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Cilia and flagella are slender cylindrical organelles whose bending waves propel

cells through fluids and drive fluids across epithelia. The bending waves are

generated by dynein motor proteins, ATPases whose force-generating activity

changes over time and with position along the axoneme, the motile structure

within the cilium. A key question is: where, in an actively beating axoneme, are

the force-generating dyneins located? Answering this question is crucial for

determining which of the conformational states adopted by the dynein motors

generate the forces that bend the axoneme. The question is difficult to answer

because the flagellum contains a large number of dyneins in a complex three-

dimensional architecture. To circumvent this complexity, we used amolecular-

mechanics approach to show how the bending moments produced by single

pairs of dynein motors work against elastic and hydrodynamic forces. By

integrating the individual motor activities over the length of the axoneme,

we predict the locations of the force-generating dyneins in a beating axoneme.

The predicted location depends on the beat frequency, the wavelength, and the

elastic and hydrodynamic properties of the axoneme. To test these predictions

using cryogenic electron microscopy, cilia with shorter wavelengths, such as

found in Chlamydomonas, are more suitable than sperm flagella with longer

wavelengths because, in the former, the lag between force and curvature is less

dependent on the specific mechanical properties and experimental

preparation.
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Introduction

Cilia and flagella are ancient organelles: all the major branches of eukaryotes include

organisms with motile cilia and flagella (Jékely, 2009). The motile structure within the

cilium is the axoneme, which has a diameter of about 200 nm (Afzelius, 1988) and can

range in length from a few micrometers to over 1000 μm (Velho Rodrigues et al., 2021).

Motile axonemes typically have a 9 + 2 architecture comprising nine circumferential

doublet microtubules—each composed of a complete microtubule, the A-tubule, fused
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with an incomplete B-tubule—surrounding a central pair of

single microtubules (Figures 1A,B). The microtubules form a

scaffold that binds the axonemal dyneins, which drive motility,

together with hundreds of other proteins that are essential for the

assembly, structural integrity, and regulation of the axoneme

(Pazour et al., 2005) (http://chlamyfp.org). Overall, the axoneme

has a similar size to and number of proteins (encoded by different

genes) as the mitochondrion (Calvo and Mootha, 2010), another

evolutionarily ancient organelle. However, in contrast to

mitochondria, where the essential features of the

electrochemistry underlying aerobic respiration are understood

(Berg, et al., 2019), the fundamental mechanochemistry

underlying the motility of the axoneme is not well

understood. This is because it is not known how mechanical

forces generated by the dynein motors are coordinated into large-

scale bending waves that propagate through the complicated

axonemal structure. In this work, we address one part of this

question: where in a beating cilium are the active dyneins

located?

To understand how dyneins generate bending waves one

must consider the geometry of the axoneme. The microtubule

doublets are oriented such that the A-tubule is on the clockwise

side (when looking from the base to the tip as in Figure 1B) and

the B-tubule on the counterclockwise side: thus, the axoneme has

approximate C9 symmetry with a rotation of 40° ( = 360 ÷ 9)

from one doublet to the next. Axonemal dyneins are located

along the axoneme with their tails anchored to the A-tubule of

one doublet and their microtubule-binding domains (MBDs)

interacting transiently with the B-tubule of the adjacent doublet

(Figure 1A). The dyneins are ATPases, which bind adenosine

triphosphate (ATP), hydrolyze it, and sequentially release the

products inorganic phosphate and ADP (Ishibashi et al., 2020).

This reaction is coupled to a sequence of conformational changes,

which can be observed by electron microscopy (e.g., Burgess

FIGURE 1
A pair of dynein motor proteins can generate a bend. (A) A
flagellum with the right-handed coordinate system (axes drawn
below). (B) The cross-section when viewed from the base with the
standard numbering (Afzelius 1988) and the dynein arms
pointing clockwise. The center-to-center spacing of the doublets
is approximately 60 nm. The small circles at the ends of the lines
emerging from the complete A-tubule represent themicrotubule-
binding domains (MTB) of the outer-arm dyneins (just one MTB is
shown, though sperm have two and Chlamydomonas has three).
(C) A pair of dyneins on opposite sides of the axonemal section. (D)
view along the length of the axoneme showing the outer-arm
dyneins spaced every 24 nm (δ) and generating downward forces
(towards the minus ends of the microtubules). (E) The upper right
dynein generates a negative moment and the lower left one a

