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Fatigue results from a series of physiological and psychological changes due to

continuous energy consumption. It can affect the physiological states of

operators, thereby reducing their labor capacity. Fatigue can also reduce

efficiency and, in serious cases, cause severe accidents. In addition, it can

trigger pathological-related changes. By establishing appropriate methods to

closely monitor the fatigue status of personnel and relieve the fatigue on time,

operation-related injuries can be reduced. Existing fatigue detection methods

mostly include subjectivemethods, such as fatigue scales, or those involving the

use of professional instruments, which are more demanding for operators and

cannot detect fatigue levels in real time. Speech contains information that can

be used as acoustic biomarkers to monitor physiological and psychological

statuses. In this study, we constructed a fatigue model based on the method of

sleep deprivation by collecting various physiological indexes, such as P300 and

glucocorticoid level in saliva, as well as fatigue questionnaires filled by

15 participants under different fatigue procedures and graded the fatigue

levels accordingly. We then extracted the speech features at different

instances and constructed a model to match the speech features and the

degree of fatigue using a machine learning algorithm. Thus, we established a

method to rapidly judge the degree of fatigue based on speech. The accuracy of

the judgment based on unitary voice could reach 94%, whereas that based on

long speech could reach 81%. Our fatigue detection method based on acoustic

information can easily and rapidly determine the fatigue levels of the

participants. This method can operate in real time and is non-invasive and

efficient. Moreover, it can be combined with the advantages of information

technology and big data to expand its applicability.
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1 Introduction

Fatigue is generally used to describe physical and/or mental weariness, which extends

beyond normal tiredness and is closely related to sleep. Fatigue is usually divided into

three types: transient fatigue caused by extreme sleep restriction or extended hours awake

within 1 or 2 days, cumulative fatigue caused by repeated mild sleep restriction or
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extended hours awake across a series of days, and circadian

fatigue, that is, the reduced performance during nighttime hours

(Lock et al., 2018). A greater understanding of fatigue may

improve both research and clinical care.

Fatigue could negatively impact work performance, family

life, and social relationships (Rosenthal et al., 2008; Caldwell

et al., 2019). It leads to a series of physiological and psychological

changes due to continuous energy consumption. Fatigue can

affect the physiological states of operators, thereby reducing their

labor capacity. Notably, changes in physiological aspects can

have significant implications on sensory and motor metabolic

functions, which could cause significant decreases in decision-

making, problem-solving, and psychomotor skills, vigilance,

processing speed, and working and long-term memory after

sleep deprivation (Lim and Dinges, 2010). This may lead to

work disorders due to an increase in ineffective decisions or the

likelihood of error. Therefore, fatigue can reduce efficiency and,

in serious cases, contribute to a meaningful proportion of

operational accidents and incidents (Uehli et al., 2014;

Arsintescu et al., 2019). In addition, it can trigger

pathological-related changes in multiple organs. For example,

it has been reported that prolonged fatigued working conditions

can trigger pathological-related issues such as skeletal muscle

damage (Constantin-Teodosiu and Constantin, 2021), hearing

damage lesions such as sudden deafness (Zhou et al., 2020; Fu

et al., 2021; Holman et al., 2021; Fu et al., 2022), gastrointestinal

complications, and cardiovascular issues (Natelson et al., 2021).

By establishing appropriate methods to closely monitor the

fatigue status of personnel and relieve the fatigue on time,

operation-related injuries can be reduced.

