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Emerging and re-emerging respiratory viruses can spread rapidly and cause

pandemics as demonstrated by the recent severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) pandemic. The early human

immune responses to respiratory viruses are in the nasal cavity and

nasopharyngeal regions. Defining biomarkers of disease trajectory at the

time of a positive diagnostic test would be an important tool to facilitate

decisions such as initiation of antiviral treatment. We hypothesize that

nasopharyngeal tRNA profiles could be used to predict Coronavirus

Disease 19 (COVID-19) severity. We carried out multiplex small RNA

sequencing (MSR-seq) on residual nasopharyngeal swabs to measure

simultaneously full-length tRNA abundance, tRNA modifications, and

tRNA fragmentation for the human tRNA response to SARS-CoV-

2 infection. We identified distinct tRNA signatures associated with mild

symptoms versus severe COVID-19 manifestations requiring

hospitalization. These results highlight the utility of host tRNA properties

as biomarkers for the clinical outcome of SARS-CoV-2.
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Introduction

A major response of biological systems to environmental

change is regulated protein synthesis where transfer RNA

(tRNA) plays a key role in decoding genetic information on-

demand. tRNAs are small non-coding RNAs (74–95 residues)

that read the genetic code and provide amino acids in protein

synthesis. A human cell has several hundred tRNA sequences, up

to 100 million tRNA transcripts, and each human tRNA contains

on average 13 modifications (Chan and Lowe, 2016; Boccaletto

et al., 2022). Modifications in tRNAs are dynamically regulated

during cellular stress (Begley et al., 2007; Gu et al., 2014; Zhang

et al., 2022) and can affect decoding speed and accuracy of

translation. Hypo-modified tRNAs can also become better

substrates for RNase cleavage leading to tRNA fragment

generation (Huang and Hopper, 2016; Oberbauer and

Schaefer, 2018). tRNA fragments are a family of small RNAs

that participate in many regulatory processes at the cellular and

organismal levels (Anderson and Ivanov, 2014; Schimmel, 2018;

Pandey et al., 2021). In the context of viral infections, tRNAs as

well as tRNA fragments may facilitate viral replication (Jin and

Musier-Forsyth, 2019; Nunes et al., 2020).

Understanding the determinants of severity of viral

infections is important for selecting the appropriate level of

clinical care including initiation of therapeutic interventions

aimed at preventing severe outcomes. In the case of emerging

viral pathogens such as severe acute respiratory syndrome

coronavirus-2 (SARS-CoV-2), a major challenge is the wide

range of Coronavirus Disease 19 (COVID-19) severities. Many

viral and host factors influence the symptom severity upon

infection, including age, co-morbidities, host genetics and

possibly SARS-CoV-2 variant. However, it remains difficult to

predict which COVID-19 patients will develop mild or severe

symptoms at the time of diagnosis.

Activated immune cells known as granulocytes secrete

RNases as part of the innate immune response. In humans,

eight secreted RNase genes have been identified, each with a

range of antiviral, antibacterial and/or cytotoxic functions

(Koczera et al., 2016; Lu et al., 2018). We propose that

tRNAs, due to their high abundance and RNase resistance,

represent one of the best opportunities to detect early

immune activation in the context of viral infection by

measuring their ongoing fragmentation, alteration in

abundance and in modification levels. These measurements

can be made directly from virally lysed or apoptotic epithelial

tissues, which often represent the sites of initial respiratory viral

infection.

Here we apply Multiplex Small RNA-seq [MSR-seq,

(Watkins et al., 2022)] to identify tRNA-based biomarkers to

predict SARS-CoV-2 infection severity at the time of a positive

test. MSR-seq simultaneously measures tRNA abundance,

fragmentation and modifications in a single sequencing library

generated directly from RNA isolated from the viral transport

media of the diagnostic nasopharyngeal swab. Our results show

that multiple tRNA properties vary significantly among

individuals with COVID-19 who develop no/mild versus

severe symptoms, thus indicating the biomarker potential of

human nasal tRNA responses to an infectious disease such as

COVID-19.