(Continued )

FIGURE 1 (Continued)
positive moment. The dotted arrows indicate that the same
moment would be generated by an oppositely direct force
acting on the other side of the axoneme. (F) The integrated
moment along the length. (G) The pair of moments
generate a bend. (H) Cartoon showing that bending moments
come in pairs (unbalanced moments leads to rotations). (I)
Tensile forces also come in pairs. Note 1. Assuming that the arm
of DM8-dynein is parallel to the y-axis, then the moment it
generates is positive: aj × − Fi � aFk, (where i, j and k are the unit
vectors in the x, y and z directions). This moment, together with
the moment −aFk generated by the DM3-dynein, creates a
bend in the x-y plane. Note 2: Because the arms associated
with the DM8-and DM3-dyneins are not (quite) opposite each
other, the net moment generated when both are active (in the
same section) do not (quite) cancel. However, the arm vectors
an � −a sin(40n − 20)j + a cos(40n − 20)k satisfy
∑4

1 an +∑9
6an � ak. This is due to the absence of arms between

DM5 and DM6. Thus, when all dyneins are active, the moment is
ak × − fi � afj so there is no bending in the x-y plane. The
bending in the y-z plane is blocked by the bridge, which
prevents shear between doublets five and six.
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et al., 2003; Lin and Nicastro 2018). These conformational

changes lead to dynein’s MBD attaching to the microtubule,

the generation of force, which shears adjacent doublets, and the

subsequent detachment from the microtubule. An important

question in the field is: which conformational states of dynein

correspond to the active, force-generating states, and which to

inactive, non-force-generating states. This question is open: for

example, a recent paper proposed that most of the dyneins in

beating sea-urchin sperm are in force-generating states, and the

bends are produced by inactivating dyneins a small fraction of

dyneins at specific locations (Lin andNicastro 2018). This view of

the mechanism of bend formation and propagation differs from

previously proposed mechanisms (Satir and Matsuoka, 1989),

underscoring the importance of understanding the

configurations of dyneins associated with force generation.

One way to answer this question is to deduce where, in a

beating axoneme, the active dyneins are located. If one knew that

dynein was active at a specific location (e.g., relative to the

curvature of the axoneme, Figure 1A), then one could look at

this location under the electron microscope and infer that the

active state is the conformation of the dynein at this location. In

this paper, we use a dynamical model of the axoneme, which we

derive using a single-molecule approach, to predict the spatial

relationship between motor activity and axonemal curvature. A

key conclusion is that dynein activity and curvature do not

colocalize. Furthermore, the spatial relationship between

dynein force and axonemal bending depends on the ratio of

the hydrodynamic and elastic forces, which in turn depends on

the beat wavelength. Because they have shorter wavelengths than

sperm, we argue that Chlamydomonas cilia are a better

experimental model than sperm to identify dynein’s force-

generating states by cryoem.

Results

General mechanism by which dyneins
bend the axoneme

If the axonemal dyneins were not anchored to the A-tubule,

they would walk along the B-tubule towards the base of the

axoneme, where the microtubule’s minus end is located. Because

the dyneins are anchored to the A-tubule, however, the force

instead leads to sliding between adjacent doublets. This inter-

doublet sliding in turn causes bending because there are

mechanical constraints at the base of the axoneme that resist

sliding there. The spatio-temporal coordination of the activity of

the dyneins, through a mechanism that is not well understood

(see e.g., Sartori et al., 2016b and references therein), gives rise to

an approximately sinusoidal bending wave that travels along the

axoneme and propels the axoneme through the fluid.

