
3D genome organization links
non-coding disease-associated
variants to genes

Gisela Orozco1,2, Stefan Schoenfelder3,4, Nicolas Walker3,
Stephan Eyre1,2 and Peter Fraser3,5*
1Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological
Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of
Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom, 2NIHR
Manchester Biomedical Research Centre, Manchester University Foundation Trust, Manchester,
United Kingdom, 3Enhanc3D Genomics Ltd., Cambridge, United Kingdom, 4Epigenetics Programme,
The Babraham Institute, Babraham Research Campus, CB22 3AT Cambridge, Cambridge,
United Kingdom, 5Department of Biological Science, Florida State University, Tallahassee, FL,
United States

Genome sequencing has revealed over 300 million genetic variations in human

populations. Over 90% of variants are single nucleotide polymorphisms (SNPs),

the remainder include short deletions or insertions, and small numbers of

structural variants. Hundreds of thousands of these variants have been

associated with specific phenotypic traits and diseases through genome

wide association studies which link significant differences in variant

frequencies with specific phenotypes among large groups of individuals.

Only 5% of disease-associated SNPs are located in gene coding sequences,

with the potential to disrupt gene expression or alter of the function of encoded

proteins. The remaining 95% of disease-associated SNPs are located in non-

coding DNA sequences which make up 98% of the genome. The role of non-

coding, disease-associated SNPs, many of which are located at considerable

distances from any gene, was at first a mystery until the discovery that gene

promoters regularly interact with distal regulatory elements to control gene

expression. Disease-associated SNPs are enriched at the millions of gene

regulatory elements that are dispersed throughout the non-coding

sequences of the genome, suggesting they function as gene regulation

variants. Assigning specific regulatory elements to the genes they control is

not straightforward since they can be millions of base pairs apart. In this review

we describe how understanding 3D genome organization can identify specific

interactions between gene promoters and distal regulatory elements and how

3D genomics can link disease-associated SNPs to their target genes.

Understanding which gene or genes contribute to a specific disease is the

first step in designing rational therapeutic interventions.
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1 Introduction

1.1 The 3D genome regulates gene
expression

1.1.1 Gene expression depends on folding and
proximity

Cell type-specific gene expression depends upon promoters,

enhancers, silencers, insulators and other gene regulatory

elements that determine when genes are switched on, to what

level they are expressed, and when they are switched off

(Schoenfelder and Fraser, 2019). These regulatory sequences

work in concert with trans-acting factors that bind to them to

control the flow of genetic information from DNA to RNA to

protein, thereby directing developmental, and differentiation cell

fate decisions, as well as the maintenance of homeostasis and

health. Understanding which regulatory sequences control which

gene(s) requires an intricate knowledge of the 3D folding and

arrangement of the genome in the cell nucleus, since all these

elements carry out their functions through close proximity, direct

interaction or contact. For example, enhancer sequences, which

can activate or increase expression of a gene, can be located

upstream, downstream or in the intron of a gene, and can operate

over very large genomic distances to control the expression of a

gene millions of base pairs away. Analysis of the sequences in the

immediate spatial vicinity of a transcriptionally active gene in the

nucleus revealed very close proximity of its distal enhancers,

while the intervening sequences were located further away

(Carter et al., 2002). This suggests formation of a loop, where

regulatory activity of the enhancer is communicated to its target

gene through direct interaction with its promoter (Figure 1)

(Carter et al., 2002). “Engineered looping” between a gene

promoter and distal enhancer sequence, by expression of

factors that bind to each and can interact or dimerize, showed

that transcription is indeed controlled by the enhancer-promoter

loop, mediated by direct contact between factors bound to the

regulatory sequences (Figure 1) (Deng et al., 2012; Morgan et al.,

2017; Kim et al., 2019).

Enhancers have been mapped throughout the genome in a

variety of cell types, using histone marks and cofactor binding.

The human genome is thought to contain around one million

enhancers (ENCODE project Consortum, 2012; Shen et al.,

2012), greatly exceeding the number of protein-coding genes.

Depending on the post-translational modifications of

nucleosomal histone proteins in the immediate vicinity,

enhancers can exist in several states. The neutral/

intermediate state is marked by mono-methylation of lysine

4 on histone H3 (H3K4me1). The poised state is marked by

H3K4me1 and trimethylation of lysine 27 on histone H3

(H3K27me3) and the active state is marked by

H3K4me1 and acetylation of lysine 27 on histone H3

(H3K27ac) (Creyghton et al., 2010; Rada-Iglesias et al.,

2011; Zentner et al., 2011). Silencer elements are less well-

studied and, in some cases, may act in a manner similar to

enhancers, by interacting directly with their target gene

promoters (Figure 1). However, other mechanisms for

silencers have also been observed or proposed (Segert et al.,

2021). Insulators bind the CTCF factor and appear to block

enhancer activation of a gene when located in the genomic

sequence between the enhancer and the gene.

