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Osteoarthritis (OA) is a widespread andmost common joint disease which leads

to social cost increasing accompany with aging population. Surgery is often the

final treatment option. The major progression of OA includes cartilage

degradation caused by chondrocytes metabolism imbalance. So, the

molecular mechanisms of action in chondrocytes may provide insights into

treatment methods for OA. Adiponectin is an adipokine with many biological

functions in the cell metabolism. Numerous studies have illustrated that

adiponectin has diverse biological effects, such as inhibition of cell

apoptosis. It regulates various functions in different organs, including

muscle, adipose tissue, brain, and bone, and regulates skeletal homeostasis.

However, the relationship between adiponectin and cell death in the

progression of OA needs further investigation. We elaborate the structure

and function and the effect of adiponectin and state the correlation and

intersection between adiponectin, autophagy, inflammation, and OA. From

the perspective of oxidative stress, apoptosis, pyroptosis, and autophagy, we

discuss the possible association between adiponectin, chondrocyte

metabolism, and inflammatory factor efforts in OA. What’s more, we

summarize the possible treatment methods, including the use of

adiponectin as a drug target, and highlight the potential future mechanistic

research. In this review, we summarize the molecular pathways and

mechanisms of action of adiponectin in chondrocyte inflammation and

death and the pathogenesis of OA. We also review the research on

adiponectin as a target for treating OA. These studies provide a novel

perspective to explore more effective treatment options considering the

complex interrelationship between inflammation and metabolism in OA.
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Introduction

Osteoarthritis (OA) is a degenerative joint disease

characterized by pain and disability owing to cartilage

damage, synovial inflammation, and joint tissue problems. It

is also a significant societal problem, as the disease affects more

than 10% of the adult population worldwide (Hunter and

Bierma-Zeinstra, 2019). OA is associated with many factors,

such as age, sex, trauma, and obesity. One of the most

influential and modifiable risk factors is obesity (Wang and

He, 2018). Several studies have illustrated a strong association

between OA and obesity with an increase in body–mass index

(Martel-Pelletier et al., 2016; Reyes et al., 2016; Misra et al., 2019).

The mechanisms of how obesity results in the progression of OA

are unclear because of the complex interactions among the

metabolic, biomechanical, and inflammatory factors that

accompany increased adiposity (Collins et al., 2021). Previous

studies show that adipokines, which are secreted from fat tissues,

are associated with OA (Xie and Chen, 2019).

Adipose tissue has also been deemed as endocrine organ for

many years. The adipokines, secreted from adipose tissue,

include adiponectin; leptin; resistin; chemerin; adipsin;

acylation-stimulating protein (ASP); interleukin (IL)-1β, -6, -8,
and -10; and tumor necrosis factor (TNF)-α (Blüher and

Mantzoros, 2015; Fasshauer and Blüher, 2015). Adipokines

not only regulate appetite, satiety, fat distribution, insulin

sensitivity, energy, and inflammation but also modulate

adipogenesis and the metabolism and function of adipocytes

and immune cells (Blüher, 2014; Olszańska et al., 2021;

Rijnsburger et al., 2021). However, the function and potential

clinical value of many adipokines remain unknown. Among

these different effects, anti-inflammatory effects cannot be

overlooked. This review focuses on the effects of adiponectin

on OA.

Adiponectin

Adiponectin is a 30 kDa monomeric glycoprotein, which is

secreted in large quantities primarily from the adipose tissue

(Berg et al., 2002). The basic structure of adiponectin comprises

an N-terminal signal sequence, a nonhomologous or

hypervariable region, and a collagenous domain containing

22 collagen repeats (8 Gly-X-Pro and 14 Gly-X-Y), and a

C-terminal C1q-like globular domain (Frizzell et al., 2009). It

exists in a medium-molecular-weight (hexameric) form and a

high-molecular-weight (HMW) form, which are mainly

produced in vivo (Waki et al., 2003). The formation of

hexameric adiponectin is regulated by a disulfide bond

between two trimers mediated by the free Cys39. This

hexameric form is the basic unit for the HMW form, which

comprises 12–18 hexamers arranged in a specific structure

(Magkos and Sidossis, 2007). The HMW oligomeric

adiponectin is formed by hydroxylation and glycosylation of

several highly conserved lysine residues within its collagenous

domain. It is also the major bioactive isoform, which leads to

insulin sensitization and positively affects cardiovascular health

(Pajvani et al., 2004). The disulfide bond formation mediated by

Cys-39 in the N-terminal hypervariable region leads to the

formation of a multimeric complex, contributing to various

biological effects (Pajvani et al., 2003; Waki et al., 2003).

