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Desmin (DES) is a classical type III intermediate filament protein encoded by

the DES gene. Desmin is abundantly expressed in cardiac, skeletal, and smooth

muscle cells. In these cells, desmin interconnects several protein-protein

complexes that cover cell-cell contact, intracellular organelles such as

mitochondria and the nucleus, and the cytoskeletal network. The extra- and

intracellular localization of the desmin network reveals its crucial role in

maintaining the structural and mechanical integrity of cells. In the heart,

desmin is present in specific structures of the cardiac conduction system

including the sinoatrial node, atrioventricular node, and His-Purkinje system.

Genetic variations and loss of desmin drive a variety of conditions, so-called

desminopathies, which include desmin-related cardiomyopathy, conduction

system-related atrial and ventricular arrhythmias, and sudden cardiac death.

The severe cardiac disease outcomes emphasize the clinical need to

understand the molecular and cellular role of desmin driving

desminopathies. As the role of desmin in cardiomyopathies has been

discussed thoroughly, the current review is focused on the role of desmin

impairment as a trigger for cardiac arrhythmias. Here, themolecular and cellular

mechanisms of desmin to underlie a healthy cardiac conduction system and

how impaired desmin triggers cardiac arrhythmias, including atrial fibrillation,

are discussed. Furthermore, an overview of available (genetic) desmin model

systems for experimental cardiac arrhythmia studies is provided. Finally,

potential implications for future clinical treatments of cardiac arrhythmias

directed at desmin are highlighted.
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Introduction

For a healthy function of the heart, the crucial importance of intermediate filament

(IF) proteins to maintain balanced communication within and between neighbouring

cardiomyocytes has been recognized (Hnia et al., 2015; Henning and Brundel, 2017;

Brodehl et al., 2018). Desmin is a key IF subunit expressed in specialized cardiac cell

subpopulations related to the cardiac conduction system, including the sinoatrial node

(Mavroidis et al., 2020), atrioventricular node (Benvenuti et al., 2012), and His-Purkinje

system (Yuri et al., 2007). As such, desmin controls the structural and mechanical
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integrity of the contractile apparatus and is involved in the

conduction of electrical signals within the heart (Tsikitis et al.,

2018).

The important function of desmin in the cardiac conduction

system is related to the distinctive property of desmin to form

networks that connect and anchor various cell structures and

organelles including desmosomes, costameres, Z-bands, the

cytoskeleton, mitochondria, and nuclei (Henning and Brundel,

2017). In addition, desmin binds to various proteins within

cardiomyocytes, modulating a variety of (Henning and Brundel,

2017) signaling pathways to maintain a healthy cardiomyocyte

function. As a consequence, variations in the desmin (DES) gene

have been reported in a number of cardiac diseases including atrial

and ventricular arrhythmias, as well as hypertrophic-, restrictive-,

dilated-, and non-compaction cardiomyopathy (Protonotarios

et al., 2021). Although various papers describe the role of DES

variants underlying cardiomyopathies, limited information is

available on the molecular origin of DES variants, loss of

expression, and the onset of cardiac arrhythmias, including

atrial fibrillation (AF). As cardiomyocytes within the cardiac

conduction system are particularly prone to age-related desmin

dysfunction and consequently structural and functional

impairment, desmin dysfunction increases the likelihood of

arrhythmias and the requirement for pacemaker implantation

in the growing aging population (Goldfarb et al., 2004). This

review will provide up-to-date insight into the molecular and

cellular mechanisms of desmin to underlie a healthy cardiac

conduction system and how impaired desmin triggers cardiac

arrhythmias, including AF. Furthermore, an overview of available

genetic desmin model systems for experimental cardiac

arrhythmia is provided. Finally, potential implications for future

clinical treatments of cardiac arrhythmias directed at desmin are

discussed.

Desmin expression patterns during
cardiac development

The distribution pattern of high desmin levels in the heart

elucidates its role in the cardiac conduction system (Yamamoto

et al., 2011). Immunohistochemical staining of human

embryonic hearts described the spatial expression of desmin

at different developmental stages. According to Carnegie

stages, desmin is first expressed in the myocardial wall of the

atrioventricular canal and the upper region of the primary ring at

stage 11. During stage 12 through stage 13 of cardiac

development, desmin is expressed in the primordium of the

sinus node and right venous valve. When septation of the heart is

almost complete, at late embryo stage 20, desmin is widely

expressed in the primordium of the atrioventricular node, the

atrioventricular bundle, the bundle branches, and at the entire

ventricular trabeculations (Liu et al., 2020). The distribution of

desmin throughout the conduction system and the key role of the

desmin network in the maintenance of cardiomyocyte structure

and mechanical function provides a direct morphological basis

for investigating the mechanism of arrhythmogenesis caused by

desmin impairment. This is supported by previous studies, which

showed that genetic variations of DES and loss of desmin

expression trigger cardiac arrhythmia (Liu et al., 2020).