FIGURE 1
Gene regulatory elements and 3D genome conformation. Top line shows schematic of a hypothetical one megabase region of genome with
three genes, (A,B, and C); three enhancers 1, 2, and 3; one silencer element 4; and one genome wide association study (GWAS) single nucleotide
polymorphism (SNP) (vertical arrow). The locus is flanked by convergent CTCF sites which interact and function as topologically associated domain
(TAD) boundaries in cooperation with cohesin (bottom left panel). The GWAS SNP would normally be assigned to gene (B) or (C) due to
proximity, however analysis of 3D genome data shows that SNP-bearing enhancer 3 contacts gene A promoter to activate transcription (bottom right
panel). Enhancers 1 and 2 contact gene (B) to activate transcription. The silencer element 4 contacts gene (C) to silence transcription.
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1.2.1 Topologically associated domains; sub-
chromosomal organization

CTCF insulator sequences are often found in clusters at the

boundaries of large chromatin domains known as topologically

associated domains (TADs). TADs average about 1 megabase

(Mb) in size and vary little from cell type to cell type in structure,

unlike enhancer-promoter loops which are cell type specific

(Javierre et al., 2016). Both CTCF and its ring-shaped

interaction partner, the cohesin complex, are necessary for

TAD formation. The role of cohesin in forming TADs

involves loop extrusion, where DNA sequences are thought to

be extruded through the ring until they encounter convergently

orientated CTCF-bound sites at the boundaries (Sanborn et al.,

2015; Fudenberg et al., 2016). The boundaries of TADs often

interact due to the CTCF-cohesin complex, and function to

locally reduce interactions with neighboring TADs. Thus

enhancer-promoter interactions can occur within the TAD in

which they reside but appear to be largely insulated or blocked

from inappropriate interactions with sequences in neighboring

TADs. Perturbation of TADs by large sequence variants

overlapping boundaries by can cause dysregulated gene

expression due to out-of-place (ectopic) interactions between

an enhancer and promoter (Lupiáñez et al., 2015; Narendra et al.,

2015; Franke et al., 2016; de Bruijn et al., 2020). Altering distances

between enhancers and promoters can have dramatic effects on

expression of newly proximal genes and the natural target of

enhancers (Dillon et al., 1997). In contrast, deletion of individual

CTCF sites or TAD boundaries does not greatly affect gene

expression (Despang et al., 2019; Paliou et al., 2019; Williamson

et al., 2019). Conditional ablation of CTCF or cohesin leads to

loss of TAD structure throughout the genome, however gene

expression is largely maintained. Detailed analyses show that

interactions between genes in the vicinity of TAD boundaries, or

whose interacting sites are located near TAD boundaries are

largely lost (Thiecke et al., 2020). So too are interactions between

other promoters and their long-range interacting sites which are

CTCF/cohesin dependent.

1.3.1 Enhancer-promoter interactions
Interestingly, enhancer-promoter contact does not always

drive gene expression (Jin et al., 2013; Ghavi-Helm et al., 2014;

Andrey et al., 2017). Analysis of enhancers associated with

differentiation-induced genes identified two mechanistic

types of enhancer-promoter contacts (Rubin et al., 2017).

The first class, referred to as “gained” interactions

increased in contact strength during differentiation in

concert with enhancer acquisition of the H3K27ac

activation mark. The second “stable” class was

characterized by pre-established promoter contacts with

H3K27ac-marked enhancers in undifferentiated cells. The

stable class was associated with cohesin, whereas the gained

class was not, implying distinct mechanisms of enhancer-

promoter contact formation.

Thus enhancer-promoter interactions and gene expression

are maintained by a mix of cohesin-dependent and cohesin-

independent mechanisms. Furthermore, although cell

differentiation is often characterized by dynamic rewiring of

promoter-enhancer loops (Freire-Pritchett et al., 2017;

Siersbæk et al., 2017), some specific interactions do not

contemporaneously drive gene expression. Rather these may

be enhancers in waiting for differentiation, or environmental

signals to play a role in enhanced expression (Burren et al., 2017).

Mutations in enhancers and other regulatory sequence and

genome rearrangements that disrupt enhancer-promoter

interactions often underlie disease and developmental

malformations (Lettice et al., 2003; Benko et al., 2009; Bhatia

et al., 2013; Uslu et al., 2014; Lupiáñez et al., 2015; Franke et al.,

2016). Naturally occurring variation such as single nucleotide

polymorphisms (SNPs) in regulatory elements can also lead to

variations in gene expression. This can ultimately increase

disease susceptibility. Attempts to predict which regulatory

elements act on which promoter(s) based solely on proximity

in the linear genome sequence often leads to incorrect

assignment. Understanding the 3D contacts between

regulatory sequences is essential to understand the gene or

genes affected by common sequence variation in health and

disease.

2 In humans, genetic variation exists
in health and in disease

Humans differ from each other by millions of DNA sequence

variants. These variants, in combination with environmental

triggers, can lead to phenotypic variation between individuals.

This can range from variation in morphology (height, body mass

index), behavioral traits (alcohol consumption, risk tolerance),

predisposition to complex diseases (type 1 diabetes, rheumatoid

arthritis) and response to diet or medication.

Genetic variants can be classified as sequence variants or

structural variants, according to their composition. SNPs, the

most common type of sequence variant, are substitutions of a

single nucleotide at a specific position in the genome and occur

every 100–300 bases. Less frequent sequence variants include

insertions or deletions (indels) of segments of DNA of up to

1 kilobases (kb). On the other hand, structural variants involve

larger segments of DNA (1 kb–5 Mb), and include duplications,

inversions, translocations and larger indels. Genetic variants can

be described as common (minor allele frequency [MAF] > 5%)

and rare (MAF < 5%), depending on how often they appear in the

population (Rahim et al., 2008).

Technological advances in genotyping and next generation

sequencing have enabled all but the rarest human genetic variants

to be catalogued. Large scale international efforts such as the

HapMap Project (Frazer et al., 2007) and the 1000 Genomes

Project (Auton et al., 2015) have densely genotyped thousands of
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individuals, providing a comprehensive resource on human

genetic variation for a variety of ancestries, freely available in

public databases. The NIH-sponsored SNP database (dbSNP)

contains over 1,000 million distinct variants, as of build

155 released in June 2021 (Sherry et al., 2001).