Materials and methods

Ethics statement

The Mount Sinai Pathogens Surveillance Program (MS-PSP)

systematically collected residual nasopharyngeal swab samples

that tested positive for respiratory pathogens (e.g., SARS-CoV-2,

Influenza A virus) after clinical testing was completed. A subset

of representative specimen was selected for viral genome

sequencing in the context of precision surveillance (Gonzalez-

Reiche et al., 2020; Javaid et al., 2021) and remaining RNA was

included in this study. The residual diagnostic specimen used in

this study were collected during the first wave of the pandemic

(March–May 2020) when ancestral SARS-CoV-2 variants were

circulating (Gonzalez-Reiche et al., 2020). The Institutional

Review Board of the Icahn School of Medicine at Mount Sinai

reviewed and approved MS-PSP (13-00981) as well as this study

(21-01934).

Total RNA extraction from viral transport
media

Total RNA was extracted from viral transport media (VTM)

of the nasopharyngeal swabs using high-throughput specimen

processing (KingFisher Flex Purification System, ThermoFisher,

cat. 5400610). The MagMax mirVana Total RNA Isolation Kit

(ThermoFisher, cat. A27828) was used to extract total RNA from

250 μL of viral transport medium, as per the manufacturer’s

protocol. The total nucleic acid concentration measured by

nanodrop absorbance ranged from 4–40 ng/μL.

RNA sample selection

We selected for this study 56 RNA samples extracted from

nasopharyngeal swabs that tested positive for SARS-CoV-2, four

RNA samples from nasopharyngeal swabs that tested positive for

Influenza A, and five RNA samples from individuals without any

known viral infection (uninfected control). All SARS-CoV-

2 tested samples were collected during the first wave of the

SARS-CoV-2 pandemic in New York City (March–May 2020).

Thirty-five RNA samples were extracted from VTM of

nasopharyngeal swabs collected from individuals who tested

positive for SARS-CoV-2 but did not require hospitalization
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at the time of testing (Group I) while 21 RNA samples were

extracted from VTM of nasopharyngeal swabs collected from

individuals who were admitted to the hospital due to severe

COVID-19 manifestations at the time of testing (Group II).

Multiplex small RNA sequencing library
construction

MSR-seq library construction followed the same procedure

as described previously (Watkins et al., 2022). A total of 10 µL of

each extracted sample described above were used for sequencing

library construction. The key features of MSR-seq are to first

ligate total RNA with a bar-coded capture hairpin

oligonucleotide which enables pooling of up to 12 bar-coded

samples for all subsequent steps. The specific design of the

capture hairpin oligo allows for all subsequent steps to be

carried out on magnetic streptavidin beads. The basic steps of

library construction include 1) deacylation to remove charged

amino acids to tRNA; 2) 3’ end repair to remove all 3’ phosphate/

cyclic phosphate; 3) first ligation of the barcoded hairpin

oligonucleotide; 4) sample pooling, mix with streptavidin

beads, wash; 5) remove 3’ phosphate of the capture hairpin

oligo; wash; 6) reverse transcription using a thermophilic RT

and overnight extension; 7) remove RNA; 8) periodate oxidation

to block unligated hairpin oligonucleotide; 9) second ligation of

PCR primer; 10) PCR using Illumina index primers.

For low abundant RNA samples, a gel purification step of the

final PCR products was added to remove the excess primer only

products as follows. After PCR, amplicons were concentrated

using the Zymo DNA Clean & Concentrate spin columns

(7 equivalents of DNA binding buffer to 1 equivalent of PCR

reaction; e.g. 350 µL of DNA binding buffer to 50 µL PCR

reaction). Samples were eluted in 12 µL of deionized,

autoclaved water.

After eluting off the column, samples were mixed with 2.5 µL

of 6x TriTrack gel loading dye and loaded onto a 6% Novex TBE

gel. Samples, together with dsDNA size markers were

electrophoresed at 180 V for approximately 40 min. After

electrophoresis, the gel was incubated for 10 min in 1x SYBR

Gold and then imaged on a blue light box. Samples were cut from

approximately 170–300 bp, whereas the primer alone products

containing barcodes and indexes were approximately

140–145 bp.