Desmin network and molecular
interaction partners

Desmin is abundantly expressed in cardiomyocytes and

represents one of the type III intermediate filaments. The

important function of desmin in the cardiac conduction

system is related to the distinctive property of desmin to form

intra- and intercellular networks by connecting and anchoring

various cytoskeletal structures and organelles, including

desmosomes, mitochondria, nuclei, costameres, and Z-bands

(Figure 1) (Herrmann and Aebi, 2004; Brodehl et al., 2018).

In cardiomyocytes, the desmin network plays an important

role in striated myocardium development and maintenance by

integrating and coordinating most cellular components necessary

for proper mechanochemical signaling, organelle cross-talk,

energy production, and trafficking processes required for proper

tissue homeostasis (Capetanaki et al., 2015). Desmin interacts

directly with various proteins within cardiomyocytes, as such

desmin modulates a diversity of signaling pathways to maintain

a healthy cardiomyocyte function. Desmin interacts directly with

other members of the intermediate filaments family, costameres,

cytolinkers bridging organelles and cytoskeleton, and the LINC-

complex protein nesprin-3 that is present in the nuclearmembrane

(Figure 1) (Hol and Capetanaki, 2017). In addition, desmin binds

indirectly to posttranslational modifications and signaling

pathways that are important for proper skeletal or cardiac

muscle functions (Figure 1).

Although it has been thoroughly described that desmin

interacts with mitochondria, the nature of this interaction is

not fully understood. Binding can be indirect through desmin-

associated proteins, such as plectin. Moreover, the direct binding

of desmin with the lipid phosphatase myotubularin has been

shown to regulate mitochondrial dynamics, morphology, and

function (Hnia et al., 2011). However, recent data shows that

mitochondria can directly interact with desmin in vitro (Dayal

et al., 2020). Mitochondrial function and structure abnormalities

seem to be the earliest detected defects in desmin knockout

cardiomyocytes. These defects include morphological

aberrations in the form of mitochondrial swelling, increased

mitochondrial size, disrupted cristae structure, loss in

respiration, abnormal activation of mitochondrial permeability

transition pore (mPTP), and dissipation of the mitochondrial

membrane potential (Diokmetzidou et al., 2016). These

alterations are known to play a role in cardiac arrhythmias,

therefore a possible association between desmin disruption and
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the onset of cardiac arrhythmias has been suggested (Rutledge

and Dudley, 2013; Pool et al., 2021).

Recently, the various binding partners of desmin have been

elucidated (Hnia et al., 2015). Based on published data (Hnia

et al., 2015; Hol and Capetanaki, 2017) and interaction databases

BioGRID4.4, the interactome of desmin binding partners has been

depicted (Figure 2). Here, we introduce three categories of

desmin protein partners in detail: intermediate filaments,

intercalated discs, and αB-crystallin.

Intermediate filaments

In muscle cells, desmin interacts with type III intermediate

filament protein vimentin (Shahraz et al., 2017) and syncoilin

(Poon et al., 2002), type IV intermediate filament protein

synemin (Granger and Lazarides, 1980) and nestin (Cízková

et al., 2009), and type V intermediate filament protein lamin

(Cartaud et al., 1995). Lamins consist of two types, type A and

type B, according to their structural similarities and isoelectric

points. Lamin type A consists of lamin A and lamin C, both of

them transcribed from LMNA and turned into lamin A and

lamin C by alternative splicing. Lamin A/C is located in the

nuclear interior. Lamin B is transcribed from LMNB, and along

with heterochromatin, is anchored to the inner surface of the

nuclear membrane by the lamin B receptor. Lamin B has been

suggested to be a direct binding partner of desmin (Georgatos

and Blobel, 1987). Interestingly, a desmin depletion leads to

infolding of the nuclear envelope, loss of the nuclear integrity,

increased amount of DNA damage, and diminished contractile

FIGURE 1
Overview of desmin network in and between cardiomyocytes. Desmin interacts with different organelles (including nucleus and mitochondria)
and connects the entire contractile apparatus to different membranous compartments (such as sarcolemma, costameres and desmosomes of the
intercalated disks) to form a continuous cytoskeletal intermediate filaments network.
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function (Heffler et al., 2020). Similarly, the anchoring of desmin

to the nucleus is lost in a Lamin A/C (Lmna−/−) knockout mice

model mice, which causes disorganization of the desmin

(Nikolova et al., 2004). Furthermore, a known pathogenic

lamin A/C variations can lead to desmin dysfunction as was

shown in a cardiomyopathy LmnaH222P/H222P mouse model.