The human voice is produced by the vibration of the vocal

cords. Each voice has its unique characteristics depending on the

size of the vocal cavity, including the throat, nasal cavity, and oral

cavity. The shapes, sizes, and positions of these organs determine

the tension in the vocal cords and ranges of the sound frequencies

produced (Zaske et al., 2017). Normal growth and aging can

affect the histopathological changes in the vocal folds. However,

some changes are caused by abnormal physiological states, such

as emotional changes, fatigue, or diseases (Kuhn, 2014). For

instance, a change in the vocal cords following COVID-19

infection has been reported (Jungbauer et al., 2021). Owing to

the unique feature of each voice, voiceprint recognition has been

widely used in many fields (Sun et al., 2018). Several legal cases

have used voiceprints for speaker identification under certain

environmental characteristics. The FBI conducted statistics on

2,000 cases related to voiceprints, and the error rate was only

0.31% (Koenig, 1986). Many algorithms have been reported in

the field of voiceprint recognition to extract and recognize

voiceprint features (Sun et al., 2018), and there are also many

new achievements in the research and development of wearable

devices. Wearable active sensors have extensive applications in

mobile biosensing and human-machine interaction (Li et al.,

2017; Adao Martins et al., 2021).

By analyzing the characteristic parameters in speech, we can

identify and classify certain diseases for diagnostic, prognostic,

and preventive measures (Latinus and Belin, 2011; Petkov and

Vuong, 2013). Speech-based methods could be more accurate,

faster, simpler, and cheaper than traditional methods. The

eigenvalues in the vocal information in human speech are

closely related to health conditions. For example, patients

suffering from neurodegenerative, cardiovascular, and mental

disorders may experience vocal changes (Ahmed et al., 2013;

Giddens et al., 2013; Kunin et al., 2020; Yang et al., 2020). In

addition, the eigenvalues may reflect fatigue levels. The detection

of fatigue levels has become an important research topic in the

field of brain cognition (Penner et al., 2009). At present, brain

fatigue detection is classified into subjective and objective

detections. Objective detection methods primarily use

physiological signals, such as electroencephalogram (EEG) and

electromyography (EMG), but the conventional EEG and EMG

methods are inconvenient to operate in the detection process and

need to interrupt the normal operation process of the participant

(Furutera et al., 2021). The physiological signals are susceptible to

several other factors, such as environmental conditions,

emotions, and pathophysiological issues (Adao Martins et al.,

2021). Other detection methods use physiological signals or

changes in behavioral characteristics, such as eye movements

(Sampei et al., 2016; Ko et al., 2020), but these signals are not

easily detected either. The existing methods are demanding for

operators, time-consuming, and cannot detect the fatigue level in

real time.

In this experiment, we established a fatigue model by sleep

deprivation and collected the voice information of participants in

different fatigue states. By developing a voice feature-extraction

software, we extracted the features in the voice information.

Subsequently, we explored thematching relationship between the

voice information features and the fatigue levels by combining

the results of the fatigue questionnaires and relevant

physiological indicators of the participants through a machine

learning method. Using these results, we developed a method to

monitor the level of physical fatigue using vocal information.

2 Materials and methods

2.1 Participants’ recruitment

In our experiments, 15 participants were enrolled. They were

all male students with an age range of 23–25 years. All

participants were in good health, had good lifestyle habits, no

drug histories within the previous months, regular routines, and

no recent fatigue-related habits such as staying up late. They were

required to stay awake during the 36-h duration of the

experiment. Further, they were asked to fill in the fatigue

questionnaire, provide their saliva samples, and record audio

files at several instances as per the experimental procedure.
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The participants’ voice information at 0 h was used as the

control group (non-fatigue group), and the data after 36 h of

sleep deprivation was used as the fatigue group. In addition, the

questionnaire and P300 test results were combined to verify and

exclude abnormal data.

2.2 Experimental data collection

2.2.1 Collection of questionnaires
The fatigue questionnaire used in this study was the Stanford

Sleepiness Scale. It was filled out by the participants according to

their subjective fatigue level every 12 h. The results of all

15 participants at different time points were used to

determine the corresponding fatigue grades.

2.2.2 Collection of saliva
The participants were forbidden from eating or drinking 1 h

before the collection. They had to rinse their mouth 30 min before

collection, insert cotton balls from the chewing saliva collection

tubes into their mouth, chew them for approximately 1 min, and

then put them back into the collection tubes. The volume of saliva

collected was approximately in the range of 2–3 ml. The collection

tubes were centrifuged in a freezing centrifuge to collect the saliva

samples for subsequent cortisol detection.