Multiple studies assessing the heritability of complex traits

have demonstrated that genetic factors are involved in 40%–70%

of susceptibility to most common diseases. Therefore,

characterizing this relationship between genetic variation and

disease risk is an area of enormous interest. Understanding the

genetic basis of disease will have a profound impact in the

improvement of human health over the next decade, by

helping to predict and prevent disease, to implement

personalized medicine and to identify new drug targets

(Zeggini et al., 2019).

Thanks to a phenomenon called linkage disequilibrium (LD),

it is not necessary to directly assay all SNPs across the genome to

test their associations with disease. Genetic variants can be

inherited together in “blocks” or haplotypes. This means that

the presence of a variant at a particular position on the genome

can predict or “tag” the presence of other variants that are

correlated, or in high LD, with it. International consortia have

characterized genetic variants and the architecture of LD blocks

across multiple populations (Lander et al., 2001; Frazer et al.,

2007; Auton et al., 2015; McCarthy et al., 2016). This, together

with technological advances and reduced genotyping costs, has

enabled the systematic search for disease risk loci via high-

throughput genome wide association studies (GWAS).

3 Genome wide association studies
identify single nucleotide
polymorphisms associated with a
disease or trait

GWAS are very large studies that test for differences in the

allele frequency of SNPs between individuals with different

phenotypes, with the aim of finding associations between

genotypes and phenotypes. GWAS require very large sample

sizes to pinpoint genome wide associations, since each individual

SNP may only contribute a small effect to the overall risk of

disease. Microarrays are commonly used for genotyping in

GWAS. However, microarrays tend to only capture common

variation. Next generation sequencing can be used to genotype

rare variants, but this method remains costly for genotyping the

large number of individuals required for sufficiently powered

case control association studies. After careful quality control,

statistical tests are performed to detect significant associations

between genotypes and phenotypes. Typically, logistic regression

models test for associations if the phenotype is binary

(i.e., presence or absence of disease), while linear regression

models are used for continuous traits such as blood pressure

or height (Uffelmann et al., 2021). Results must be validated in an

independent replication cohort, and meta-analyses are typically

conducted to increase sample size and statistical power (Corvin

et al., 2010).

For the past 15 years, GWAS have made tremendous

advances in identifying risk loci - blocks of correlated SNPs

significantly associated with the trait of interest - for most

common diseases (Visscher et al., 2017; Claussnitzer et al.,

2020). The first GWAS, published in 2005 and studying age-

related macular degeneration, demonstrated that hypothesis-free

genetic association testing can reveal novel biological

mechanisms for complex diseases (Klein et al., 2005). Two

years later, the Wellcome Trust Case Control Consortium,

2007 set the standard for the subsequent flurry of successful

GWAS studies, with the publication of the largest GWAS at that

time, including seven diseases (2007). Since then, more than

5,600 GWAS have been published, identifying over

370,000 associations (Buniello et al., 2019), with samples sizes

that now surpass 1 million individuals (Lee et al., 2018; Jansen

et al., 2019). Such large GWAS are facilitated by the availability of

large publicly available genetic datasets, such as the

United Kingdom Biobank (Bycroft et al., 2018).

GWAS have revealed that, for most complex diseases, genetic

predisposition arises from the combination of hundreds of

mostly common variants with modest individual effect sizes.

The next big challenge is to biologically interpret these genetic

associations, to realize the potential of GWAS to elucidate

mechanistic insights of disease etiology, facilitate personalized

medicine and aid the development of novel drugs. There are

examples of successful translation of GWAS findings into the

clinic. For example, the identification of genetic association of

variants in the IL-12/IL-23 pathway with Crohn’s disease (Wang

et al., 2009) led to the use of drugs targeting this pathway to treat

the disease (Moschen et al., 2019). However, several factors have

so far limited the widespread use of GWAS findings for clinical

benefit (Tam et al., 2019). As described above, LD facilitates the

discovery of risk loci, but makes it difficult to pinpoint the causal

variant or variants within a given locus. This is complicated by

the fact that risk loci can harbor multiple, independent causal

variants. In addition, most GWAS variants map to non-coding

regions of the genome; approximately 5% of risk SNPs directly

affect the coding sequence of a gene (Farh et al., 2015; French and

Edwards, 2020). This makes the biological interpretation of

GWAS variants challenging. Finally, although GWAS loci

have traditionally been annotated to the nearest gene, many

risk loci contain multiple genes in the vicinity or map at very

large distances from coding genes, complicating the

identification of the true causal genes.

Multiple studies have now shown that SNPs identified by

GWAS are enriched in enhancers and other regulatory elements,

that are active in disease-relevant tissues and cell types (Trynka

et al., 2013; Farh et al., 2015; Cano-Gamez and Trynka, 2020).

Regulatory elements are generally bound to transcription factors

in open chromatin, with nearby marks of active transcription
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such as histone modifications. These elements likely use

chromatin looping to come into contact with their target

genes (Gasperini et al., 2020). Considerable efforts have been

made to catalog regulatory elements across the human genome,

by mapping these chromatin features using techniques such as

ATAC-seq, ChIP-seq and Hi-C, among others (Bernstein et al.,

2010; Dunham et al.,2012; Stunnenberg and Hirst, 2016). The

recent EpiMap project illustrates how such functional genomics

data can be used to predict disease-relevant tissues, causal SNPs

and their target genes. Boix et al. used data from the main large

scale consortia studies such as ENCODE, Roadmap and IHEC to

compile 10,000 epigenomic maps across multiple cell types and

tissues, which were used to identify 540 traits with

30,000 associated genetic loci (Boix et al., 2021).