To connect motor activity with bending waves requires an

equation of motion. Such an equation was first derived by

Kenneth Machin (Machin, 1958), see also (Bayly and Wilson,

2014). It balances active forces against elastic forces (which

oppose bending) and hydrodynamic forces (which oppose

movement through the fluid). Using this equation, Machin

deduced that active forces must be generated all along the

flagellum; if motors were only active at the base, like the

cracking of a whip, the amplitude would decay rapidly due to

the damping from the fluid, and propagating bending waves

would not be observed. In other words, “flagellum” (meaning

whip in Latin) is a misnomer. Machin’s discovery is especially

remarkable because dynein had not yet been discovered (Gibbons

and Rowe, 1965) and he did not know that bending is driven by

the sliding of the (nearly) incompressible microtubules (Satir,

1968).

BecauseMachin did not know how the forces were generated,

he derived his equation using a continuum, non-molecular

approach that is difficult to relate to our current

understanding of motor proteins (e.g., (Ishibashi et al., 2020)).

In this work, we rederive Machin’s equation by analyzing the

forces generated by single dyneins. We show that the equation

follows from just three molecular properties of dynein: 1) each

active dynein generates a small bending moment, 2) a pair of

active dyneins located on opposites sides of the axoneme and at

different distances from the base bends the axoneme, 3) a

difference in sliding force between two adjacent dyneins on

one side of the axoneme produces a normal force that

opposes hydrodynamic drag. Summing up these elementary

interactions allows us to derive Machin’s equation and

therefore deduce where active dyneins are located to produce

the observed flagellar bends.

How a pair of dyneins bends the axoneme

In this paper, we will assume that beating is driven by the

outer-arm dyneins, which are anchored every 24 nm along the

A-tubule and have two or three force-generating motor domains

(depending on the species). This is a simplification as axonemes

contain several different classes of inner-arm dyneins in addition

to the outer-arm dyneins (Bui et al., 2008). However, there is

functional redundancy among the dyneins: mutational studies

show that Chlamydomonas cilia are still motile (though they beat

more slowly) in the absence of the outer-arm dyneins or when

individual classes of inner-arm dyneins are absent (Brokaw and

Kamiya, 1987). Thus, given this redundancy, our simplification is

likely to reasonable, at least at the level of analysis here.

Because the direction that dynein bends an axoneme depends

on the doublet to which it is anchored, we need to use a

numbering system for the doublets. The doublets (and

associated dyneins) are numbered in Figure 1B according to

the convention for sperm (Afzelius, 1988). Doublet microtubule

1 (DM1) is defined as the doublet that lies on the line that bisects

the central pair. On the opposite side to DM1 there is usually a
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bridge that connects doublets five and six, between which the

outer-arm dyneins are missing. In the unicellular alga

Chlamydomonas reinhardtii, the numbering differs (Hoops

and Witman, 1983): the bridge is between Chlamydomonas

doublets one and 2 (cDM1 and cDM2), and cDM5 is

equivalent to DM1 in sperm. The absence of dyneins between

DM5 and DM6 in sperm (and cDM1 and cDM2 in

Chlamydomonas) and the presence of the bridge, which

presumably impedes sliding, tends to keep the axonemal beat

in the x − y plane (see Note 2 in the legend to Figure 1).

To analyze mathematically how the dyneins bend the

axoneme, we need to define a coordinate system. In the

right-handed coordinate system shown at the bottom of

Figures 1A,B, the x-axis is parallel to the axis of the

axoneme and the y-axis points into the reverse bend

(defined as the bend which has the bridge on the inside Lin

et al., 2014); a useful mnemonic is RBI—the Reverse bend has

the Bridge on the Inside. An axoneme shape corresponds to a

curve y(x). The z-axis points out of the page in Figure 1A and

upwards in Figure 1B. This coordinate system defines the sign

convention for curvature (� d2y/dx2) and bending moment

(see below). The origin of the coordinate system is at the base

of the axoneme (x � 0, y � 0) and the tip of a straight axoneme

is at (x � L, y � 0), where L is the length.