Endoplasmic reticulum resident protein 44 (ERp44), a

molecular chaperone, located in the endoplasmic reticulum,

forms a mixed disulfide bond with adiponectin through the

variable region that contains a cysteine residue (Cys36 in

humans and Cys39 in mice) (Wang et al., 2007). Adiponectin

oligomers are retained in the endoplasmic reticulum (ER) by

ERp44 using a thiol-mediatedmechanism, but another molecular

chaperone, ER oxidoreductase 1-La (Ero1-La), selectively

enhances the secretion of HMW adiponectin (Wang et al., 2007).

Mouse and human adiponectin consist of 247 and 244 amino

acids, respectively, and have 83% homology (Nakano et al., 1996).

Remarkably, the recombinant adiponectin produced by

Escherichia coli consists of only monomeric adiponectin,

which suggests that posttranslational processing by

mammalian adipocytes is necessary for the formation of

multimeric adiponectin (Wang et al., 2002). The globular

domain is similar in structure to that of complement factor

C1q, type VIII and X collagen, and TNF-α, which also has

biological activity (Hu et al., 1996; Shapiro and Scherer, 1998).

Adiponectin receptors

Adiponectin receptors are categorized into three types:

adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) and a

small adiponectin receptor, T-cadherin (Yamauchi et al., 2003;

Hug et al., 2004). AdipoR1 is a high-affinity receptor for globular

adiponectin and a low-affinity receptor for full-length

adiponectin, which is abundantly expressed in the skeletal

muscle, macrophages, and hypothalamus. However,

AdipoR2 is an intermediate-affinity receptor for both full-

length and globular adiponectin, which is expressed

ubiquitously in the liver, white adipose tissue, and vasculature

(Yamauchi et al., 2003; Iwabu et al., 2010; Yamauchi and

Kadowaki, 2013). T-cadherin shows certain distinct

characteristics. The glycosyl inositol (GPI) moiety of

T-cadherin keeps it localized to the cell membrane.

T-cadherin acts as a receptor for the hexameric and HMW

forms of adiponectin (Hug et al., 2004; Parker-Duffen et al.,

2013). T-cadherin deficiency causes endothelial dysfunction in

type 2 diabetes mellitus (T2DM) vascular segments, indicating

that T-cadherin plays a role in T2DM pathogenesis (Wang et al.,

2017). Adenosine 5′-monophosphate (AMP)-activated protein

kinase (AMPK), Ca2+, PPAR-α, ceramide, and even S1P are

found downstream of AdipoR1 and AdipoR2, which serve as
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major adiponectin receptors and mediate the metabolic activity

of adiponectin (Yamauchi et al., 2007; Yamauchi and Kadowaki,

2013).

Adiponectin and osteoarthritis

Because the occurrence and progression of OA often

accompany obesity and other metabolic diseases, it has

recently attracted significant attention. It is also significantly

associated with synovitis and rheumatoid arthritis. These

connections suggest that adiponectin can be used as a novel

target for bone tissue metabolic diseases.

Exercise as anti-inflammatory method

Physical exercise has been verified to exert positive

mechanical stress on joints. Appropriate exercise alleviates

mild inflammatory conditions in OA, cancer, and other

diseases and reduces the complications associated with obesity

or a high-fat diet. Studies demonstrate a strong correlation

between obesity and some molecules involved in the

inflammatory response, such as NF-κB, NLRP3, and caspase-1

(Vandanmagsar et al., 2011; Sun, 2017). Furthermore,

NLRP3 inflammasome is differentially affected by different

exercise patterns in various pathological factors. Chronic

exercise and moderate-intensity and high-intensity interval

training inhibit NLRP3 activation, whereas acute exercise

activates NLRP3 (Zhang et al., 2021). Another study showed

that exercise inhibits NLRP3 inflammasome expression and

inhibits inflammation and pyroptosis (Javaid et al., 2021). In

addition, swimming attenuated the phosphorylation of NF-κB in

aging hippocampus (Lin et al., 2020). And another study found

that regular voluntary exercise increase caspase-1 expression to

enhanced IL-1β and IL-18 secretion in macrophages (Shirato

et al., 2017). Similarly, exercise has been observed to exert

different effects on adiponectin. In a resistance training

program at various intensities, the elder male participants

with low intensities did not observe a change in adiponectin,

whereas moderate and high intensity produced an increase in

circulating adiponectin levels (Moghadasi et al., 2012). In another

study, people who undergo calorie restriction demonstrated an

increase total adiponectin concentration while only undertake

aerobic exercise did not have this effect (O’Leary et al., 2007).