Disturbance in the nuclear lamina introduced due to the

Lmna variation leads to mislocalization of desmin at the

Z-disk and intercalated disk, and desmin aggregate formation.

Interestingly, overexpression of the small heat shock protein αB-
crystallin or reduction of endogenous desmin, improved

LmnaH222P/H222P cardiac function and pathology (Galata et al.,

2018). Syncoilin is found at the neuromuscular junction,

sarcolemma, and Z-lines, which are involved in the anchoring

of the IF network at the sarcolemma and the neuromuscular

junction. The dysfunction of syncoilin may result in the

disruption of the IF network (Poon et al., 2002). Vimentin is

expressed in mesenchymal cells, vimentin together with desmin

and nestin play a significant role in the construction and

restoration of skeletal myofibers (Sjöberg et al., 1994).

Intercalated discs

Desmin interacts with the desmosomes of the intercalated

discs through desmoplakin (Capetanaki et al., 2015). Intercalated

discs consist of three types of cellular junctions: adherent

junctions, desmosomes, and gap junctions. Intercalated discs

are structures that connect adjacent cardiomyocytes, which are

crucial for cell-cell mechanical and electrical connections, and as

FIGURE 2
Desmin interactome map. Desmin-associated proteins include chaperones, DNA-related proteins, intermediate filaments, proteolysis and
post-translational modifications, cytolinkers bridging sarcomeres and the cytoskeleton, and cellular signaling. Desmin-associated proteins are
localized in multiple compartments, including costameres, contractile apparatus, intercalated discs, lysosomes, mitochondria, and the nucleus.
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such are fundamental for cardiac function. In desmin knockout

mice, changes in the morphology of intercalated discs were

observed (Thornell et al., 1997). By immunohistological

analysis of cardiac tissue heterozygous for the DES p.A120D

mutation, Brodehl et al. (2013) found that desmin localization is

completely lost at the intercalated discs. An impaired desmin

network may slow electrical conduction, enhance conduction

heterogeneity, and predispose patients to develop reentrant

arrhythmias (Capetanaki et al., 2015).

αB-crystallin

Transient transfection of H36CE cells with the small heat

shock protein αB-crystallin (encoded by CRYAB) indicate that

αB-crystallin and desmin form a functional complex (Elliott

et al., 2013). The association of desmin with the αB-crystallin,
and the fact that both the CRYAB p.R120G variant and DES

variants lead to cardiac arrhythmias in mice (Jiao et al., 2014),

and CRYAB variant p.D109G and DES variants lead to restrictive

TABLE 1 Overview of different types of cardiac conduction disease and arrhythmias related to DES variant carriers.

Cardiac arrhythmia DES variant Categorization References

AF p.R355P Pathogenic Wahbi et al., 2012

AF p.R406W Pathogenic Wahbi et al., 2012

AF p.E413K Pathogenic Pruszczyk et al., 2007

AF p.E439K Pathogenic Wahbi et al., 2012

AF p.R454W Pathogenic Wahbi et al., 2012

AF p.E457V Pathogenic Hong et al., 2011

AF p.D214-E245del Pathogenic Brodehl et al., 2021

AF p.N342D Pathogenic van Spaendonck-Zwarts et al., 2012

AF p.S13F Pathogenic Abou Ziki et al., 2021

AVB p.S12F Pathogenic Hong et al., 2011

AVB p.R16C Pathogenic Sharma et al., 2009

AVB p.E234K Likely pathogenic Chen et al., 2017

AVB p.E245D Pathogenic Conover et al. (2009)