4 Identifying causal variants, cell type
and target gene

4.1 Fine mapping of disease-associated
regions

A “typical” GWAS locus contains a number of highly

correlated SNP variants associated with disease, situated

either intronic or intergenic to gene coding regions. To

fully utilize and translate GWAS, each disease-associated

genetic region must be followed up by identifying the

casual variant(s), the target gene(s) and the relevant cell

type(s) in which the variants act.

Statistical fine mapping can refine the causal variants in a

region. Information from SNPs genotyped via microarray is

used to “impute” the association from other untyped SNPs.

This is achieved using knowledge of the underlying

relationship between SNPs from large numbers of

sequenced genomes, currently over 85 million on the

Michigan Imputation Server (Das et al., 2016). In this way

the direct genotyping of a relatively limited number of

~500,000 SNPs can be expanded to assess the association of

tens of millions of variants. From here, these SNPs can be

statistically fine mapped, using conditional analysis to

determine whether the association signal from a locus is

best explained with a single, or multiple independent

genetic effects.

Bayesian statistical methods are now routinely used to

assign a probability as to whether an associated SNP is causal.

This provides the scaffold of a locus on which to add

functional annotation. For example, a complicated locus

may have multiple independent associated signals, each

made up of many (>20) SNP variants with roughly equal

probability of being causal. Alternatively, the more

straightforward loci may well only have a single

association, made up of one or two SNPs that are likely to

be causal based on Bayesian probabilities. This describes the

“credible SNP set” for a locus, the number of SNPs that make

up 99% (or 95%) of the probability (Schaid et al., 2018).

This Bayesian framework incorporates knowledge of the

biological nature of the SNPs into the probability models

(Udler et al., 2019). For example, higher prior probabilities

can be assigned to SNPs that reside in enhancer regions

shown to be important in disease such as T cell enhancers in

rheumatoid arthritis (Farh et al., 2015), or SNPs that change

pivotal transcription factors in a cell type known to be important

in disease. This will then inform the SNP(s) that are likely to be

important in disease risk, for a given cell type.

4.2 Building the evidence case for
causality

As previously described, regulatory regions can act on

genes over long distances, often “skipping genes” and not

necessarily regulating the closest gene in the linear view of a

chromosome. It is therefore important, and non-trivial, to

assign the disease-associated SNPs residing within enhancers

to the genes they regulate. This can be achieved by combining

evidence from a number of genomic technologies to build up

evidence of the gene, and cellular context, in which the

credible SNPs could act (Delaneau et al., 2019; Ding et al.,

2020; Orozco, 2022).

Initially, the credible SNPs can be physically mapped to

regions of the genome that are open and active in particular

cell types. Open and active non-coding regions of the genome are

potentially important in gene regulation. These regions are

generally mapped via ATAC-seq for openness and ChIP-seq

for activity. DNA is tightly wound around histones in the

nucleus. In order to be active, the DNA is unwound locally

from histones, and the region demarked with histones that are

modified, methylated or acetylated, to maintain the open

structure. The open DNA is more accessible, such that a

transposase enzyme can insert adapters into these regions, so

that they are preferentially represented in sequencing analysis

(ATAC-seq) (Buenrostro et al., 2015). Histones can be modified

to indicate promoters, enhancers, active enhancers or silencing

regions. Antibodies that target specific histone modifications

(such as H3K27ac for active chromatin, or H3K4me1 for

enhancers) can determine these different regulatory genomic

regions, by enriching sequencing libraries (ChIP-seq) (Ernst and

Kellis, 2017). Using these molecular technologies, it is now

possible to map the different chromatin states in a wide range

of cell types (Gasperini et al., 2020).

These data can be generated in individual research labs,

especially for specialist cell types, conditions or cells from

patient samples. General cell type data are available in

publicly available databases. Large projects such as the

ENCODE (ENCODE Project Consortium, 2012) and

Epigenomics Roadmap (Bernstein et al., 2010) document the
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state of many cell types. For example, the ENCODE-Roadmap

Encyclopedia has generated ten “ground level” data sets,

including ChIP-seq and ATAC-seq and Hi-C, on over

500 tissue and cell types (Moore et al., 2020). These data can

be viewed in easily accessible websites such as IHEC (https://ihec-

epigenomes.org/) (Stunnenberg and Hirst, 2016) or EPIMAP

(https://epimap.fr/kremlin-bicetre) (Boix et al., 2021), where

SNPs can be readily mapped to areas of activity in different

cell types and states.

In this way it is possible to narrow down a range of SNPs

from the credible set that are found within regions of activity in

certain cell types. Of course, SNPs may exhibit their true causal

nature in cell types and states outside these standard ones, for

example only under certain stimulatory conditions, in a given

chronicity or from a patient with active disease.

The statistical and functional annotation of disease-associated

SNPs provides a strong hypothesis as to which of the credible SNPs

are likely functional, and the cell type in which they are likely to be

active. Overlaying evidence of transcription factor binding sites,

from resources such as JASPAR (https://jaspar.genereg.net) (Fornes

et al., 2020), could also indicate how the SNP would regulate gene

transcription. For example, the destruction of a key transcription

factor binding site could impact the regulation of gene expression

under certain cellular conditions.