To simplify the analysis, we focus only on the dyneins

between doublets three and four (DM3 filled black) and those

between eight and nine (DM8 filled gray) (Figure 1C); these are

the main drivers for bending in the x-y plane, with the other

dyneins generating moments that make smaller contributions to

the bend (see Notes 1 and 2 in the legend to Figure 1). The arms

extend approximately parallel to the y-axis and are spaced with a

period δ � 24 nm along the length of the doublet as shown in

Figure 1D, which is in the same orientation as Figure 1A. The

dyneins walk towards the minus ends of the microtubules, which

are located towards the cell body (x � 0). Therefore, they

generate minus-end-directed forces, indicated by the

downward arrows. Following this sign convention, the dynein

force is −F, where F is positive. Single outer-arm dyneins can

generate forces up to 5 pN (Hirakawa et al., 2000). Because the

inter-dynein spacing (24 nm) is very small compared to the

length of the bends (typical wavelengths are λ ~ 10 μm), we

can define a force density per unit length, −f, where f � F/δ.

The next step is to calculate the bending moments generated

by the dyneins. In a beating axoneme, dynein forces vary with

position (both along the length and on different sides of the

axoneme) and time. It is instructive, however, to start with a

simple scenario in which only two dyneins are active and the

activity does not change in time. The dyneins are shown in

Figure 1E: one at the lower left (gray MTB) and the other at the

upper right (black MTB). The lower dynein is anchored to the

A-tubule of DM8 and interacts with the B-tubule of DM9 and

generates a downward force with a moment arm extending to the

left (which is positive in our coordinate system). The magnitude

of the moment arm, a � 30 nm, corresponds approximately to

the distance between the doublets, though the precise length

depends on the molecular structure of dynein and how it

generates force. The DM8 dynein generates a small

counterclockwise (positive) moment Ml � aFl, where −Fl is

the dynein force on the left (see Note 1 in Figure 1 legend for

the definition of the sign of the moment). Note that if the dynein

immediately to the right of this dynein (on the opposite side of

the midline) were also active and generating a downward force,

then the moments would cancel and there would be no net

moment (see Note 2 in Figure 1 legend for a more precise

statement). This illustrates that a net bending moment

requires an imbalance of forces across the axoneme. The

dynein anchored to DM3 and interacting with DM4 with its

black MTB (Figure 1E, upper right) also generates a downward

force, but the moment arm extends to the right (i.e., the negative

direction); this dynein generates a small clockwise (negative)

momentMr � −aFr. Therefore, in between this pair of dyneins is

a region where the moment, M � aF � a(Fl − Fr), is positive

(Figure 1F). This moment bends the intervening axoneme

(Figure 1G).

The location and size of the bends
generated by the dyneins

The magnitude of the bend produced by the pair of moments

can be calculated using the “beam” equation, M � −κC, where κ
is the flexural rigidity of the axoneme and C � d2y/dx2 is the

curvature (Howard 2001). This equation is a consequence of

Euler–Bernoulli beam theory and serves as a definition of the

flexural rigidity. In accordance with our sign convention, the

curvature of the bend in Figure 1G is negative (the angle

decreases as x-increases).

The beam equation is analogous to Hooke’s equation for the

extension of a spring: F � −kx, where k is the stiffness and x is

the extension. To create a bend, two equal and opposite moments

are needed (Figure 1H); a single bending moment will cause an

object to spin. This is analogous to stretching a spring: two equal

and opposite forces are needed (Figure 1I): a single force will

cause an object to translate.

If only one dynein is actively generating force, then to get a

bend, the moment must be balanced at the base (or tip) of the

axoneme, for example by restricting sliding at the basal body or

transition zone. If the moment is not balanced at the base (or

along the length), then the doublets will slide apart without

bending, as observed when the basal restriction to sliding is

digested away with proteases (Summers and Gibbons, 1971). In

addition to a sliding constraint at the base, bending as shown in

Figure 1G requires an additional constraint: DM8 and DM3must

bend together otherwise the DM8-DM9 pair would bend in one

direction and DM3-DM4 pair would bend in the other. This

constraint is supplied by the radial spokes and additional
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electrostatic interactions between the doublets that keep the

spacing between doublets fixed and maintain the circular

cross-section of the axoneme.

A key finding of this analysis is that the location of the

bend differs from the location of the active dynein motors

that cause it. Figures 1E–G show this: the bend occurs

between the active dyneins, and the curvature outside the

dyneins is zero.