Furthermore, elevated adiponectin promotes IL-6 and IL-8

secretion in Rheumatoid Arthritis (RA) (Choi et al., 2009).

That means raising adiponectin levels by exercise exacerbates

RA. These findings suggest that different types of exercise have

opposite effects on adiponectin metabolism, especially in obesity

and other dysfunction diseases such as RA and retinal diseases (Li

H. Y. et al., 2019). A study on exercise and diet showed that

resistance training in association with healthy food habits can

improve some inflammation biomarkers such as insulin-like

growth factor 1, adiponectin, leptin, interleukin-6, and

interleukin-1β and maintain muscle mass and lessen fat mass

in resistance-trained males (Moro et al., 2016). Adiponectin plays

an important role in the alleviation of inflammation observed as a

result of exercise.

Adiponectin and oxidative stress in
inflammation in OA

The core of oxidative stress is reactive oxygen species (ROS),

including free radicals such as oxygen free radicals (OH–),

hypochlorite ions (OCl–), superoxide anions (O2–), nitric

oxide (NO), and hydrogen peroxide (H2O2). ROS are

unstable and highly reactive because of unpaired electrons.

They are found at low levels in normal cells and play an

essential role in maintaining cellular function and homeostasis

(Trachootham et al., 2008). If this physiological mechanism is

disrupted, excessive ROS stimulate the gene expression of

inflammatory cytokines and chemokines, which causes

oxidation of proteins and lipids and changes their functions,

ultimately triggering oxidative damage that aggravates the

inflammatory response (Lismont et al., 2015). In

chondrocytes, low-level ROS often regulate gene expression

and the balance between extracellular matrix anabolism and

catabolism. Certain cytokines such as IL-1β are also induced

by ROS. Furthermore, excessive ROS reduce extracellular matrix

synthesis and lead to chondrocyte apoptosis (Ahmad et al., 2020).

Therefore, ROS are closely related to cartilage homeostasis.

Adiponectin also plays a crucial role in oxidative stress. It

regulates the AMPK/GSK-3β pathway to relieve oxidative stress

and inhibits the activation of NLRP3 inflammasome in cerebral

ischemia–reperfusion injury (Liu H. et al., 2020). A recent study

shows that adiponectin agonist ADP355 activates the Nrf2 and

sirtuin 2 downstream pathways, thus reducing myocardial

apoptosis and oxidative stress (Zhao et al., 2020). In an acute

pyelonephritis mouse model, exogenously administered

adiponectin not only elevated adiponectin concentration and

lipid content but also had antioxidant effects to reduce arterial

stiffness and alleviate renal cell apoptosis and inflammation

(Afzal et al., 2021; Dai and He, 2021). Moreover, adiponectin

suppressed oxidative/nitrative stress in the arterial endothelium

of hyperlipidemic rats (Li et al., 2007). In addition, adiponectin

both activates the AMPK signaling pathway and inhibits the NF-

kB signaling pathway to resist oxidative stress in cardiomyocytes

(Essick et al., 2011). In AdipoR1/AdipoR2 knockdown mice,

oxidative stress was elevated (Yamauchi et al., 2007). In human

adipose cells, excessive ROS inhibited adiponectin mRNA

expression and increased the gene expression of

proinflammatory adipocytokines such as IL-6 (Furukawa

et al., 2004). Daqian Gu reported that an adiponectin receptor

agonist inhibits CIN by limiting oxidative stress and
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inflammation by activating the downstream AMPK pathway

(Furukawa et al., 2004). Because mitochondria produce

abundant ROS in cells, when oxidative stress occurs, it

decreases adiponectin synthesis in obesity, which is

accompanied by mitochondrial dysfunction in adipocytes

(Koh et al., 2007). The ADIPOQ gene polymorphism

rs1501299 is potentially associated with the risk of developing

knee OA (Fernández-Torres et al., 2019). Globular adiponectin

induces a proinflammatory response in human astrocytes (Otero

et al., 2006). What’s more, adding 0.5 μg/ml adiponectin in

ATDC5 mouse chondrocytes, increases in chondrocyte

proliferation and the upregulation of type II collagen and

aggrecan in chondrocytes, which means adiponectin play a

protective role in OA (Challa et al., 2010; Jiang et al., 2022).

