key role in liver cancer (Portmann et al., 2013).

Numerous in vivo and in vitro studies have also indicated the

anti-tumor effects of resveratrol on the initiation and progression

of cancer (Yu et al., 2019). Yu et al. (2019) found that

HMGB1 expression and acetylation levels in a rat model of

liver resection were enhanced and resveratrol could prohibit

this effect. They also found that resveratrol treatment can also

prohibit the downregulation of SIRT1 in liver tissues resulting

from surgical resection. HMGB1, as a substrate of SIRT1, can be

deacetylated by SIRT1. Therefore, RES has the potential to

protect the liver from hepatectomy injury, which is closely

related to the SIRT1-HMGB1 axis.

3.8.2 SIRT1 in HMGB1-mediated ovarian cancer
Ovarian cancer is the second leading cause of gynecologic

cancer death in women worldwide (Lheureux et al., 2019).

Ovarian cancer is frequently not diagnosed until it is at an

advanced stage owing to a lack of specific symptoms; late

diagnosis renders it hard to treat (Stewart et al., 2019). Early

studies have indicated that HGMB1 has a role in ovarian cancer

pathogenesis. The expression of HMGB1 in tissues and serum of

ovarian cancer patients was higher than that of benign tumor or

normal control group (Wang et al., 2015). Seidu et al. (2017)

showed that HMGB1 upregulation may facilitate migration and

invasion in ovarian cancer. Jiang W. et al. (2018) found that the

regulation of cell migration, invasion and angiogenesis by

HMGB1 was governed by SIRT1. SIRT1 can improve the

prognosis of ovarian cancer. Ding et al. proved that alisertib

could inhibit epithelial-mesenchymal transformation and induce

autophagy in ovarian cancer cells by increasing SIRT1 expression

(Wang et al., 2019). Meanwhile, overexpression of SIRT1 can

effectively inhibit the expression and acetylation of HMGB1, thus

inhibiting the migration, invasion and angiogenesis of ovarian

cancer (Jiang W. et al., 2018). The SIRT1/HMGB1 axis may

therefore be a key therapeutic target for inhibiting ovarian cancer

migration, thus attenuating the progression of this disease.

3.8.3 SIRT1 in HMGB1-mediated osteosarcoma
Osteosarcoma (OS) originates from MSCs and is considered

the most frequent malignant bone tumor (Liu et al., 2021b). It is

characterized by osteoid tissue generation or immature bone

formation, especially in adolescents (Spraker-Perlman et al.,

2019). With the introduction of neo-adjuvant chemotherapy

in the 1970s, disease prognosis improved from 17% to a 5-

years survival rate of 60%–70%, but there has been no significant

improvement since then. There is an urgent need for new and

innovative treatment strategies to supplement traditional

approaches to improve the prognosis of patients with OS (Liu

et al., 2021b). Except for cell proliferation and invasion, OS is also

characterized by angiogenesis (Mikulić et al., 2004). Qu et al.

(2015) found that in nude mice bearing human OS xenograft

tumors, HMGB1 administration significantly increased

angiogenesis in the tumor tissue. Recent research has also

shown that angiogenesis was inhibited by SIRT1 activation,

which downregulated VEGF transcription and inhibited

angiogenesis induced by HMGB1 (Kim et al., 2014). Emodin,

as a compound, deacetylates HMGB1 and attenuates

angiogenesis induced by HMGB1 in OS by increasing

Frontiers in Cell and Developmental Biology frontiersin.org11

Wei et al. 10.3389/fcell.2022.986511

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.986511


SIRT1 expression and its deacetylation activity (Qu et al., 2015).

Therefore, the clinical application of emodin may constitute an

effective treatment strategy for OS in the future by acting on the

SIRT1-HMGB1 axis.

4 Summary

Inflammation includes diabetes, cardiovascular diseases, eye

disorders, arthritis, obesity, autoimmune diseases, and

inflammatory bowel reaction (Arulselvan et al., 2016). The

inflammatory process includes dilating veins and arterioles,

increased vascular permeability, and blood flowing into

surrounding tissues by the extravasation of leukocytes

(Henson et al., 1984). SIRT1 and HMGB1 directly interact

with one another, forming a stable complex in cells (Hwang

et al., 2015). It is of great significance in controlling the progress

of inflammation. SIRT1 generates a principal function in

controlling the growth and progression of inflammation,

exerting anti-inflammatory effects mainly by inhibiting the

transcription of inflammation-related gene HMGB1 (Zhang

et al., 2010). In the process of oxidative stress and cell

necrosis, the integrity of the plasma membrane is destroyed,

conducing to the interaction between HMGB1 and its receptor

(notably, the RAGE) to promote the release of acetylated

HMGB1 from cells, and the extracellular HMGB1 enhances

inflammatory and immune responses (Hofmann et al., 1999;

Park et al., 2006; Venereau et al., 2012; Yang et al., 2020b).

HMGB1, as a substrate of SIRT1, is deacetylated by SIRT1 and

left in the nucleus to alleviate the symptoms of inflammation

significantly.

SIRT1 and HMGB1 are ancient signaling pathways that

regulate metabolically and inflammation in mammals by

opposite control mechanisms. In recent years, several

studies have found a close relationship between the two

proteins: SIRT1 can prohibit HMGB1 signaling directly,

promoting its deacetylation and reducing its cytoplasmic

translocation (Rabadi et al., 2015), resulting in decreased

inflammatory responses (Petrovič, 2014). In turn, the

HMGB1 pathway suppresses its downstream targets, which

inhibits SIRT1-mediated functions. Given that SIRT1 and

HMGB1 signaling pathways have antagonistic effects, these

pathways can control many metabolic and inflammatory

switches physiologically related to maintaining cellular and

organismal homeostasis. Understanding this interaction

deeply may contribute to providing brand new and valuable

clinical targets for treating cancer and other conditions

involving inflammation.

Some anti-inflammatory agents, including ω-3 PUFAs,

oleanolic acid, baicalin, aloin, kaempferol, chrysophanol,

and polydatin suppress the HMGB1/TLR4/NF-κB signaling

pathway through activating SIRT1 (Matsuzawa-Ishimoto

et al., 2017), and can yield improvements in

neuroinflammation, arthritis, hepatocyte inflammation, and

complications resulting from diabetes. Other pharmaceuticals

include antitumor drugs (e.g., resveratrol, doxorubicin, and

emodin), which can enhance the efficacy of treatments for

certain cancers, such as hepatocellular carcinoma, ovarian

cancer, and OS. These drugs increase interaction between

SIRT1 and HMGB1 directly by enhancing the expression

and activity of SIRT1 and reducing HMGB1 acetylation,

inhibiting the nuclear-to-cytoplasmic translocation and

subsequent secretion of HMGB1 from cells, and attenuating

the downstream inflammatory cascade. The involvement of

many molecules in this process indicates that there are

multiple options for novel therapeutic approaches yet to be

identified, developed, and put into clinical practice. Currently,

many studies have focused on mouse models, and clinical

studies in humans are required to confirm the mechanisms of

action, efficacy, and safety of potential therapies. The anti-

inflammatory effects caused by these molecules make their

protective effect on inflammation obvious. At the same time,

the field involving HMGB1 to induce SIRT1 activation has not

been widely explored. Further research is needed to

understand the effect of HMGB1 on SIRT1 better. Taken

together, the anti-inflammatory effects induced by these

molecules provide theoretical support for further

exploring inflammatory pathways. SIRT1/

HMGB1 pathway offers a new therapeutic target for

inflammatory diseases.
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