2.2.3 Cortisol detection
Cortisol detection in the saliva was conducted using a cortisol

detection kit (RE52611, IBL International GmbH). The cortisol

concentration was detected by an enzyme-linked

immunosorbent assay method according to the manufacturer’s

protocol. The absorbance of the samples at a wavelength of

450 nm was detected via a spectrophotometer, and the cortisol

content was determined using the generated standard curve.

2.2.4 Acquisition of the amplitude and delay of
P300 using smart-EP-ASSR instrument

According to the instrument operation protocol, electrodes were

attached to four points on the participants. The recording electrodewas

placed in the Cz position, the reference in the bilateral mastoid, and the

ground in the Fz position. By using an oddball mode of the detecting

system, the non-target stimulation was 1,000 Hz, 60 dB with 80%

probability, and the target stimulation was 2,000 Hz, 70 dB with 20%

probability. Target stimuli were superimposed 50 times. During the

process, the participants were asked to memorize the times the target

stimulus appeared and the times of acquisitions. The amplitude and

delay data of P300were recorded using the detecting systemon the PC.

2.2.5 Voice data acquisition
The participants read a short text audibly. Their voices were

recorded using a voice recorder (TX650, Sony Corporation) and

saved for subsequent analysis. To minimize noise interference,

the recording was conducted in a relatively quiet, independent

room. Each participant recorded six vowels, four daily phrases,

and a 300-word paragraph at each time point.

2.3 Statistical analysis of fatigue
questionnaire data

The data were statistically analyzed and are expressed as the

mean ± standard error of mean. The t-test was used to detect

significant differences, with p < 0.05 representing a significant

difference.

2.4 Fatigue assessment based on speech
and audio features

2.4.1 Analysis of recorded audio files
For each audio file, 19 parameters were collected. The audio

files were recorded into the speech analysis module, and the

values of the 19 parameters were extracted for subsequent

analysis and determination of fatigue status: the parameters

include the fundamental frequency (F0), energy, zero-crossing

(Zcr), harmonics-to-noise ratio (HNR), voice quality (Jitter,

Shimmer), loudness, and 12 Mel-frequency Cepstral

coefficients (MFCCs, 1–12).

2.4.2 Classification of fatigue status
The results of the questionnaire, concentration level of

glucocorticoid (GC), and parameters of P300 were analyzed. These

three indicators were comprehensively considered. The participants

were classified into two groups: fatigue and non-fatigue. The speech

data of all participants at 0 h was set as the non-fatigue group. The

participants’ data at 36 h of sleep deprivation, including the GC level,

questionnaire, and P300 results, showed significant differences

compared with those at the experimental starting point of 0 h and

were set as the fatigue group.

2.4.3 Fatigue assessment based on audio
features

Audios of vowel sounds, phrases, and ordinary

conversations were obtained at 32 kHz. From each frame,

which was 20 ms long with 10 ms overlap, we extracted

TABLE 1 Characteristics of the participants.

Characteristic Data

Numbers of participants 15

Sex Male

Age (year) 23.5 ± 2.0

Bodyweight (kg) 69.4 ± 9.0

Health condition Healthy
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several types of audio features, such as the fundamental

frequency, energy, and zero-crossing rate. The average

audio features of the frames were used as input features of

the fatigue level classifiers. By using P300 as ground truth, we

trained several commonly used classifiers, including linear

regression (LR) (Nguyen et al., 2021), linear discriminant

analysis (LDA) (Dornaika and Khoder, 2020), K-nearest

neighbor (KNN) (Abu Alfeilat et al., 2019), classification

and regression trees (CART) (Johns et al., 2021), naive Bayes

classifier (NB) (Sugahara and Ueno, 2021), support vector

machine (SVM) (Huang et al., 2018), and multilayer

perceptron (MLP) (Panghal and Kumar, 2021), to classify

the fatigue level of each audio input. Leave-one-out (LOO)

cross-validation (Luo et al., 2015) was used to guarantee the

generalization performance of our models. During each

cross-validation fold, we used the samples of one

participant as the validation set and the remaining

samples as the training set.