Thus, these findings indicate that adiponectin is associated with

oxidative stress and OA.

Adiponectin induces apoptosis in OA

Apoptosis (programmed cell death), with the unique

characteristic of apoptotic body formation, was first identified

by Kerr. Dysregulation of apoptosis is often observed in

degenerative diseases such as cancer, obesity, and OA (Kerr

et al., 1972). The balance of proteins with opposing apoptotic

roles is crucial for the progression of apoptosis, which has been

already studied in the context of different diseases (Delbridge and

Strasser, 2015).

Both the intrinsic pathway-also named mitochondrial

pathway-induced by intracellular signals and the extrinsic

pathway-also named the death receptor pathway-triggered by

death receptor family proteins and other signals mediate

apoptosis (Elmore, 2007). The death receptor proteins,

including TNFR, TRAIL receptor 1 and 2, and Fas, contain

the death domain (DD), a cytosolic domain, and a cysteine-rich

extracellular domain (Ashkenazi and Dixit, 1998). First, Fas and

its ligand FasL activate the death-inducing signaling complex,

then caspase-8 and caspase-3 are sequentially activated, and

eventually, apoptosis occurs (Fuentes-Prior and Salvesen,

2004). Adiponectin is closely associated with apoptosis. In

high-glucose–treated human glomerular endothelial cells,

AdipoRon, a synthetic adiponectin receptor agonist, reduced

oxidative stress induced by high glucose and alleviated

endothelial function by activating downstream intracellular

Ca2+ signaling (Kim et al., 2018). It is well known that Ca2+

influx may result in mitochondrial dysfunction and activate

caspase-3. Therefore, it provides a prospective treatment

method for adiponectin and cell apoptosis. Liu et al. found

that adiponectin not only activated the AdipoR1/AMPK/PKC

pathway to decrease ER stress-induced apoptosis but also

inhibited apoptosis by regulating the anti-apoptotic protein

Bcl-2 in mouse adipose tissue (Liu Z. et al., 2016). Wu et al.

reported that adiponectin induced the restoration of peroxisome

proliferator-activated receptor-gamma coactivator-1α-related
mitochondrial function and suppressed activating

transcription factor 4-CCAAT-enhancer-binding protein

homologous protein (CHOP)-induced neural apoptosis (Wu

et al., 2020). Thus, adiponectin is potentially involved in cell

apoptosis through various pathways.

Chondrocyte apoptosis

Unlike normal cartilage, osteoarthritic joint cartilage shows

an increased rate of chondrocyte apoptosis (Héraud et al., 2000).

Mitochondrial activity, microRNA expression, chondrocyte

senescence, autophagy, ER stress, and oxidative stress are

involved in chondrocyte apoptosis (Engels and Hutvagner,

2006; Ruiz-Romero et al., 2009; Uehara et al., 2014;

Mobasheri et al., 2015; Vasheghani et al., 2015), and their

mechanisms of action are complex. Osteoarthritic

chondrocytes show higher ROS generation, which may

promote chondrocyte apoptosis (Ruiz-Romero et al., 2009).

Moreover, when the mechanical stress changes, the

chondrocyte apoptosis could cause different reactions in

animal studies (Loening et al., 2000; Zamli et al., 2013).

Although the intervention of chondrocyte apoptosis is a

potentially effective measure to modulate articular cartilage,

apoptosis-related drugs, and biological agents may have side

effects on the whole system. Pharmacological doses of

glucosamine HCl, a nutraceutical for the treatment of OA,

were found to induce a decline in the metabolic activity of

bovine chondrocytes (de Mattei et al., 2002). IRE1, a key

regulator of unfolded protein response in the ER, was

reported to have a potential effect on chondrocyte apoptosis.

IRE1α deficiency downregulated the prosurvival factors XBP1S

and Bcl-2, which increased caspase-3, CHOP, and p-JNK to

enhance chondrocyte apoptosis (Huang et al., 2022). This

finding provides new insights into the importance of ER

stress regulation in OA treatment. Recently, biomaterials

have been applied as a practical therapy for OA. Exosomes

contain various cytokines and growth factors, which mediate

inflammation, enhance cell proliferation, and reduce apoptosis

(Lai et al., 2010). Exosomes incorporated into biomaterials for

increased targeting and prolonged retention to treat OA

enhanced chondrocyte repair and reduced apoptosis

effectively (Chen et al., 2022). In a guinea pig OA model,

subchondral bone thickening was observed before

chondrocyte apoptosis. Regulation of subchondral bone may

be a promising treatment strategy in OA (Zamli et al., 2014).