How big is the bend? Given that the axoneme contains

20 microtubules (9 doublets plus two making up the central

pair), we expect that flexural rigidity to be ≥20 times that of a

single microtubule (it could be much larger if there is resistance to

inter-doublet sliding, which occurs in the absence of ATP and the

motors are in rigor, (Howard, 2001)). Therefore, we expect the

flexural rigidity to be at least 500 × 10–24 N·m2 or 500 pN μm2 (using

the flexural rigidity of a single microtubule in (Howard, 2001)). This

flexural rigidity agrees with experimental measurements on intact

axonemes (e.g., 800 pN μm2 in (Xu et al., 2016)). According to the

beam equation, therefore, a single pair of dyneins is expected to

generate only a very slight bend with curvature 0.0002 μm−1,

corresponding to a radius of curvature of about 5,000 μm

(|C| � aF/κ � 0.03 μm × 5 pN ÷ 800 pN · μm2). Thus, the large

bends observed in beating axonemes (radius of curvature on the

order of 1–10 μm)must be generated by hundreds of dyneins within

each wavelength.

Balancing motor forces and bending
forces in a static axoneme

To find a general relationship between the distribution of motor

forces and the curvature of an axoneme, we derive the static version

of Machin’s equation. We start with the beam equation:

M(x) � −κC(x). To calculate the total bending moment, M, at

position x, we need to add up all the moment densities along the

length: M(x) � ∫x

0
m(x′)dx′ � ∫x

0
a · f(x′)dx′, where f � fl −

fr is the differential force density across the axoneme

(fl � Fl/δ, fr � Fr/δ). If we assume that the amplitude of the

beat is small, then the curvature is approximately

C(x) � d2y/dx2. We therefore obtain

M(x) � ∫x

0
a · f(x′)dx′ � −κC � −κd2y/dx2. Differentiation gives

af(x) � −κ d
3y

dx3
(x) (1)

This equation relates the differential dynein force density to the

change in curvature in a static (unmoving) axoneme. If the forces are

distributed along the axoneme as f(x)∝ sin(2πx⁄ λ) as shown in

FIGURE 2
Location of motor forces relative to the axonemal shape in
the static (small drag) and dynamic (large drag) limits (A) The
difference in forces between those generated by dyneins
anchored onDM6-9 (defined as positive) and those anchored
on DM1-4. (B) In the static case (Ma � 0, see Eq. 6 for the definition
of the Machin number Ma), the amplitude lags the force. The
negative bend is associated with the activity of DM6-9 dyneins in
front of the bend and the DM1-4 dyneins behind the bend. (C) In
the hydrodynamic limit (Ma � ∞), the amplitude is in phase with
the force. In this case, proximal DM6-9 dyneins and distal DM1-4
dyneins will produce a negative (reverse) bend in the intervening
straight region. The bending wave travels upwards as indicated by
the arrow. The forces and moment arms are indicated in B and C.

FIGURE 3
A gradient of motor forces produces a normal force.
(A) Consider a pair of adjacent dyneins in which the upper dynein
generates a larger force (F2 > F1). The upper moment produces a
larger leftward force than the lower moment produces a
rightward force. The net force is proportional to the gradient.
(B) The net rightward normal force can balance the leftward
hydrodynamic force when the axonemal segment moves to the
left.

Frontiers in Cell and Developmental Biology frontiersin.org05

Howard et al. 10.3389/fcell.2022.995847

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.995847


Figure 2A (i.e., fr � fl at x � 0 and DM6-9 maximally active at

x � λ/4), then the amplitude can be obtained by triple integration of

Eq. (1): y(x)∝ − cos(2πx⁄λ). The curvature,

C � d2y/dx2 � cos(2πx/λ), is therefore λ/4 (ninety degrees) out

of phase with the motor activity and the principal bend (maximum

positive curvature) occurs before the force peaks. The motor forces

havemaximumamplitude at each end of the bend. This is analogous

to the case illustrated in Figures 1E–G. Furthermore, where the

curvature is maximum (and minimum) there is no differential

motor activity! Thus, motor activity and bending are not co-

localized. This is a key finding.