Particularly, for the hyperparameters of the SVM, we used

different kernel functions, such as linear, radial basis

function, polynomial, and sigmoid kernels. We found that

the linear kernel outperformed the others. Therefore, the

experiments were conducted via the SVM using a linear

kernel.

3 Results

3.1 Statistics of participants’ information
and schematic of the experimental
procedure

Table 1 presents the basic information of the 15 participants.

Notably, they gradually entered the fatigue state according to the

aforementioned method, and the relevant indexes were tested at

different time points.

The flow chart of the experiment is shown in Figure 1A. The

experimental timeline, time points, and measures are shown in

Figure 1B. The questionnaire, P300 assay, saliva collection, and

audio recording on each time point were carried out accordingly.

3.2 Results of biochemical data and
electrophysiological indexes detected in
participants at different fatigue levels

The results showed a gradual increase in the fatigue level of the

participants over time, as shown in Figure 2A. The participants’

salivary cortisol levels varied according to a 24-h rhythm: decreased

after 12 h, rebounded after 24 h, and decreased again after 36 h. In the

FIGURE 1
Overall experimental procedure of speech-based fatigue grading. (A) The overall experimental flow chart of the speech-based fatigue
classification. (B) Experimental timeline, time points, and measures. Questionnaires, P300 and audio data were collected every 12 h, and saliva was
collected every 3 h and audio data were collected every 12 h, and saliva was collected every 3 h.
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comparison, the salivary cortisol levels tended to decrease with

increasing fatigue at the same rhythmical point (Figure 2B). The

amplitude of the P300 slightly increased after 12 h and then gradually

decreased after 24 and 36 h (Figure 2C). Compared with that at the

starting points, the latency of P300 after 36 h showed a significant

increase (Figure 2D).

The three indicators, namely P300, the fatigue

questionnaire, and the sleep deprivation time, were

combined to classify and label the participants’ fatigue levels.

A matching relationship was established between voice

messages and fatigue levels (Li and Mills, 2019), and each

voice message was tagged with a fatigue classification label

(fatigue or non-fatigue).

3.3 Using SVM method to judge fatigue
level according to single vowel
information

We calculated the values of energy, zcr, loudness, F0,

HNR, Jitter, and Shimmer for the vowel “a” after 36 h of

sleep deprivation and found no significant differences

compared with those at the onset point (Figures 3A–G).

Then, we used the SVM model to make predictions and

compare them with the labeled fatigue levels, as shown in

Figure 3H. The number 0 represents normal (non-fatigue),

and 1 represents fatigue. The predicted value is the result

predicted by the SVM algorithm, and the actual value is the

result of the judgment on whether the participant is fatigued

as per the three parameters above. If the two parameters are

consistent (both are 0 or 1), it means the prediction is

accurate; otherwise, it means the prediction is inaccurate.

The accuracy of the integrated six-vowels judgment is

shown in Table 2. The results showed that based on the

pure vowels recorded by the participants, the prediction

accuracy could reach approximately 88% for single vowels

and up to 94% for multi-vowels compared with that of the

fatigue classification based on physiological parameters.

3.4 Fatigue classification based on speech
information using a variety of neural
network algorithms

We analyzed and judged segmented speeches to increase the

practicability of the fatigue prediction method, combined with

FIGURE 2
Participants’ fatigue gradually increased with an increase in sleep deprivation time. (A) Subjective fatigue scale score of the participants. (B)
Salivary cortisol level varies according to a 24-h rhythm. (C) Amplitude of P300 decreases over time, and (D) Latency of P300 gradually increases with
time. *p < 0.05 vs. starting points.
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the subsequent application scenarios. We used several common

classifiers and LOO cross-validations, including LR, LDA, KNN,

CART, NB, SVM, and MLP. By using the extracted audio

features, we classified the recorded audio samples as normal

and fatigued. The best average performance was achieved using

the CART, with an accuracy of 76%, a recall of 81%, a precision of

76%, and an F1 of 76%. The detailed average results are shown in

Figure 4.