Pyroptosis and OA

Another form of programmed cell death, pyroptosis, which is

caspase dependent and typically accompanied by
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proinflammatory changes, has been identified in recent years

(Fink and Cookson, 2005). The key features of pyroptosis include

cell swelling, the release of many proinflammatory factors

including IL-1β and IL-18, and inflammasome activation

(Liu X. et al., 2016). Danger-associated molecular patterns

(DAMPs) or pathogen-associated molecular patterns

(PAMPs) are two types of caspase release pattern recognition

receptors (PRRs) in pyroptosis (Liu X. et al., 2016). Many

studies have demonstrated the role of the

NLRP3 inflammasome in osteoarthritis, indicating that

NLRP3 is a potential target (An et al., 2020). DAMPs or

PAMPs stimulate caspase-1 and macrophages to release

NLRP3 and other inflammasomes, which leads to pyroptosis.

Proinflammatory cytokines such as IL-1β and IL-18 are

accumulated in chondrocytes, and their release is induced by

inflammasomes (Man and Kanneganti, 2015). Inflammasomes

stimulate chondrocytes to secrete catabolic enzymes, which

promote a change in some biomarkers of chondrocytes

(Yang et al., 2021). Moreover, NLRP3 also affects the

synovial tissue in OA (Zhang et al., 2019a). Pyroptosis may

also be associated with the pathological mechanism of pain. As

stated before, IL-1β, IL-18, and TNF-α are upregulated in

pyroptosis in OA pathology, which increase the sensitivity of

joint pain receptors (Mapp and Walsh, 2012), contributing to

OA pain.

The relationship between adiponectin and pyroptosis has

drawn wide attention in recent years. Ehsan et al. found that

adding adiponectin to lipopolysaccharide-stimulated monocytes

markedly attenuated lipopolysaccharide-induced expression of

NLRP3 inflammasome, cleaved ASC, caspase-1, and IL-1β (pro-

and cleaved) (Ehsan et al., 2016), which may be achieved through

the modulation of the AMPK, Akt, and NF-κB pathways. Many

studies report that adiponectin has an antiatherogenic effects; in

coronary atherosclerosis, NLRP3 expression in subcutaneous

adipose tissue is negatively correlated with the serum

adiponectin level (Bando et al., 2015). Moreover, the

adiponectin-AdipoR1 pathway promotes NLRP3 gene

expression in renal proximal tubule epithelial cells (Yang

et al., 2018). A more recent study shows that adiponectin

downregulates NLRP3 via miR-711 in Duchenne muscular

dystrophy, a skeletal disease. Similarly, APN suppresses the

pyroptosis pathway by upregulating miR-133a, which

potentially alleviates acute aortic dissection (Duan H. et al.,

2020). These findings suggest novel therapeutic approaches for

other related disorders (Boursereau et al., 2018). Adiponectin

also shows strong effects in cancer. In human breast (MCF-7)

and hepatic (HepG2) cancer cells adiponectin exerted potent

anti-tumor activity via downregulation of estrogen receptor-α
expression and blocked leptin-induced estrogen receptor-α
activation and suppressed inflammasomes, including

NLRP3 and ASC (Raut and Park, 2020). Molecules upstream

and downstream of inflammasome pathways, such as ROS,

estrogen receptor, and NF-κB, are influenced by adiponectin.

Because adiponectin affects different inflammasome pathways, it

has the potential to relieve pyroptosis-caused cartilage

degradation.

Adiponectin regulates autophagy in OA

Autophagy refers to the catabolic processes through which

the cell turns over its cellular components and damaged

organelles. There are three main types of autophagy: 1)

macroautophagy (hereafter referred to as autophagy), which

involves the formation of a double-membrane vesicle

(autophagosome) deputed to sequester damaged organelles

and biomolecules, 2) microautophagy, by which the cytosolic

material is directly engulfed by the lysosome; and 3) chaperone-

mediated autophagy (Kroemer et al., 2010). There are five key

stages in autophagy: 1) phagophore formation or nucleation; 2)