4.3 From single nucleotide polymorphism
to target gene and cell type

Next the disease-implicated enhancer/SNP is assigned a

likely target gene. Again, many lines of evidence can

contribute. As previously described, TADs may well restrict

the domain of enhancer/gene contact. Determining the gene

expression in the relevant cell type, within the TAD where the

implicated enhancer resides, will narrow down the likely target

genes. This can be achieved using RNA-seq data from specific

cells and exploring cell type-specific expression databases (e.g.,

the Human Cell Atlas; https://www.humancellatlas.org/and the

Single Cell Expression Atlas; https://www.ebi.ac.uk/gxa/sc/

home). Correlation between the activity of the enhancer (via

quantitative ATAC-seq) and the activity of the gene (via

quantitative RNA-seq or quantitative ATAC-seq of the gene

region) can increase confidence as to the gene/enhancer

relationship (Gate et al., 2018; Yang et al., 2020).

A stronger relationship between the enhancer SNP and gene

expression can be found with expression quantitative trait locus

(eQTL) analysis. Here the SNP variant (for example A/G), is

correlated with gene expression, where one allele (e.g., A), is

consistently associated with increased gene expression (Albert

and Kruglyak, 2015). Such compelling evidence suggests that the

FIGURE 2
Data ProcessingMap for Applying 3D Functional Genomics to Disease SNPs. (A)GWAS summary statistics are finemapped to form credible SNP
sets, optionally employing functional information. (B) Functional datasets can inform multiple parts of a 3D genomics backed GWAS processing
pipeline, informing GWAS fine mapping, DNA interaction calling, linking SNPs to genes, and modelling gene expression and regulatory networks. (C)
Calling DNA interactions begins with alignment of sequencing reads to assign counts to linked restriction fragment pairs (light blue and dark
blue partitions denote restriction fragments) giving a DNA contact profile (denoted by dark arcs). Functional DNA interaction calling can then be
performed (denoted by red arcs). Further fine mapping of DNA interactions and inference of DNA interactions at the sub restriction fragment
(denoted by yellow blocks) level is possible given additional functional data (such as ATAC-seq). (D) Linking disease associated SNPs (denoted by
green arrow) to genes in a cell type specific manner. (E) Establishing the impact of genetic risk SNPs on gene expression.
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variant does indeed influence gene expression, and directly links

the SNP and gene. These relationships are best observed in the

GTeX consortium data (GTEx, 2013) (https://gtexportal.org).

Issues with eQTL exist. For example, it can take hundreds of

samples to expose a robust relationship between SNP and gene,

and these relationships can change, sometimes dramatically,

based on cell type and stimulation (Fairfax et al., 2014). Often

RNA-seq experiments are not performed on truly

“homogeneous” cell types (e.g., T cells) which could mask the

relationship between SNPs and gene in more refined studies (e.g.,

stimulated T-reg cells). The disease risk variant may also only be

highly correlated to the true eQTL functional SNP, so appearing

to change the expression, but not being the SNP responsible. In

this case, “colocalization” statistical analyses are required to

prove that the lead GWAS variant is also the lead eQTL

variant (Hormozdiari et al., 2016).

Other QTL analyses can give insight into the function of a

disease-associated SNP. For example, the risk allele may be

correlated with enhancer activity (ATAC-QTL) (Gate et al.,

2018), splice variants (splQTL) (Garrido-Martín et al., 2021),

protein levels (pQTL) (Yao et al., 2018) or even histone

modifications (hQTL) (McVicker et al., 2013), in specific cell

types. As the databases are expanded with more, and different

types of samples, these relationships will offer strong clues as to

the likely function of variants that increase the risk of disease.

High resolution chromatin capture techniques, such as

PCHi-C, can determine the physical links between the GWAS

implicated enhancers and the genes they regulate (Martin et al.,

2015; Javierre et al., 2016; González-Serna et al., 2022).

Overlaying the ATAC-seq, ChIP-seq, RNA-seq, and QTL data

with chromatin interaction data can provide more confidence as

to the gene/enhancer relationship, in the identified cellular

context. The advances in chromatin technology allow for base

pair resolution of DNA interactions, from small numbers of

starting cells (Downes et al., 2021). This is important in relating

the function of enhancers in particular cell types, such as specific

clinical subtypes from patients with active disease, or in

remission. This has the power to directly link enhancers to

their target genes, in different cellular contexts, and adds a

compelling layer of evidence as to how GWAS variants act to

increase the risk of disease.

Using this stepwise approach, researchers can refine a

complicated structure of many potentially causal variants, to a

limited number (statistical fine mapping, functional mapping) in

a limited number of cell types (cell type-specific activity of

enhancers) impacting a limited number of genes (eQTL,

chromatin interactions). This provides a robust hypothesis as

to how the variant increases risk of the disease. These hypotheses

can be investigated using genetic engineering technologies such

as CRISPR in 3D tissue cultures or mice, to provide a model for

disease risk.

5 Chromatin conformation capture
approaches

Experimental methods to interrogate the 3D folding of the

human genome can be divided into microscopy-based and

TABLE 1 Selected software for integrating 3D functional genomes with disease SNPs.

Step Software

DNA contact processing HiCUP https://github.com/StevenWingett/HiCUP

MHi-C https://github.com/MHi-C

Promoter Interaction Calling CHiCANE https://cran.r-project.org/web/packages/chicane

CHiCAGO https://bitbucket.org/chicagoTeam/chicago

CHiCMaxima https://github.com/yousra291987/ChiCMaxima

HiCapTools https://github.com/sahlenlab/HiCapTools

GOTHiC http://www.bioconductor.org/packages/release/bioc/html/GOTHiC.html

Statistical and functional fine mapping PolyFun https://github.com/omerwe/polyfun

SuSiE https://github.com/stephenslab/susieR

FINEMAP http://www.christianbenner.com/

PAINTOR https://github.com/gkichaev/PAINTOR_V3.0

3D interaction fine mapping Peaky https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction

Gene Prioritization ABC-max model https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction

COGS https://github.com/ollyburren/rCOGS

H-MAGMA https://github.com/thewonlab/H-MAGMA

Gene expression prediction TEPIC https://github.com/SchulzLab/TEPIC

Xpresso https://github.com/vagarwal87/Xpresso

Enformer https://github.com/deepmind/deepmind-research/tree/master/enformer

Frontiers in Cell and Developmental Biology frontiersin.org07

Orozco et al. 10.3389/fcell.2022.995388

https://gtexportal.org
https://github.com/StevenWingett/HiCUP
https://github.com/MHi-C
https://cran.r-project.org/web/packages/chicane
https://github.com/yousra291987/ChiCMaxima
https://github.com/sahlenlab/HiCapTools
http://www.bioconductor.org/packages/release/bioc/html/GOTHiC.html
https://github.com/omerwe/polyfun
https://github.com/thewonlab/H-MAGMA
https://github.com/SchulzLab/TEPIC
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.995388


biochemical approaches. Although throughput is limited,

advanced microscopy techniques can capture the temporal

and spatial dynamics of 3D genome organization (Boettiger

et al., 2016; Williamson et al., 2016; Bintu et al., 2018; Chen

et al., 2018; Gu et al., 2018; Gabriele et al., 2022). Here, we

focus on high resolution biochemical approaches to map long-

range chromosomal contacts, including gene regulatory

contacts between enhancers and their target gene

promoters. The most commonly used approaches are

variants of capturing chromosome conformation (3C)

(Dekker et al., 2002) that rely on fixation and proximity

ligation, although methods without ligation (Beagrie et al.,

2017), without crosslinking (Brant et al., 2016) or without

crosslinking and ligation (Redolfi et al., 2019) have also been

established.

In 3C, cells are fixed with a short distance crosslinker such as

formaldehyde to “freeze” the 3D genome folding in its native

state. Subsequently, the chromatin is digested with a restriction

enzyme, with the choice of the restriction enzyme determining

the resolution of the resulting chromatin interaction maps (Su

et al., 2021). Proximity ligation between the overhangs created by

restriction digestion then creates hybrid molecules between

chromatin regions that were in close proximity at the time of

crosslinking. The frequency of these ligation events, revealed by

massively parallel sequencing, is a readout for how often the

corresponding chromosomal regions are in close spatial

proximity in a specific cell type.

Chromosome conformation capture methods can be one-

to-one (3C) (Dekker et al., 2002), one-to-all (4C) (Simonis

et al., 2006; Zhao et al., 2006), many-to-many (5C) (Dostie

et al., 2006) or all-to-all high-throughput (Hi-C) (Lieberman-

Aiden et al., 2009). In Hi-C, the ligation step is preceded by

integration of biotin at restriction fragment overhangs,

enabling the isolation of biotin-marked ligation products.

As a result, complex Hi-C libraries contain all the

chromosomal interactions within a cell population. This

has led to the discovery of key principles and building

blocks of 3D chromatin organization, including TADs

(Dixon et al., 2012; Nora et al., 2012), and A and B

compartments in which active and repressed regions

spatially segregate (Lieberman-Aiden et al., 2009).

However, Hi-C libraries are enormously complex, with an

estimated 1011 independent ligation products between ~4 kb

fragments of the mouse or human genomes (Belton et al.,

2012). This prevents the reliable identification of promoter-

enhancer contacts with statistical confidence, unless Hi-C

libraries undergo ultra-deep sequencing (Rao et al., 2014;

Bonev et al., 2017). This limitation has been addressed by

methods have been developed to enrich 3C for specific subsets

of interactions, such as Capture-C (Hughes et al., 2014; Davies

et al., 2016; Chesi et al., 2019), or Hi-C libraries (Dryden et al.,

2014; Schoenfelder et al., 2015a; Mifsud et al., 2015; Sahlén

et al., 2015). Promoter-Capture Hi-C (PCHi-C) specifically

enriches promoter-containing ligation products from Hi-C

libraries, allowing capture of promoter interacting regions for

all (>22 K) promoters across the mouse genome (Schoenfelder

et al., 2015a; Sahlén et al., 2015; Wilson et al., 2016; Siersbæk

et al., 2017; Comoglio et al., 2018; Novo et al., 2018;

Schoenfelder et al., 2018) and the human genome (Mifsud

et al., 2015; Javierre et al., 2016; Freire-Pritchett et al., 2017;

Rubin et al., 2017; Chovanec et al., 2021). A direct comparison

between Capture-C and Capture Hi-C revealed that Capture

Hi-C generates two to three times more usable and

informative reads (Su et al., 2021), due to the fact that

Capture-C enriches for un-ligated fragments (Sahlén et al.,

2015).

Variants of 3C approaches have replaced restriction enzymes

with micrococcal nuclease (Micro-C) (Hsieh et al., 2015),

yielding chromatin interaction maps with nucleosome level

resolution. Micro-C libraries can be enriched for interactions

with selected bait loci (Micro Capture-C or MCC) (Hua et al.,

2021) or continuous genomic regions (Tiled-MCC) (Aljahani

et al., 2022), closely mimicking previously developed approaches

to enrich 3C or Hi-C libraries for specific interactions.

Further, several methods have been developed to target 3D

chromatin interactions of accessible regions in the genome,

including OCEAN-C (Li et al., 2018), HiCoP (Zhang et al.,

2020), NicE-C (Luo et al., 2022), and HiCAR (Hi-C on

accessible regulatory DNA) (Wei et al., 2022).