After cutting, gel fragments were crushed using a 1 ml pipette

tip and then 500 µL of gel elution buffer (200 mM KCl, 50 mM

KOAc, pH 7). Gel fragments were incubated overnight (12 +

hours). After overnight incubation, samples were centrifuged for

10 min at room temperature at 10,000 g−1. The supernatant was

then collected and the samples were then centrifuged again to

remove any remaining gel fragments. Next, 1 µL of GlycoBlue

and 500 µL of isopropanol were added to each tube and the tubes

were then placed in a −80°C freezer for a minimum of 1 h.

After cold incubation, the samples were centrifuged at 4°C for

1 h at 17,000 g−1. The supernatant was then removed and the

remaining pellet was resuspended in 20 µL of deionized,

autoclaved water.

Data analysis

Read processing and mapping: Libraries were sequenced on

Illumina Nova-seq S(1)-200) platform, 100 bp paired-end. First,

paired end reads were split by barcode sequence using Je

demultiplex with options BPOS = BOTH BM =

READ_1 LEN = 4:6 FORCE = true C = false 6. Next read

2 files were used to map with bowtie2 with the following

parameters: q -p 10 --local—no-unal. Reads were mapped to

curated hg19 list of non-redundant tRNA genes with tRNAScan

score >40 (Lowe and Chan, 2016). Bowtie2 output sam files were

converted to bam files, then sorted using samtools (Danecek

et al., 2021). Next IGV was used to collapse reads into 1 nt

window. IGV output. wig files were reformatted using custom

python scripts (available on GitHub at https://github.com/

ckatanski/MSR-seq). The bowtie2 output Sam files were also

used as input for a custom python script using PySam, a python

wrapper for SAMTools (https://github.com/pysam-developers/

pysam) to sum all reads that mapped to each gene. Data was

visualized with custom R scripts (available on GitHub at https://

github.com/ckatanski/CovidNasalSwabs_2022ck).

tRNA fragmentation: tRNA fragments were identified as

previously described (Watkins et al., 2022). Briefly, the precise

3’ end of the read in the MSR-seq procedure represents the 3’ end

of the RNA present in the sample. We binned the ends with 3’

ends mapped to the individual tRNA genes between nucleotides

20–30, 30–40, 40–50, 50–60 and >60 (full-length). These bins

roughly correspond to the stem loops in tRNA structure and can

be used to characterize the broad types of tRNA fragment. The

fraction of a fragment was calculated by comparing the number

of reads in one bin compared to all the reads in every bin for a

particular gene from a particular patient. To summarize the data,

the number of reads that sort to each bin among all genes was

summed for each patient.

tRNA abundance: Relative abundance of individual tRNA

isodecoders was normalized to the 5.8S rRNA reads within each

sample. This normalized abundance was then compared between

patient groups.

tRNA modification: Mutation rates from bowtie mapping

at individual sites were used to estimate modification rates.

Analysis focused on well characterized sites with known

modifications. Mutation rate is not a 1-to-1 output for

modification fraction, but it is known to vary linearly. Thus

relative changes are a reliable metric for relative changes in

modification levels. Analysis was limited to sites and samples

with >50 reads and a >2% mutation rate. After initial site

selection, the 2% mutation filter was relaxed for individual site
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analysis so as to include samples which may have been

excluded from initial screening.

p-value calculations: To identify differentially expressed,

fragmented, or modified tRNAs, patient group comparisons

for individual genes were performed with pairwise two-sided

t-tests with no correction. To normalize tRNA abundance reads

among patients, all abundances were normalized to the well

detected 5.8S rRNA reads within the same sample. This

normalized abundance was calculated for every tRNA gene

using all sense-mapped reads. Comparing abundance of an

individual gene between patient groups was done with a two-

sided pairwise t-test with no correction. Analysis was restricted to

isodecoders and samples with >10 reads for the respective tRNA
sequence. To compare tRNA fragmentations, reads were

subdivided based on the position of the 3’ end mapping. With

MSR-seq, this is a faithful representation of the biological 3’ end

of the tRNA and can separate fragments from full length tRNAs.

Calculation was restricted to only sense reads, and fragments

with >10 reads. Notably, similar analysis cannot be done for the

5’ end since truncated 5’ ends could reflect biological fragments

or premature termination of reverse transcription in sequencing

library preparation. To compare tRNA modifications among

patient groups, we calculated the mutation rate at every base

for every gene between patient groups using a two-sided pairwise

t-test with no correction, at a filter of >50 reads per site.