conjugation of autophagy-related gene proteins ATG5-ATG12,

interaction with ATG16L, and multimerization at the

phagophore; 3) LC3 processing and insertion into the

extending phagophore membrane; 4) capture of random or

selective targets for degradation; and 5) fusion of the

autophagosome with the lysosome (Glick et al., 2010). The

role of autophagy, as a protective mechanism in cells, has

been researched in regulating numerous aging-related diseases,

including OA. The relationship between aging and OA has been

demonstrated in clinical settings and epidemiological research

(Rahmati et al., 2017). Recent studies demonstrate that oxidative

stress is a crucial factor stimulating autophagy. Mitochondria are

the major source of ROS within cells (Brand, 2016). Cellular

senescence and apoptosis are strongly correlated with autophagic

activity, which may be influenced by oxidative stress (Filomeni

et al., 2015).

The main negative regulator of autophagy is the mammalian

target of rapamycin (mTOR). It mainly forms two different

multiprotein complexes, mTOR complex 1 (mTORC1) and 2

(mTORC2). mTORC1 plays a vital role in the regulation of

autophagy (Dikic and Elazar, 2018). TOR kinase is activated

downstream of the Akt kinase, PI3 kinase, mitogen-activated

protein kinase (MAPK), and AMPK pathways (Sabatini, 2006;

Shaw, 2009). Autophagy is inhibited by the AKT and MAPK

signaling pathways, whereas the AMPK signaling pathway, as a

negative regulatory pathway, promotes autophagy (Sabatini,

2006). Recent studies have focused on systemic or local

injection of rapamycin to reduce the symptom of OA in vivo

(Xue et al., 2017). Hypoxia-inducible factor (HIF)-1α and HIF-2α
have shown the potential to treat OA. Because the articular

cartilage is maintained in a low oxygen environment,

chondrocytes are adapted to hypoxic conditions. Increased

HIF-1α and HIF-2α mediate the response of chondrocytes to

hypoxia. HIF-1αmay protect articular cartilage by promoting the

chondrocyte phenotype, maintaining chondrocyte viability, and

supporting metabolic adaptation to a hypoxic environment. In
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contrast with HIF-1α, HIF-2α promotes the expression of

catabolic factors in chondrocytes, such as MMP13 and

ADAMTS-5 (Zhang et al., 2015). With the

microenvironmental changes in chondrocytes, HIF-1 activates

AMPK and suppresses mTOR, and chondrocyte autophagy is

increased (Bohensky et al., 2010). Two other protein conjugation

systems, ATG–microtubule-associated protein light chain 3

(LC3) and the ATG5–ATG12 conjugation system, typically

used as autophagy biomarkers, play a role in the elongation of

the autophagosome membrane (Ohsumi, 2001). Autophagy is

also regulated by the beclin-1 complex, consisting of beclin-1,

class III phosphatidylinositol 3-kinase, and ATG14L or UVRAG

(Wang et al., 2012). All these factors affect the number and size of

autophagosomes in osteoarthritic cartilage.

Adiponectin is also an autophagy-regulating signaling

molecule, which exerts its effects by activating AMPK, an

upstream marker of autophagy regulation (Kim et al., 2009).

AMPK activates uncoordinated 51-like kinase-1 (ULK1), which

plays a key role in controlling the autophagic response (Lee and

Tournier, 2011). Essick et al. found that adiponectin activates the

ERK–mTOR–AMPK signaling pathway to suppress excessive

autophagy (Essick et al., 2013). Moreover, adiponectin directly

enhances autophagy flux in cardiac myoblasts (Jahng et al., 2015).

Adiponectin also mediates the AMPK–mTOR signaling pathway

to trigger autophagy (He et al., 2021). In human primary

chondrocytes, AdipoRon promotes autophagy to alleviate

cartilage calcification in OA (Duan Z. X. et al., 2020).

AdipoRon treatment promotes autophagy and improves renal

fibrosis in salt-hypertensive mice by activating the AMPK/

ULK1 pathway (Li et al., 2021). Notably, in cardiomyocytes

pretreated with compound C, the adiponectin treatment did

not improve the decreased autophagosome formation but

improved the decreased autophagosome clearance induced by

β1-adrenergic receptor autoantibody (Sun et al., 2021). Exercise

leads to AMPK activation in the muscle in normal mice but not

in autophagy-defective mice (Garber, 2012). Exercise also

promotes the interaction of Toll-like receptor-9 (TLR9) and

beclin-1 to mediate AMPK signaling in skeletal muscle (Liu Y.

et al., 2020). Thus, as a crucial downstream molecule of

adiponectin, AMPK facilitates the progression of vital

pathological diseases, including autophagy in OA.