Alternative approaches have combined proximity ligation

with chromatin immunoprecipitation (ChIP) to isolate

chromosomal interactions involving specific proteins. In one

approach, ChIP is performed, then biotinylation enables

isolation of ligation products bound by the protein of interest

(Fullwood et al., 2009). This approach is called Chromatin

Interaction Analysis by Paired-End Tag sequencing (ChIA-

PET). HiChIP, another protein-centric chromatin

conformation capture method (Mumbach et al., 2016;

Mumbach et al., 2017), combines marking of ligation

junctions with biotin, ChIP, and construction of a

transposase-mediated library. HiChIP requires a lower input

of cells, and generates more informative reads compared to

ChIA-PET (Mumbach et al., 2016). Similarly, proximity

ligation assisted ChIP-seq (PLAC-seq) seems to outperform

ChIA-PET by switching the order of proximity ligation and

chromatin shearing steps (Fang et al., 2016).

Importantly, Capture Hi-C does not rely on ChIP (in

contrast to ChIA-PET, HiChIP and PLAC-seq), and is

therefore capable of interrogating chromosomal

interactions irrespective of protein occupancy. This is key

for comparing 3D chromatin interactomes in specific genetic

backgrounds, for example wild-type to knockout. Indeed, this

approach has uncovered a strong inter-chromosomal spatial

interaction network between Polycomb-bound and -regulated

genes in mouse embryonic stem cells (Schoenfelder et al.,

2015b).
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6 Bioinformatic tools to process and
integrate genome wide association
studies and 3D genomics data

Strategies to integrate GWAS and 3D genomics data as

outlined in the previous sections have been supported by a

maturing and expanded set of computational and statistical

tooling over the last decade (Pal et al., 2019; Gong et al.,

2021) (Table 1 ; Figure 2). These tools provide a base to

analyze genetic disease risk in the context of the 3D

functional genome; allowing insight into genetic contributions

to disease (Gazal et al., 2022) and deep investigation into

regulatory dynamics of complex diseases (Jin et al., 2013;

Burren et al., 2017; Wang et al., 2018; Su et al., 2020). An

analysis pipeline for mapping disease risk variants to target

genes via 3D genomics seeks to establish confident cis-

interactions, first by processing proximity ligation sequencing

data to DNA contact data (Servant et al., 2015; Wingett et al.,

2015) (Zheng et al., 2019), and then inferring functional

relevance through the application of statistical models (Cairns

FIGURE 3
Overview of workflow for translating GWAS data into clinical benefit for patients.

Frontiers in Cell and Developmental Biology frontiersin.org09

Orozco et al. 10.3389/fcell.2022.995388

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.995388


et al., 2016; Mifsud et al., 2017; Ben Zouari et al., 2019; Holgersen

et al., 2021). Several studies have evaluated the merits of common

pipelines that implement these steps (Forcato et al., 2017; Aljogol

et al., 2022), and one commonly used component (CHiCAGO)

for calling biologically meaningful cis-interactions from DNA

contact data generated from PCHi-C has been independently

evaluated (Disney-Hogg et al., 2020) and guidance on usage

published (Freire-Pritchett et al., 2021). Recent methodological

advances allow for improved resolution over the typical

restriction fragment level DNA interaction processing pipeline

(Figure 2C). In one case, this has been achieved through

development of a statistical model of neighboring DNA

interactions so as to precisely assign DNA interactions to

restriction fragments (Eijsbouts et al., 2019), another approach

uses deep learning to infer sub-fragment cis-interactions using

DNA sequence patterns and chromatin accessibility data (Li

et al., 2019). Despite the challenges in calling cis-interactions

from typically under-sampled Hi-C/CHi-C data (Aljogol et al.,

2022), deep learning methods have been developed that provide

improved DNA interaction coverage and resolution for

sequencing and sample costs (Zhang, 2022).

Multiple reviews cover recent statistical advances that

estimate causal genetic risk loci, accounting for LD and

functional annotation (Spain and Barrett, 2015; Pasaniuc and

Price, 2017; Hutchinson et al., 2020; Wang and Huang, 2022).

Briefly, methods have evolved that use GWAS summary statistics

rather than individual genotype level data, and relax the single

causal variant per locus assumption of earlier landmark fine

mapping work (Wakefield, 2009; Maller et al., 2012). Several of

these methods allow for the integration of functional marks. For

example, the posterior probability for causality computed by the

fine mapping methods FINEMAP (Benner et al., 2016) and SuSiE

(Wang et al., 2018) can be influenced using prior probabilities

computed first using the PolyFun method (Weissbrod et al.,

2020), while the PAINTOR method (Kichaev et al., 2014) is

specifically designed to integrate functional annotation into the

fine mapping process.

Having established credible SNP sets, cis-interactions can be

used to link disease SNPs to target genes and estimate confidence

of association with the disease (often referred to as a SNP-to-gene

strategy—“S2G,” Figure 2D). One approach is to intersect fine

mapped SNPs with Promoter Interacting Regions (PIRs) to

establish a set of target genes. For example, Song et al (2019)

first compute a window around each SNP such that neighboring

SNPs must have LD coefficient of r2 > 0.8, then intersects this

window with PIRs to build a set of target genes (Song et al., 2019).

Another strategy has been to develop a per-gene disease risk

score using a framework that integrates all fine mapped genetic

risk linked by PIRs (and other regions) to a particular locus, such

as the COGS method (Javierre et al., 2016; Burren et al., 2017)

and the more recent H-MAGMA framework (de Leeuw et al.,

2015; Sey et al., 2020; Zhang, 2022). With the addition of

functional datasets, the Activity By Contact (ABC) model for

enhancer contribution to gene regulation (Fulco et al., 2019) can

be employed to translate disease risk to the gene level. Credible

SNP sets (for example, obtained from SuSiE) can be overlapped

with ABC enhancers, and the gene with the highest ABC

enhancer score is chosen (ABC-max) (Nasser et al., 2021).