Balancing motor forces and
hydrodynamic forces

As an axoneme swims, the movement of each increment of

length along the flagellum is opposed by viscous forces from

the surrounding fluid. In a moving flagellum, therefore, the

motor forces must also balance hydrodynamic forces, which

are normal to the axis of the axoneme. That the motor

moments produce normal forces can be seen with the help

of Figure 3. At the ends of each increment of length (length δ

in this example), the bending moment generated by the dynein

also generates a normal force aF/δ. If each dynein generates

the same force, and therefore the same bending moment, then

the net normal force is zero. However, if there is a gradient of

dynein forces, then the net normal force is non-zero: it is

aΔF/δ, where ΔF � F2 − F1. This force can balance the

hydrodynamic force acting on the segment: −ξnvnδ, where
vn � dy/dt is the normal velocity of the increment and ξn is the

normal drag coefficient per unit length (Friedrich et al., 2010).

Noting that F/δ is the force density, f, and that the change in

f, namely Δf, occurs over distance Δx � δ, we obtain:

a
zf

zx
(x) � −ξnzyzt (x) (2)

In other words, gradients of motor forces generate normal

forces. This equation holds in the limit that the elastic forces

are small, in which case the motors only balance

hydrodynamic forces. This equation can also be derived by

balancing the motor force against all the moments generated

by the hydrodynamic forces at locations ≥ x and

differentiating (Howard 2001; Appendix 6.2); we have

derived it this way to more directly indicate that pairs of

dyneins generate the normal force.

In the limit where the hydrodynamic forces dominate, Eq. 2

specifies how a force density, which varies in space and time,

determines the shape of the axoneme. For example, let the force

be a traveling wave, f(x, t)∝ sin[(2π(x⁄λ − ]t)] where λ is the

wavelength and ] is the frequency (in Hz). f(x, 0) is plotted in

Figure 2A. The speed is λ] (traveling from base to tip). In this

case, the amplitude y(x, t)∝ sin[(2π(x⁄ λ − ]t)] is in phase with

the force (Figure 2C). The curvature (C � −sin[(2π(x⁄ λ − ]t)] is
therefore 180° out of phase with the motor activity. The sign of

the motor activity can be understood by realizing that when

hydrodynamic damping dominates, the place with highest

velocity needs to be balanced by the motor moments. This

place is the straight region where x � λ/2 (which will become

the reverse bend). Thus, motors anchored to DM6-9 need to be

active before the straight part (x � λ/4) and the motors anchored

to DM1-4 need to be active after the straight part (x � 3λ/4).

That the dyneins anchored to DM6-9 are active in the reverse

bend is counter-intuitive. This is because, if only dynein

DM8 were active and there was no basal sliding (i.e., the

negative moment is at the base and not at DM3 in

Figure 1G), then a principal bend, not a reverse bend, would

be generated.

Balancing motor forces with elastic and
hydrodynamic forces in a moving
axoneme

In the prior sections we have considered the limiting cases in

which motor forces balance only elastic forces (negligible

hydrodynamic forces) or they balance only hydrodynamic

forces (negligible elastic forces). In general, the motors

balance the sum of the hydrodynamic forces and the elastic

forces:

a
zf

zx
� −ξnzyzt − κ

z4y

zx4
(3)

This is Machin’s equation (Eq. 16) in Machin 1958; Machin’s

parameter B is the integrated bending moment,M � a∫fdx, in
our notation). This equation is equivalent to Eq. 16 in Camalet

and Jülicher (2000) and Equation (14) Sartori et al. (2016b) if f is

replaced by −f (due to the different sign convention used here).

If Eq. 3 is differentiated again with respect to x, and we substitute

ψ for dy/dx (ψ is tangent angle), and equate x with arc length s,

then we obtain a somewhat more general equation (it holds for

small angles ψ and not just small amplitudes y) used in (Riedel-

Kruse et al., 2007). Eq. 3 can also be written

mmotors +mdrag +melastic � 0 (4)

showing that the moment densities are balanced.

In summary, we have shown that the Machin’s equation can

be derived by summing up the forces generated by pairs of dynein

molecules.

Predicted locations of active dyneins in
beating axonemes

Machin’s equation can be used to predict where the force is

being generated in a beating axoneme. If the amplitude y(x, t) is
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known in space and time, then we can use Eq. 3 to deduce the

force f(x, t). Note that if we have a “motor model”, meaning that

we know how the activity of the motors depends on the shape

(i.e., f(y, zy/zx, z2y/zx2 . . .)) then Machin’s equation becomes

a dynamical system that can integrated (with appropriate

boundary conditions) to predict self-organized waveforms.