Adiponectin may promote or inhibit autophagy

depending on various factors. One study showed that

adiponectin suppressed autophagy by facilitating the

expression of p-PI3K, p-AKT, and p-mTOR in a diabetic

retinopathy model (Li R. et al., 2019). It was demonstrated

that exercise induced the phosphorylation of AMPK and

AMPK-dependent ULK1 (Laker et al., 2017). Studies report

that the promotion of AMPK activation is affected by

exercise duration and intensity (He et al., 2012; Schwalm

et al., 2015). Furthermore, the extent of cellular stress,

protein damage, and exercise type all influence the

autophagic response to exercise (Vainshtein and Hood,

2016). A study showed that in young and old adults, acute

resistance exercise reduced autophagic activity in skeletal

muscle cells, whereas chronic resistance training increased

autophagy regulatory proteins such as ATG5, ATG12, and

beclin-1 to enhance autophagy and reduced p62 and the ratio

of LC3-II to LC3-I (Fry et al., 2013; Luo et al., 2013). AMPK

activation, which is induced by exercise, also inhibits mTOR,

thus preventing other diseases such as fatty liver and tumors

by promoting autophagy (Guarino et al., 2020).

However, autophagy is a double-edged sword; excessive or

uncontrolled autophagy promotes autophagy-dependent cell

death (Galluzzi et al., 2018). In malignant tumors, excessive

autophagy not only induces a cell death mechanism that leads

to the death of drug-resistant tumor cells but also mediates tumor

escape and promotes tumor cell survival (Liu W. et al., 2020).

Furthermore, excessive autophagy induces cell death in

cardiomyocytes, which may cause heart failure (Yu et al.,

2015). Appropriate training inhibits excessive autophagy,

restores normal autophagy function, and improves

cardiovascular disease progression (Chen et al., 2010), but

excessive exercise leads to excessive autophagy and causes a

negative impact. Studies have reported that high-intensity

exercise significantly increases the autophagic activity in

cardiomyocytes, causing cardiomyocyte damage and even

death (Liu et al., 2017).

Interplay between autophagy and
pyroptosis

The relationship between autophagy and pyroptosis has been

verified via various methods in many studies. Melatonin induces

mitophagy activation to eliminate ROS, thereby repressing

NLRP3 inflammasome activation in macrophages (Ma et al.,

2018). A similar phenomenon was observed in atherosclerotic

plaques; autophagic activity inhibited the activation of

NLRP3 and other proinflammatory cytokines to reduce lipid

deposition and pyroptosis (Cong et al., 2020). In contrast,

repressing autophagy increases NLRP3 inflammasome

activation and pyroptosis (Jiang et al., 2018). Moreover, in

Taxol-treated nasopharyngeal carcinoma cells, autophagy was

activated, and pyroptosis was suppressed, which inhibited the

caspase-1/gasdermin D (GSDMD) pathway and inflammasome

activation (Wang et al., 2020). In nucleus pulposus cells,

autophagy was activated to prevent pyroptosis induced by

ROS (Bai et al., 2020). Studies indicate that autophagy inhibits

pyroptosis through scavenging of mitochondrial ROS (Sadaf

et al., 2020). In addition, rapamycin activates autophagy to

reverse GSDMD-mediated pyroptosis and reduces sepsis

(Zhuo et al., 2020). Adrenomedullin promotes autophagy

through the ROS–AMPK–mTOR signaling pathway, inhibits

pyroptosis, and rescues the biological functions of testicular

Leydig cells (Li M. Y. et al., 2019).
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Autophagy clear components in
pyroptosis

Autophagy leads to degradation of inflammasome

components and thus prevents pyroptosis. Curcumin

attenuated DOX-induced cardiomyocyte pyroptosis by

degrading NLRP3 via a PI3K/Akt/mTOR-dependent pathway

(Yu et al., 2020). Toll-like receptors induce PAI-2 and beclin-1

expression by increasing autophagy and NLRP3 degradation to

suppress IL-1β maturation (Chuang et al., 2013). Dopamine

D1 receptor signaling induces NLRP3 ubiquitination through

E3 ubiquitin ligase MARCH7, which leads to autophagy-

mediated degradation of NLRP3 (Song et al., 2016).