AVB p.L274P Pathogenic Hong et al., 2011

AVB p.N342D Pathogenic Wahbi et al., 2012

AVB p.I367F Pathogenic Olivé et al., 2007

AVB p.R406W Pathogenic Arbustini et al., 2006

AVB p.R454W Pathogenic Wahbi et al., 2012

AVB p.E457V Pathogenic Hong et al., 2011

AVB p.S460I Pathogenic Chourbagi et al., 2011

AVB p.X471Y Pathogenic Chourbagi et al., 2011

AVB p.E410K Pathogenic Fischer et al., 2021

AVB p.R355P Pathogenic Wahbi et al., 2012

AVB p.Y112H Pathogenic Brodehl et al., 2019

LBBB p.K144X Pathogenic Wahbi et al., 2012

LBBB p.S298L Likely pathogenic Olivé et al., 2007

LBBB p.E413R Pathogenic Wahbi et al., 2012

LBBB p.I402T Pathogenic Fischer et al., 2021

RBBB p.E245D Pathogenic Strach et al., 2008

RBBB p.A337P Pathogenic Goldfarb et al., 1998

RBBB p.L345P Pathogenic Sjöberg et al., 1999

RBBB p.S13F Pathogenic van Spaendonck-Zwarts et al., 2012

LAFB p.E108K Pathogenic Taylor et al., 2007

ARVC p.S13F Pathogenic van Tintelen et al., 2009

ARVC p.N116S Pathogenic Klauke et al., 2010

ARVC p.P419S Pathogenic Otten et al., 2010

ARVC p.N342D Pathogenic Hedberg et al., 2012

AF, atrial fibrillation; AVB, atrioventricular block; LAFB, left anterior fascicular block; LBBB, left bundle-branched block; RBBB, right bundle-branched block; ARVC, arrhythmogenic right

ventricular cardiomyopathy.
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cardiomyopathy (Brodehl et al., 2017), suggest a potential

compensatory interplay between the two in cardioprotection.

Both proteins co-localize at the mitochondria-SR contact sites

(Diokmetzidou et al., 2016), and disruption of the mitochonrida-

SR contact sites has been suggested to underlie AF (Henning and

Brundel, 2017; Wiersma et al., 2017; Li et al., 2019).

Overexpression of αB-crystallin in desmin-deficient mice

hearts ameliorates all mitochondrial defects and improves

cardiac function significantly (Diokmetzidou et al., 2016).

Desmin variants and clinical
arrhythmias

Because desmin is located in different human tissues, the

clinical phenotypes associated with DES variants are diverse. So

far, over 60 different pathogenic DES variants have been

described (Hnia et al., 2015). Most patients with DES variants

develop combined skeletal and cardiac myopathy.

A limited amount of variants in desmin genes have been

identified that affect exclusively cardiac function (for details, see

Table 1). A meta-analysis including 40 different DES variants

revealed that 50% of the carriers developed cardiomyopathy and

around 60% cardiac conduction disease (CCD) or arrhythmias,

with the atrioventricular block (AVB) as an important hallmark

(van Spaendonck-Zwarts et al., 2011). DES variants with a

pathogenic single nucleotide polymorphism located in coil 2B

or near the carboxyl terminus of the gene, usually result into

missense mutations that associate with conduction diseases and

arrhythmias (Figure 3; Table 1). Moreover, several studies

showed that single nucleotide polymorphisms (SNPs) around

DES c.375G leads to a splice variant which excludes exon 3

(p.D214-E245del) (Ojrzyńska et al., 2017; Fan et al., 2019;

Brodehl et al., 2021; Chen et al., 2021). The carboxyl tail of

desmin has previously been suggested to play an important role

in filament-filament interactions, and variations lead to filament

flexibility and stiffening of the filament. Furthermore, Bär et al.

(2010) suggest that variations in the carboxyl tail lead to impaired

cellular mechanosensing and intracellular mechanotransduction

(Bär et al., 2007; Bär et al., 2010). The rod part of desmin is made

up of four coil domains and consists of a heptad-repeat

arrangement which enables desmin to form stable parallel,

two-stranded α-helical coiled-coil dimers. Notably, the end of

the coil 2B region of desmin contains the “IF-consensus” motif:

‘“TYRKLLEGEESRI” (amino acid 404–416) which is important

in filament assembly, stability, and contains multiple pathogenic

variants (Figure 3; Table 1) (Bär et al., 2004; Herrmann and Aebi,

2004). So, gene variants located in coil 2B and/or carboxyl

terminus of desmin are associated with clinical arrhythmias.