Logistic regression (LR) models and ROC curves: The

samples with non-NULL values in the selected features were

used to build the LR models (McKinney, 2010; Pedregosa et al.,

2011; Harris et al., 2020). The data were shuffled and normalized.

Then, 3-fold cross-validation was performed with abundance

(rpm/5.8S rpm) of tRNAiMet-c1t32, mutation rate at position

9 for mitochondrial tRNAVal, fragmentation calculated with

tRNAArg(ACG) isoacceptor family in the 30–40 bin or a

combination of the three biomarkers and the scores of each

sample are predicted. Specificity, sensitivity and AUC (area

under curve) were calculated (Pedregosa et al., 2011) and the

ROC curves drawn (Hunter, 2007) with python.

Clustering heatmap: The biomarkers with non-NULL values

in at least 50% of the mild symptom samples and 50% of the

severe symptom samples were selected. For the 68 selected

biomarkers, NULL values were filled by the median of all the

samples in the mild or severe groups respectively. Then, the data

were normalized. The samples were ordered by their 3-fold cross

validation scores in the LR model (McKinney, 2010; Pedregosa

et al., 2011; Harris et al., 2020) with 68 selected biomarkers in the

heatmap (MichaelWaskom et al., 2017). The selected biomarkers

were clustered in the heatmap.

Results and discussion

We analyzed the tRNA profile (abundance, modification and

fragmentation) using total RNA extracted from residual

diagnostic specimen collected from individuals with symptoms

suggestive of upper respiratory tract infection who tested positive

for SARS-CoV-2. These samples were collected during the first

wave of the pandemic when only ancestral SARS-CoV-2 variants

were circulating. These biospecimen are of low-biomass and

contain only very small amounts of RNA. Using a new library

construction technology for tRNA sequencing that uses total

RNA from any biological source and on-bead library

construction (Watkins et al., 2022), we obtained tRNA-seq

data informing simultaneously on full-length tRNA

abundance, certain tRNA modifications, as well as 5’ tRNA

fragments (5’tRF). After library construction and sequencing

we found that RNAs could be mapped to tRNA and other

small RNAs at appreciate rates (Supplementary Table S1) with

average mapped read counts of 1,006,000, 131,000, 1,102,500 for

all small RNA and 397,500, 77,100, 285,000 for tRNA of the

uninfected, influenza, and SARS-CoV-2 infected samples,

respectively. While these rates are lower than tRNA-seq from

cell cultures, they still reveal the potential to obtain high quality

small RNA sequencing data from viral transport media of

nasopharyngeal swabs used for diagnostic nucleic acid

amplification testing (NAAT). Ultimately RNA-seq would be

too costly and time-consuming to serve as a practical tool for

triage, however our goal was to identify potential prognostic

biomarkers for further development using scalable nucleic acid

technologies such as qPCR.

We first analyzed 5’tRF differences among the SARS-CoV-2,

influenza, and uninfected groups by binning the tRNA reads with

the 3’ end in different tRNA positions [(Watkins et al., 2022),

Figure 1A]. Approximately 85% of the tRNA reads had 3’ ends

past nucleotide 60 which roughly corresponded to the full-length

tRNAs in our analysis. tRNA fragmentation occurred extensively

in all samples, compared to well-controlled samples from cell

culture (Watkins et al., 2022). Globally, fragmentations of tRNAs

were present with cleavage sites in all tRNA regions. As expected,

cleavage in the anticodon loop region (3’ ends within position

30–40 of tRNA, anticodon positions approximately 34–36)

generated the highest amount of tRF products. Since

fragmentation was not evenly distributed among accessible

loop regions, this suggests some level of biological specificity.

Influenza-infected patients showed a much greater degree of

fragmentation compared to healthy subjects, though only

4 samples were available for analysis, limiting the strength of

this observation. SARS-CoV-2 infected patients also showed

greater fragmentation compared to healthy subjects.

Interestingly, SARS-CoV-2 patients who developed mild

symptoms showed a significantly higher degree of global

tRNA fragmentation compared to patients who developed

severe symptoms (Figure 1B). We speculate that this could

reflect the strength of an innate immune response to viral

infection, which is known to include secretion of human

genome-encoded RNases. In such a narrative, patients with

weaker immune responses might secrete less defensive
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RNases, experience less tRNA fragmentation, and develop more

severe symptoms.