Ubiquitin-specific peptidase 5 (USP5) promotes the

autophagic degradation of NLRP3 to attenuate

NLRP3 inflammasome activation (Cai et al., 2021). In

C57BL/6J mice, galectin-9 facilitates p62-dependent

autophagy, degrades NLRP3, and attenuates

NLRP3 inflammasome activation in primary peritoneal

macrophages (Wang et al., 2021).

Autophagy may promote pyroptosis

It has been reported that starvation-induced autophagy

enhances the extracellular release of IL-1β. However, in

bone marrow-derived macrophages, the opposite effect was

observed (Dupont et al., 2011). Moreover, in pancreatic

beta cells, mono-(2-ethylhexyl) phthalate induced

pyroptosis and upregulated autophagy levels, but the

increase in autophagy suppressed pyroptosis (Jiang et al.,

2021). In ovarian carcinoma cells, osthole scavenged

gasdermin E (c-GSDME) and triggered autophagy and

pyroptosis, which both induce cell death (Liang et al.,

2020).

Adiponectin also mediates pyroptosis in addition to

autophagy. In aging mice, NLRP3 inflammasome activity

increased insulin sensitivity and the leptin-to-adiponectin

ratio and suppressed autophagy flux (Marín-Aguilar et al.,

2020). Adiponectin alleviates inflammasome activation and

pyroptosis induced by palmitate and decreases ROS

production, which are both regulated via the AMPK-

JNK/ErK1/2-NFκB/ROS signaling pathway (Dong et al.,

2020). Moreover, in human aortic epithelial cells,

adiponectin regulated FOXO4, inhibited NLRP3-

mediated pyroptosis, and alleviated endothelial

dysfunction (Zhang et al., 2019b).

In summary, autophagy mainly negatively affects

pyroptosis and alleviates the harmful effects of pyroptosis

through key signaling pathways such as AMPK–mTOR and

HIF-1α. As mentioned above, autophagy promotes the

degradation of inflammasomes, thus attenuating the

inflammatory response. Under certain conditions, autophagy

induces apoptosis, pyroptosis, and even inflammation.

Adiponectin regulation is the key to regulating the effects of

autophagy.

FIGURE 1
Role of adiponectin in osteoarthritis.
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Conclusion

Overall, adiponectin plays an important role in apoptosis,

pyroptosis, autophagy, and inflammation in OA. The main

characteristic of OA is articular cartilage degradation caused

by inflammatory factors. Local and systemic inflammation are

associated with the pathogenesis of OA. Proinflammatory

cytokines are strongly correlated with adiponectin, which is

also involved in OA. This review has summarized the existing

research from the perspective of inflammation, oxidative stress,

apoptosis, pyroptosis, and autophagy, and their interaction

(Figure 1), thus presenting novel strategies for OA treatment

and prevention.

Considering that the treatment of OA currently stops at

delaying cartilage degeneration, reducing chondrocyte death may

be a therapeutic strategy. There are many factors that can affect

the death of chondrocytes, such as the release of local

inflammatory factors, lipid metabolism. The adiponectin

discussed in this article is an important adipokines involved

in lipid metabolism. There is a strong relationship between

autophagy and oxidative stress and inflammation. However,

autophagy is a double-edged sword. Excessive autophagy can

promote apoptosis and may also have a negative impact on

pyroptosis. Furthermore, the mainstream view considers that

intervening at the early stages of OA can protect chondrocytes

against a part of cell death.

Focus on the role of adiponectin also can be a treatment strategy.

It has a potential to treatmetabolism such asOA. To date, numerous

studies about using adiponectin and its derivative in this field.

Although the effect is limited, the promising is expected. Exercise

may be a new way to regulate adiponectin levels in the body. A

considerable proportion of patients with osteoarthritis suffer from

obesity. Studies have shown that endurance constant-moderate

intensity exercise (END) can be a good protection against

adiponectin imbalance caused by high-fat diet (Martinez-

Huenchullan et al., 2019). In addition, adiponectin derivative

CTRPs such as CTRP9 have been found to improve the

catabolism and secretion of inflammatory factors in

chondrocytes, and effectively reduce the level of IL-18 (Wang

et al., 2022). Therefore, regulating the secretion of adiponectin-

related metabolic factors may become a future therapeutic direction.

In conclusion, there remains a need for more specific

treatment method for OA. Adiponectin is closely related to

inflammation and cell metabolism. It can be a promising drug

target for OA. However, research into adiponectin and its role in

the pathogenesis of OA needs further study.We believe that these

thoughts will be realized in future.
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