4 Discussion

Fatigue is a state where physiological and psychological

functions of the body are diminished. Mental fatigue has

implications on decision-making ability and operational

accuracy owing to the lack of concentration, which can

significantly increase the risk of injury due to accidents

(Williamson et al., 2011). Existing fatigue detection methods

include subjective methods such as fatigue scales or employ

professional instruments such as EEG/EMG, which are more

demanding for operators and time-consuming. Moreover, they

cannot detect the fatigue level in real time. Our fatigue detection

method based on acoustic information can easily and rapidly

determine the fatigue levels of the participants. This method can

operate in real time and is non-invasive and efficient. Moreover,

it can be combined with the advantages of information

technology and big data to expand the applicability.

FIGURE 3
Changes in phonetic feature parameters of the vowel “a” after 36 h sleep deprivation and comparison of predicted and actual values of different
vowels. (A–G) Value of the Energy/Zcr/Loudness/F0/HNR/Jitter/Shimmer for the vowel “a” before and after 36 h of sleep deprivation. (H) Fatigue
prediction by the SVM method.

TABLE 2 Accuracies of different vowel classifications in the SVM
model.

Vowels used for prediction

Vowels a o e i u v Total

Accuracy 0.77 0.75 0.88 0.88 0.77 0.77 0.94
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Currently, sleep deprivation modeling is a common method of

fatigue modeling. Prolonged sleep deprivation affects human

physiological rhythms and cognitive operations. This can

subsequently increase the reaction time, decrease alertness and

judgment, and significantly reduce operational effectiveness (Ma

et al., 2020; Kerkamm et al., 2021). P300 latency can reflect the

fatigue status in diseases such as multiple sclerosis (Chinnadurai

et al., 2016), chronic fatigue syndrome (Dziadkowiak et al., 2015),

and Parkinson’s disease (Pauletti et al., 2019). The results of this

experiment show that 36 h of sleep deprivation increases the fatigue

level of the participants. Moreover, it can change their physiological

signals such as P300-related indicators and their salivary cortisol levels.

Cortisol is a steroid hormone that belongs to the class of GCs and is

producedmainly in the adrenal glands of the adrenal cortex in the zona

fasciola and in lower amounts in other tissues of many animals. It is

released in a diurnal cyclewith an increased release under stress and low

blood sugar concentrations. Cortisol functions by increasing blood

sugar gluconeogenesis, suppressing the immune system and helping

metabolize fats, proteins, and carbohydrates. Cortisol also reduces bone

formation. Salivary cortisol level could reflect the health status. Studies

have shown that GC level is closely related to a variety of unhealthy

states, such as chronic fatigue syndrome (Herane-Vives et al., 2020),

hearing loss (Bess et al., 2016; He et al., 2017; He et al., 2020), and stress

(Fan et al., 2019; Pulopulos et al., 2020). It has been also used as a

biomarker to reflect pathological-related statuses (Rubin et al., 2005;

Vlenterie et al., 2016; Chang and Lin, 2017). In this experiment, we

detected the level of GC in saliva to objectively reflect the fatigue degree

of the participants, which provides the basis for our fatigue detection

based on vocal information.

Speech contains substantial information that can be used as

acoustic biomarkers to monitor patient status, diagnose conditions,

classify diseases, or develop relevant drugs (Abrahamsson et al.,

2018; Kraus, 2018; Noffs et al., 2018; Lee et al., 2020; Fagherazzi et al.,

2021). Objective speech assessment is more accurate, replicable, and

feasible than perceptual analysis (Noffs et al., 2018). Related studies

have reported that changes in the characteristic parameters of the

voice pattern are closely related to fatigue levels (de Vasconcelos

et al., 2019). Our results also suggest that the corresponding

parameters change with alterations in the fatigue level, and the

characteristic parameters of the vocal pattern can characterize the

fatigue state. This provides evidence for the rapid detection of the

fatigue level of the body by vocal pattern information.