As these locations are involved in filament stability and

interactions, loss in filament network may trigger DES

variant-induced cardiac arrhythmias. In addition, a previous

study showed that DES p.N116S, a variant located in the

conserved IF ‘LNDR’-motif which is located in the coil 1A

region, leads to disturbed desmin filament formation and fuels

aggresome formation (Figure 3).

Pathophysiological mechanisms of
desmin variant-induced cardiac
conduction disease and arrhythmia

By utilizing DES variant model systems, the most obvious

pathological hallmark for cardiac dysfuntion is an abnormal

cytoplasmic configuration of the desmin network and desmin

aggregation formation. Desmin aggregation has been observed in

subsarcolemmal, intermyofibrillar, and perinuclear regions

(Carlsson et al., 2002). In mice overexpressing desmin with a

FIGURE 3
Schematic overview of cardiac conduction defects and arrhythmias associated with DES variants. (A) Schematic overview of the DES gene
consisting of nine exons. (B) Schematic domain organization of desmin and the localization of the known conduction defects and arrhythmias
associated with DES variants. Variants are subdivided into five groups depending on their related phenotype: Atrial fibrillation (brown), Left anterior
fascicular block (yellow), Left bundle-branched block (green), Arrhythmogenic right ventricular cardiomyopathy (purple), Atrial flutter (orange),
atrioventricular block (blue), and Right bundle-branched block (pink).
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seven amino acid deletion, toxic aggregates of desmin were

observed. As desmin normally interacts with other cytoskeletal

proteins and organelles, loss in this network will disrupt the

continuity and overall organization of cell structure from the

sarcolemma to the nuclear envelope (Wang et al., 2001). One

patient with a homozygous missense mutation in the DES gene

(p.Y122H) was diagnosed with restrictive cardiomyopathy and

AVB. By generating an induced pluripotent stem cell (iPSC)

model expressing p.Y122H in combination with functional

analysis, Brodehl et al. (2019) showed that variant p.Y122H

caused severe filament assembly defect and desmin

aggregation, which may drive AVB.

Regarding cardiac conduction diseases, AVB may be

associated with anatomical interruption of the atrioventricular

conduction system. This pathological phenotype has been

reported in the cardiac conduction system of one patient with

p.A337P variation in the DES gene (Figure 4). This is an autopsy

case from a Japanese man who showed His bundle calcification

and left and right bundle branches with sporadic calcium

deposits (Yuri et al., 2007). Conversely, another autopsy case

from Brazil showed no calcification of the atrioventricular

junction and His bundle, there was extensive fibrosis of the

terminal portions of the branching bundle and the beginning of

the left and right bundles at the top of the ventricular septum

FIGURE 4
Overview potential pathophysiological mechanisms related to DES variants or loss. Experimental desmin knockout and variant model systems
reveal a role for desmin impairment in development of cardiac conduction defects and arrhythmias. Proposed mechanism of action is via altered
refractory periods, cytosolic Ca2+ concentrations, loss in desmin network, protein aggregation, and calcification.
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(Benvenuti et al., 2012). Further studies are needed to elucidate

the role of desmin disruption, calcification and onset of AVB.

Experimental desmin knock out
models and diversity in cardiac
arrhythmias

Previous studies utilizing DES knockout mouse models

showed that these mice develop and reproduce normally and

display no obvious anatomical defects (Li et al., 1997). However,

ultrastructural studies of heart tissue samples fromDES knockout

mice reveal damage including swollen, disintegrated and

abnormal distribution of mitochondria, all features that are

indicative of mitochondrial dysfunction (Agbulut et al., 2001).

Furthermore, costameres were found disrupted, especially at

Z-domains (O’Neill et al., 2002). Five days post-partum,

cardiomyofibers degenerate and 10 days post-partum, this was

complemented with an accumulation of macrophages, fibrosis,

and calcification of the inter-ventricular septum and the free wall

of the right ventricle (Sprinkart et al., 2012). Also, at the

ultrastructural level, intercalated discs were remodeled,

sarcolemma disruption and myofibrils showed super

contraction phenotype (Thornell et al., 1997).

In electrocardiography studies, desmin deficient mice present

a significantly reduced atrial but prolonged ventricular refractory

period, indicating increased inducibility of atrial arrhythmias but

diminished susceptibility to ventricular arrhythmias (Schrickel

et al., 2010). Moreover, knockdown of desmin in cardiomyocytes

results in an abnormal distribution of Ca2+. Here, a marked

increase in cytosolic Ca2+ concentration and a decrease in the

sarcoplasmic reticulum Ca2+ concentration was found. As

cytosolic Ca2+ overload is a trigger for AF (Brundel et al.,

2002a; Brundel et al., 2002b) and Ca2+ is a critical element in

the electrical excitation of cardiomyocytes, abnormal Ca2+

homeostasis may represent a mechanism by which desmin

loss participates in cardiac arrhythmia (Chen et al., 2020).