Combining multiple S2G strategies has been demonstrated to

be important for biological insight (Giambartolomei et al., 2021)

and accuracy (Gazal et al., 2022).

Finally, to estimate how a variant impacts the expressed

genome, deep learning approaches that model gene expression

from minimal input such as DNA sequence alone have recently

undergone substantial improvement in prediction accuracy

(Agarwal and Shendure, 2020; Avsec et al., 2021). However,

representing long-range enhancer architecture appears to be

critical for improving performance to a point where non-

coding disease variants can be reliably assessed for their

impact on RNA expression (Agarwal and Shendure, 2020).

Avsec et al. (2021) also recently demonstrated that allowing

for the representation of longer-range interactions in a DNA

sequence based deep learning framework significantly improved

gene expression prediction. Schmidt et al. (2020) demonstrate

that the addition of inter-TAD promoter-enhancer contact data

improves gene expression prediction using their existing TEPIC

pipeline.

7 Future challenges

Although there has been substantial progress establishing

technologies and bioinformatics tooling for 3D genomics

over the last decade, multiple challenges and opportunities

remain.

Recent evaluation of bioinformatics tooling demonstrates

significant differences between tools used for calling cis-

interactions from Hi-C (Forcato et al., 2017) and PCHi-C

(Aljogol et al., 2022). In particular, these studies have

highlighted low concordance between technical replicates

and reproducibility trading off against resolution (e.g.,

window size of analysis) and the number of sample

replicates. This can be attributed partly to under sampling

of complex sequencing libraries from heterogenous cell

populations. Technologies that allow for deconvolution of

cell heterogeneity and increased efficient use of sequencing

space will clearly empower all 3D genome applications.

Bioinformatics methods to improve these characteristics are

emerging, such as the aforementioned fine mapping of DNA

interactions and machine learning derived models that will

augment experimental measurement. Methods developed to

predict cis-interactions from linear genome function marks

will likely aid this effort (Piecyk et al., 2022). Thus, a core

challenge for the field to enable diagnostic and therapeutic

discovery applications is to drive cost-effective construction of

3D genome states at high resolution.
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There are substantial improvements to gain in accurately linking

SNPs to genes, as demonstrated by recent studies evaluating S2G

strategies (Dey et al., 2022; Gazal et al., 2022; Lettre, 2022). These

studies point to promoter-enhancer strategies (such as ABCmodels)

along with wider profiling ofmultiple cell types/states as a promising

avenue to pursue. Methodological improvements built on similar

frameworks to ABC, combined with functional experimental

paradigms may drive progress in this area. Thus, a further

challenge in the field is the comprehensive integration of 3D

genomes into SNP-to-gene linking strategies.

3D genomes can also aid in inferring the functional impact

of disease genetics on linked targets genes, such as the result on

gene expression and effect across regulatory networks and

pathways. The use of 3D genomics to provide data on long-

range interactions (Agarwal and Shendure, 2020) as a base to

construct transcriptional networks appears crucial to this goal.

Thus, another challenge is the full integration of 3D genomes

in the construction of transcriptional regulatory networks and

pathways. Support for visualization and interactivity using 3D

genomic data has advanced (Yardımcı and Noble, 2017;

Oluwadare et al., 2019), but there is significant need for

interactive systems focused on exploring disease risk

genetics (Wlasnowolski et al., 2020), and to augment

human designers of therapeutic and diagnostic strategies.

These would allow for interactive exploration of scenarios

based on genetic and structural configurations, enabling

viewpoints at the base-pair level with the ability to simulate

the impact on regulatory dynamics, pathways and cell state

seamlessly. Finally, programs that support validation of

disease genetics by profiling 3D genomes in multiple

patient samples will be crucial to confirm and inform

regulatory disease models established using 3D genomics

(Figure 3).

Cleary, we are only just beginning to scratch the surface of

the complete picture of how human genetic variation

contributes to gene expression control, innumerable

human traits and disease susceptibility across hundreds of

different human tissue-types and their developmental and

differentiation precursors. With continued improvement of

molecular and computational technologies, and an ever-

expanding fountain of new data we should expect to see

significant new advances in our understanding of the

causes and consequences of disease, which are the critical

first steps in rational design of therapeutic interventions.
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Nomenclature

ABC Activity by Contact

ATAC-seq Assay for Transposase-Accessible Chromatin with

high-throughput sequencing

ChIA-PET Chromatin Interaction Analysis by Paired-End Tag

sequencing

ChIP Chromatin immunoprecipitation

ChIP-seq Chromatin immunoprecipitation with massively

parallel DNA sequencing

COGS Common Omnibus Gene Score

CRISPR Clustered regularly interspaced short palindromic

repeats

eQTL Expression quantitative trait locus

GWA Genome wide association

GWAS Genome wide association studies

Hi-C High-throughput chromosome conformation capture

IBD Inflammatory bowel disease

LD Linkage disequilibrium

Micro-C/MCC Micrococcal nuclease capturing chromosome

conformation

PCHi-C Promoter-Capture Hi-C

PIP Posterior Inclusion Probability

PIR Promoter interacting regions

PLAC-seq Proximity ligation assisted ChIP-seq

QTL Quantitative trait locus

RNA-seq RNA sequencing

SNP Single nucleotide polymorphism

TAD Topologically associating domain

Tiled-MCC Micro-Capture-C
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