This approach, which entails completing a feedback loop in

which motor activity bends the axoneme and the bending of

the axoneme feeds back on motor activity, has been used in

several earlier studies (see (Sartori et al., 2016b) for references). In

this work, we ask the simpler question: given a shape, what is the

force profile?

The force profile is readily deduced in the special case where

the shape of a beating cilium or flagellum resembles a sinusoid, as

is often the case. This so-called travelling wave, with amplitude

y(x, t)∝ sin[(2π(x⁄ λ − ]t)], is an approximation that holds in

the limit that the axoneme is infinitely long, in which case the

boundary conditions can be neglected. The wave travels form

base to tip with velocity λ]. Traveling waves afford a particularly

simple relationship between the shape and the motor force: the

motor activity is also sinusoidal (seen by substitution into Eq. (3))

with a simple phase shift:

f(x, t) � sin [2π(x⁄λ − ]t) + ϕ] (5)
where the phase is

ϕ � arctan(1/Ma); (6)

Ma � ]ξn λ
4

(2π)3 κ (7)

is the Machin number, which quantifies the ratio of the viscous

forces to the elastic forces for a traveling wave (Geyer et al., 2022).

Eq. (6) shows that the Machin number can also be defined from the

phase between the force and the amplitude for a traveling wave.

ϕ> 0means that the force leads the amplitude in space and lags the

curvature in space. Equivalently, it means that the force leads the

curvature in time: the place where the force is high is where the

curvature will become high, as noted in Sartori et al. (2016b).

When Ma≪ 1 (which occurs when the wavelength is small,

the frequency low, the drag is small, the flexural rigidity is large),

the phase is approximately π/2. In this case, the curvature leads

the motor force in space by ~ π/2 (Figure 2B). This is illustrated

in (Figure 4B). Equivalently, the curvature lags the motor force

in time by ~ π/2: this means that the place where the motors are

maximally active is where the principal curvature is increasing

and will become the principal bend. When Ma≫ 1 (which

occurs when the wavelength is long, the frequency high, the

drag is large, the flexural rigidity is small), the phase is shifted

towards zero (Figure 4D): now the amplitude is in phase with the

force and the curvature lags the motor force (in time) by a phase

that approaches π. At an intermediate Machin number, Ma � 1,

the curvature lags the force by, 3π/4 intermediate between π/2
and π (Figure 4C). The additional phase lag in the presence of

drag makes sense because increased damping generally causes

an increase in the temporal lag between a response and the force

that produces it (for example, a damped spring). Figures 4B,C

shows this increasing temporal lag of the curvature behind the

force as an increasing spatial lag of the force behind the

curvature: the maximum force is further and further behind

the curvature (i.e., towards the tip) as Ma increases (blue

arrows).

FIGURE 4
Location of sliding forces in a beating axoneme. (A) View of a
beating sperm. The section is viewed from the base. The reverse
bend is defined as having the bridge on the inside. This view can be
transformed to that of the Chlamydomonas axoneme in
Sartori et al. (2016b) Figure 1 by rotating the axoneme 180° about
its long axis and using the Chlamydomonas numbering, again with
the bridge on the inside of the reverse bend. (B-D) Location of
active, force-generating dyneins for Machin numbers ≪ 1 (B, small
hydrodynamic and large elastic forces), � 1 (C, equal
hydrodynamic and elastic forces) and ≫ 1 (D, large hydrodynamic
and small elastic forces). The green dyneins exert high force, the
gray dyneins exert intermediate force and the red exert low force.
The blue arrows indicate the increasing spatial lag of the dyneins
relative to the curvature as the Machin number increases.
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Discussion

We have derived Machin’s equation by considering the

moments generated by pairs of dyneins. When a pair of

dyneins exert equal and opposite moments (forces in the

same direction but on opposite sides of the axoneme), then

the intervening axoneme will bend if the dyneins are at

different axial positions along the axonemal length

(Figure 1). There is no bend if there are at the same axial

position, showing that bending requires differential activity

of dyneins across the axoneme. When a pair of dyneins on

the same side of the axonemal section, but at different

positions along the axoneme, exert different forces, they

generate a force orthogonal to the axis of the axoneme. This

force can oppose hydrodynamic forces (Figure 3).