Compared with mouse models, utilization of zebrafish as a

model systems is easier to analyze the effect of desmin knock out

on desmin aggregation in the heart. Ramspacher et al. (2015)

generated two zebrafish models to compare a desmin loss of

function model with desmin aggregate formation model. They

found that both models led to cardiac arrhythmia and cardiac

dysfunction. These defects are related to abnormal Ca2+ flux due to

the disruption of excitation-contraction coupling machinery and

abnormal subcellular localization of ryanodine receptor (Figure 4).

Future therapies for desmin-induced
cardiac arrhythmias

Desmin aggregation in cardiomyocytes is the most

significant histopathological hallmark of desmin

cardiomyopathies. Moreover, desmin aggregation leads to

cardiomyopathy phenotypes (Ramspacher et al., 2015). One

of the critical steps for a future therapeutic approach to desmin

cardiomyopathies is to characterize representative animal

models (e.g., mice, zebrafish) that phenocopy desmin

aggregation in patients. Small heat shock proteins, including

HSP27, αA-crystallin, αB-crystallin, and HSP22 prevent protein

accumulation and aggregation formation (Garrido et al., 2012).

One previous study showed that the non-toxic HSP inducer

geranylgeranylacetone (GGA), a nontoxic antiulcer drug and

inducer of small HSPs can inhibit desmin-related

cardiomyopathy progression (Sanbe et al., 2009). This study

indicated that GGA can induce expression of HSPB8 and

HSPB1 inhibit protein aggregation. GGA led to a reduction

in heart size and inhibition of interstitial fibrosis, and recovery

of cardiac function as well as improved survival (Sanbe et al.,

2009). Additionally, manipulating cell signaling pathways

(i.e., PAK1, Rac1, PKC, or NSC23766), activating autophagy

(mTOR inhibitor PP242), and using antioxidants (α-
tocopherols or trolox) efficiently reduces up to 75% of

aggregation of desmin variants in muscle cells (Cabet et al.,

2015).

Targeting DES gene regulation could be a kind of effective

treatment that leads to a decreased expression of the mutant DES

allele. Such as RNA-targeted therapeutics, and methods based on

DNA genome editing using CRISPR-Cas9 (Abdelnour et al.,

2021). Nicorandil, a vasodilatory drug, was shown to prevent

ventricular tachyarrhythmias induction by normalizing

Cx43 expression in this desmin-related cardiomyopathy

mouse model (Matsushita et al., 2014).

Although there are no clear and effective treatment

methods and drugs for impaired desmin-induced cardiac

arrhythmia, some complications can be prevented. For

patients with early onset cardiac arrhythmia, early whole

genome sequencing, 24-hour holter monitoring, and

treatment of cardiac arrhythmias and conduction defects

are important, since early diagnosis allows to make

treatment plans at an early stage, reducing the incidence of

serious heart failure. At the same time implantation of a

pacemaker can be lifesaving. Modulating mitochondrial

function such as nicotinamide mononucleotide,

mitochondria-targeted peptides, gene, and stem-cell therapy

or muscle-specific gene transfer approaches are active areas of

research that promise effective treatments in the future

(Goldfarb et al., 2004; Clemen et al., 2013).

Summary

The desmin network plays a significant role in

maintaining the structural and mechanical integrity of

cardiomyoctyes. Moreover, desmin is involved in

cardiomyocyte function by modulating cellular signaling
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and calcium homeostasis. As desmin is highly expressed in

structures of the cardiac conduction system, the majority of

pathogenic DES variants cause cardiac arrhythmia and

cardiac conduction defects. On the molecular level,

impaired desmin causes severe filament assembly defects,

desmin aggregation, and abnormal distribution of Ca2+, that

collectively may drive cardiac arrhythmias and cardiac

conduction defects. Finally, further studies should

elucidate the exact molecular mechanism how desmin

affects specific cardiac conduction system structures. This

knowledge will aid in the identification of druggable targets

which may fuel development of effective mechanism-based

therapies to treat cardiac conduction defects and

arrhythmias.
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