With the development of machine learning algorithms,

artificial intelligence is widely used in speech information

processing and applications (Dibeklioglu et al., 2018; Delić

et al., 2019; Li and Mills, 2019). The machine learning

FIGURE 4
Detection results of fatigue assessment based on voice audio features. (A) Accuracy comparison for P300_faigue_inventory_label. (B) Precision
comparison for P300_fatigue_inventory_label. (C) Recall comparison for p300_fatigue_inventory_label. (D) F1 comparison for
P300_fatigue_inventory_label.
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approach intelligently matches speech features and physiological

indicators without interfering with the work of the operator. This

enables a person’s fatigue level to be rapidly and accurately

identified through voice information (Dibeklioglu et al., 2018;

de Vasconcelos et al., 2019). In our experiments, by using

machine learning methods to verify the results of the data

prediction of speech matching via physiological indicators, we

showed that the accuracy rate lies within the range of 76%–81%.

In our study, the number of participants was small.

Consequently, the accuracies of the machine learning and

identification approach were relatively low. However, the

accuracy rate could be improved by increasing the sample size

and optimizing the machine learning algorithm.

The use of voice information for fatigue determination is a

relatively novel fatigue detection method, which can rapidly and

non-invasively detect body fatigue. This method can address the

limitations of existing detection methods, which are time-consuming,

inconvenient, and cannot prevent accidents. However, this study has

several limitations. For example, owing to the insufficient number of

participants, females were not included in the experiment. In addition,

different dialects and age groups were not considered. Due to the

impact of the epidemic, it is difficult to carry out large-scale

population experiments. We selected only male students from the

same class as participants to reduce the impact of personal living

habits, age, and sex; therefore, there would be some deviation in the

sampling range. However, themain purpose of this experiment was to

explore the methodology of fatigue detection based on vocal

information. In the subsequent experiments, the sample size of

voice data collection will be increased, and participants of different

sexes and ages will be recruited for experiments to further update our

speech database, optimize the evaluation algorithm, and then obtain a

fatigue judgment method with a wider range of adaptability.

A “biological marker” or “biomarker” refers to medical signs

that indicate the medical state observed from outside the patient

(Strimbu and Tavel, 2010). Acoustic biomarkers have remarkable

potential in reforming diagnostics in diseases affecting the heart,

lungs, vocal folds, or brain, which can alter a person’s voice.

Nowadays, speech recognition technology is one of the most

promising technologies for improving healthcare services, and

voice analyses via machine learning techniques provide new

horizons in medicine. Studies on the biomarkers of the voice

have been conducted in the field of neurodegenerative diseases,

such as Parkinson’s disease, Alzheimer’s disease, and mild

cognitive impairment (Ahmed et al., 2013; Dashtipour et al.,

2018; Toth et al., 2018; Yang et al., 2020). Voice recognition

has also been applied for the prediction and evaluation of

health conditions, such as mental health and emotional

condition (Pisanski et al., 2016; Holmqvist-Jämsén et al., 2017;

Dibeklioglu et al., 2018; Pisanski and Sorokowski, 2021; Kappen

et al., 2022). Recently, it has been applied to respiratory diseases

such as COVID-19 to detect the health conditions of the patients

and monitor the emotional states of the staff (Castillo-Allendes

et al., 2021; König et al., 2021; Gama et al., 2022). However, no

vocal biomarkers have been approved by the US Food and Drug

Administration or the European Medicines Agency so far. In the

future, a unified corpus collection standard and a large-scale

library of clinically available voice samples should be developed,

followed by algorithm optimization and updates and the

integration of algorithms into user-friendly devices, such as

smartphone applications and connected medical devices

(Fagherazzi et al., 2021). With the integration and updates of

big data, optimization of corresponding prediction algorithms, and

continuous improvement of judgment accuracy and friendly

interfaces, fatigue monitoring and early warning platforms

based on acoustic information will achieve a real-time accurate

fatigue judgment, as well as physiological, psychological, and

pathology-related states, based on voices.
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