We further analyzed the tRF products of specific tRNAs

among all pairwise comparisons of patient groups; samples were

filtered for fragments with >10 reads (Figure 2A; Supplementary

Table S2). Due to limited cohort sizes, we restricted further

analysis to the SARS-CoV-2 positive biospecimen. For this

analysis, reads from individual isodecoders were pooled

among isoacceptor families. This was done because fragment

reads often cannot be distinguished among related isodecoder

sequences, since the distinguishing bases were cleaved away.

Further, RT-qPCR-base assays that can distinguish closely

related isodecoders represent an additional challenge, so

pooled analysis may yield more transferable insights. Among

tRFs of isoacceptor families, we found statistically significant

differences among 20 distinct fragments (p < 0.05), including

fragments for the anticodon loop, variable loop, and T-stem loop

(Supplementary Table S2). Fragments from the anticodon loop

tend to be more abundant and thus better candidates for

development into prognostic qPCR tests. Top candidates

include tRNAAla(AGC), tRNAArg(ACG), tRNAPro(AGG), and

tRNAGln(CTG) (Figure 2B). For these tRNA isoacceptors,

patients who developed mild COVID-19 symptoms produced

more tRFs than patients who developed severe COVID-19

symptoms. Again, these results may potentially be associated

with the differential activities of immune response in the

FIGURE 1
Global tRNA fragmentation pattern among nasopharyngeal swab samples. (A) Fraction of reads mapped to different tRNA fragments are shown
for uninfected control (n= 5), influenza infected (n= 4), and SARS-CoV-2 in fected (n= 56) individuals. All tRNA species are pooied together to reflect
global levels of tRNA fragmentation. (B) Comparison of global tRNA fragmentation between SARS-CoV-2 infected patients who go on to develope
either mild or severe COVID19 symptoms. All tests are two-side-test with the number of samples passing filters indicated on that plot,p-values:
*<0.05; **<10−2;***<10−3;****<10−4.
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nasopharyngeal region, for example, the amount of RNase

released upon SARS-CoV-2 infection.

Next, we analyzed the abundance of full-length tRNAs at the

isodecoder level. Abundance was measured relative to 5.8S

rRNA, a very abundant small rRNA present in all samples;

isodecoders were limited to samples with >10 reads. This

choice was made with development of scalable prognostics in

mind, where normalization must be done verses a specific,

measurable RNA species, as opposed to a “reads per million”

approach for typical of RNA-seq analysis. The abundance of all

tRNA reads, summed together, compared with 5.8S rRNA was

different between uninfected, influenza and SARS-CoV-

2 infected groups, though not between SARS-CoV-2 patients

(Supplementary Figure S1). This may reflect global changes in

translation activity within cells or differences in the nature of

collected material (e.g., lytic cell debris vs. shed cells). This result

also highlights the critical importance of choosing normalization

standards. We found significantly different levels of specific

tRNA isodecoders in all pairwise comparisons, but restricted

our analysis to the two SARS-CoV-2 groups with the most

biospecimen and no global differences in total tRNA

abundance. Here 53 isodecoders showed significant abundance

differences between the mild and severe SARS-CoV-2 groups

(Figure 3A; Supplementary Table S3). We highlight three tRNAs

that can distinguish between mild and severe SARS-CoV-

2 patient groups (Figure 3B): tRNAAla(AGC)c2t3,

tRNAMet(CAT)c1t32, and tRNALeu(CGG)c1t34. Further, we

highlight tRNAPro(CGG)c1t52 which can be used to

distinguish SARS-CoV-2 patients from healthy controls.