Integrating the forces generated by such pairs of dyneins

leads to Machin’s equation (Eq. 3). This equation, in turn,

predicts that a traveling wave of dynein force-generating

activity will generate a traveling wave of curvature

(Figure 2).

Two key findings follow from our analysis. The first is that

the force and curvature are not colocalized (i.e., they are not in

phase). And the second is that the phase shift between the

force and the curvature depends on the relative amplitude of

the hydrodynamic forces and the elastic forces. The ratio of

these forces is the Machin number, Ma (Eq. 7). If we know the

Machin number, Machin’s equation allows us to

predict where, relative to the curvature, the dyneins must

be active.

The clearest predictions are for short-wavelength cilia

such as those of the unicellular alga Chlamydomonas.

Chlamydomonas has a beat wavelength of ~10 μm, similar

to the length of the axoneme. Several lines of evidence suggest

that Ma≪ 1 for Chlamydomonas (Geyer et al., 2022). First, the

values of the parameters that make up Machin’s number

suggest that Ma is between 0.02 and 0.14. Second, the

waveforms are well-described by a dynamic model that

has small Ma. And third, the ATPase rate of axonemes

increases in proportion to beat frequency, as predicted if

elastic dissipation is larger than hydrodynamic dissipation

(Chen et al., 2015). Ma being very small has the advantage

that the phase is close to π/2, and does not depend much on the

exact value of Ma. For example, tan−1 (1/0.02) � 89° while tan−1

(1/0.14) � 82°; a seven-fold change in Ma leads to a phase

shift of only 7°. Therefore, the small Ma makes

Chlamydomonas suitable for these measurements.

Furthermore, Chlamdomonas has an almost planar beat,

which also makes it suitable (the small deviations from

planarity lead to helical beats but only over long distances,

Sartori et al., 2016a). A potential disadvantage of

Chlamydomonas is that the wild-type cells have asymmetric

beats, which are unsuitable for these measurements as the

combined static and dynamic curvatures are likely to

confound the analysis. The mbo2 mutant, however, has a

symmetric beat, which is similar to the dynamic

component of the wild-type beat (Geyer et al., 2016) and

mbo2 cilia have similar lengths and wavelengths to wild-type

cilia. Thus, the mbo2 mutant of Chlamydomonas is a good

preparation for cryoEM studies to identify which

conformations of axonemal dyneins are the force-

generating ones.

Sperm flagella are less suitable for these measurements

than Chlamydomonas cilia. This is because the Machin

number is on the order of unity for sperm from sea-urchin

and mouse, using parameters from Velho (Rodrigues et al.,

2021). The phase associated with this value of the

Machin number is highly dependent on the exact value of

Ma, which depends on parameters whose values are

uncertain. Furthermore, other factors such as increased

hydrodynamic friction during the preparation of

samples for cryoEM (e.g., close proximity to the grid or

air-water interface, and increased viscosity due to freezing)

may lead to additional changes in the Machin number

that make prediction of the phase uncertain. For these

reasons, the recent cryoEM measurements of the

dynein conformations in sea-urchin sperm (Lin and

Nicastro 2018) are expected to be difficult to correlate

with curvature. A preliminary analysis with Ma � 1,

predicts a phase shift of the curvature relative to the force

equal to 135°, which is quite different to the 0° expected from

Lin and Nicastro’s assumption that the pre-power-stroke

states are the force generating ones. In other words, this

assumption is not consistent with the analysis presented here.

It is interesting to note that Lin and Nicastro’s assumption is

that the force-generating dyneins in the positive bend are

DM6-9; however, as we pointed out in the section “Balancing

motor force against hydrodynamic forces”, when

hydrodynamic forces dominate, the DM6-9 dyneins are

active in the negative bend, which is counter-intuitive for

the reason we outlined in the earlier section. Further

theoretical and experimental work is needed to resolve this

discrepancy.
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