Interestingly tRNALeu(CGG)c1t34 is not well suited as a

FIGURE 2
Fragmentation profile of specific tRNA Isoacceptor families allows for seperation of RNA obtained from nasophary swabs collected from SARS-
CoV-2 infected individuals who developed mild or severe symptoms. (A) Uncorrected p-Values for pairwise two-sided t-tests indicate several
notable differences in fragmentation amoung specific tRNA isoacceptor families. Precise values are indicated in table S2. (B) Fragmentation profies
for top anticdon-cleaved tRNAs are hightlighted:tRNAAla, tRNAArg(ACG), tRNApro(AGG), and tRNAGIn(CTG). In addition to distinguising among
SARS-CoV-2 patients, fragmentation can provide diagnostic insight which compared to healthy patients. p-values:*<0.05; **<10−2;***<10−3;
****<10−4. Two-side t-tests with the number of samples passing a 10 read fliter indicated in each plot.
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general SARS-CoV-2 marker, despite discriminating between

symptom groups, demonstrating a diversity of behaviors. Of

note, tRNAMet(CAT)c1t32 is the main initiator tRNA isodecoder

in human cells (Chan and Lowe, 2016) and the observed

differences in its abundance may reflect the translation

activity of the human nasal cells upon SARS-CoV-2 infection.

The final parameter we obtained from our sequencing data

was the comparison of tRNA modification levels through RT

mutation signatures (Helm and Motorin, 2017). Briefly, certain

modifications interfere with reverse transcription during

library preparation, leading to enzymatic misincorporation

of bases, which is measured as a “mutation” during

sequencing. These signatures do not represent DNA-level

mutations, but misincorporation by reverse transcriptase.

The mutation rate at specific site can be quantitatively

compared to access the differences between modification

changes between any two samples. This analysis is

particularly sensitive to tRNA modifications with the added

chemical group at the Watson-Crick face of the nucleobase, for

example, N1-methyladenosine [m1A, (Cozen et al., 2015; Clark

et al., 2016)] which is among the most widespread human tRNA

modification types. Using the differences in mutation fractions,

we found specific tRNA modifications that can distinguish all

pairwise patient groups (Figure 4A). Analysis was limited to sites

with a mutation rate >2% and more than 50 reads to limit

spurious differences arising from noise at sites known to be

unmodified. Again we restrict our analysis to SARS-CoV-

2 patients with a greater number of patients sampled.

Together, 33 different modification sites showed significant

ability to distinguish patient groups, with examples in the

D-loop, anticodon loop, and T-stem loop (Figure 4A;

Supplementary Table S4). A priori, it is not obvious what

effect changes in modification level can have on changes in

tRNA biology, including abundance and fragmentation. For

example, we previously reported that different modifications

can either stimulate or protect from tRNA fragmentation

FIGURE 3
Relative abundance of specific tRNA isodecoders to 5.8S rRNA in the same RNA samples allowes for separation by infection status (uninfected,
influenza and SARS-CoV-2 infected individuals). (A)Uncorreced p-Values for pairwise two-sided t-tests indicate several notable differences in rRNA-
normalized abundance among specific. tRNA isodecoders. Analysis inciudes all sense-mapped reads for each isodecoders. Precisee values are
indicated in Supplementary Table S3. (B) rRNA-normalized abundance for notable abundance tRNAs are highlighted
tRNAAla(ACG),c2t3tRNAMct(CAT), and tRNALeu(CGG)c1t34. In addition to distinguisting among SARS-Cov-2 patients, normalized abundance of
tRNAPro(CGG)c1t52. amoung others, can provide diagnostic insight which compared to healthy patients.*<0.05; **<10−2;***<10−3;****<10−4. Two-
side t-tests with the number of samples passing a 10 read fliter indicated in each plot.
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(Watkins et al., 2022). Here we observed a variety of behaviors

from different modifications relating to SARS-CoV-2 infection

(Figure 4B). First, m1A9 on tRNAAsp(GTC) showed progressive

reduction of methylation from healthy, to mild symptoms, to

severe symptoms patients. Similarly, methylation of m1A58 on

tRNAGlu(CTC) was reduced drastically in all SARS-CoV-

2 positive biospecimen compared to those from healthy

controls. This site is not suitable to distinguish between

SARS-CoV-2 severity groups, likely because the methylation

levels are already fully reduced. The opposite behavior was

observed for tRNALys(TTT) where methylation at

m1A58 dramatically increased upon SARS-CoV-2 infection,

but again, methylation cannot distinguish among SARS-CoV-

2 patients. Finally, methylation of m1A9 of mt-tRNAVal(TAC)

followed a pattern remittent of fragmentation: methylation was

significantly reduced in samples obtained from healthy controls

compared to samples from patients with mild COVID-19. This

response was further muted in biospecimen from patients with

severe COVID-19. Of note, mitochondrial tRNAVal plays a dual

role in mitochondrial translation. It not only works as a tRNA in

translation but is also an essential component of the human

mitochondrial ribosome (Amunts et al., 2015). M1A9 in mt-

tRNAVal may, thus, modulate its activity either as a tRNA and/or

its ribosomal function. This could plausibly be related to global

changes in translation reflected in Supplementary Figure S1.

Based on the findings described above, we perceive that

these tRNA features could be used as biomarkers. Clustering

68 selected tRNA biomarkers from 60 samples show that the

two SARS-CoV-2 groups are markedly separated

(Supplementary Figure S2). As a consideration for future

FIGURE 4
Rspecific tRNAmodification profile in RNA obtained fromnasopharyngeal swabs allows for seperation of uninfected, influenza and SARS-CoV-
2 infected individuals with mild or severe Covid -19 symptoms). (A)Uncorreced p-Values for pairwise two-sided t-tests indicate differences amoung
specific tRNA modifications. Modifications are detected as a “muation” derived from reverse transcriptase disincorporation when reading modified
bases. Analysis includes sites with >2%mutation rate and >50mapped reads. Precise values are indicated in table S4. (B)Modifications exhibiting
notable patterns are highlighted m1A9 on tRNAAsp(GTC), m1A58 on tRNAGlu(CTC), m1A58 on tRNA1ys(TTT),m1A9 on mt-tRNAVal(TAC).
p-values.*<0.05; **<10−2;***<10−3;****<10−4. Two-side t-tests with the number of samples passing a 50 read fliter indicated on each plot-the 2%
mutation rate filter was relaxed after individual sites were chosen.
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qPCR type biomarker assays, we selected one specific tRNA for

fragmentation, abundance, and modification for statistical

calculation of COVID-19 severity (Figures 5A–C;

Supplementary Figures S3A–C). Each of the three

individual parameters produced an area under curve (AUC)

value of 0.71–0.81. We developed a combine metric using a

linear combination of individual measurements of tRNA

abundance, modification, and fragmentation. Using these

three tRNA properties, we obtained an AUC value of 0.99

(Figures 5D, Supplementary Figure S3D), indicating the power

of using multiple tRNA properties for accurate prediction of

SACS-CoV-2 infection symposium severity.

In summary, we were able to generate good quality tRNA-

seq results from residual diagnostic nasopharyngeal

biospecimen. tRNA profiles of these RNA samples, taken at

the time of initial SARS-CoV-2 diagnosis, may provide new

information that can be used to predict COVID-19 symptom

severity. These results represent a distinct approach in

defining biomarkers of infectious disease severity which

may allow for the identification of patients at high risk for

complication from respiratory virus infection. Future work

will test our hypothesis that these tRNA signatures are related

to the nasal innate immune RNase secretions and represent

non-genetic factors contributing to viral pathogenesis. Future

studies are also needed to independently validate these

findings and to develop assays to allow for rapid testing in

the setting of clinical applications, free from the cost and time

constrains of the sequencing-based approach used here.

Notably, developing methods scalable that can distinguish

tRNA fragments from intact tRNAs are sorely lacking. The

best current approaches require gel-based size selection which

is labor and bio-mass intensive, and thus not scalable.

Similarly, qPCR methods to measure tRNA modifications

with a useful dynamic range will be crucial for this

nuanced biology to become clinically impactful. Current

tRNA-focused RT-qPCR approaches measure an

uninterpretable amalgam of full length tRNA, RT-induced

stops, and tRNA fragmentation. Here, we articulate the

FIGURE 5
ROC curves of using tRNA abundance, modification, and fragmentation as biomarkers Individual curves of (A) fragmentation
(tRNAArg(ACG),5′tRF), (B) abundance (tRNAi

Met(CAT)c1t32), (C) modification (tmitochondrial tRNAVal,m1A9) show AUC between 0.71 and 0.81. (D)
Combining these 3 generates an AUC of 0.99.
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value of developing more precise methods for clinical

deployment.
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