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Refractory skin defects such as pressure ulcers, diabetic ulcers, and vascular ulcers
represent a challenge for clinicians and researchers in many aspects. The
treatment strategies for wound healing have high cost and limited efficacy. To
ease the financial and psychological burden on patients, a more effective
therapeutic approach is needed to address the chronic wound. MSC-derived
exosomes (MSC-exosomes), the main bioactive extracellular vesicles of the
paracrine effect of MSCs, have been proposed as a new potential cell-free
approach for wound healing and skin regeneration. The benefits of MSC-
exosomes include their ability to promote angiogenesis and cell proliferation,
increase collagen production, regulate inflammation, and finally improve tissue
regenerative capacity. However, poor targeting and easy removability of MSC-
exosomes from the wound are major obstacles to their use in clinical therapy.
Thus, the concept of bioengineering technology has been introduced to modify
exosomes, enabling higher concentrations and construction of particles of greater
stability with specific therapeutic capability. The use of biomaterials to load MSC-
exosomes may be a promising strategy to concentrate dose, create the desired
therapeutic efficacy, and maintain a sustained release effect. The beneficial role of
MSC-exosomes in wound healing is beenwidely accepted; however, the potential
of bioengineering-modified MSC-exosomes remains unclear. In this review, we
attempt to summarize the therapeutic applications of modified MSC-exosomes in
wound healing and skin regeneration. The challenges and prospects of
bioengineered MSC-exosomes are also discussed.
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1 Introduction

Wounds are an underestimated health problem that lay a great
financial burden on patients and healthcare systems (Frykberg and
Banks, 2015). As the primary immune barrier against external
damage, the skin is the largest organ in the human body that can
regulate thermostability and sense extrinsic stimuli (Takeo et al.,
2015). The wound healing process is complex and involves
inflammation, cell migration, angiogenesis, and granulation tissue
formation, and remodelling of the extracellular matrix (ECM)
(Cavanagh et al., 2005; Gushiken et al., 2021). A chronic wound,
however, is commonly characterized by prolonged inflammation,
persistent infection, the formation of microbial biofilms and failure
of epithelial cells respond to stimuli (Schultz et al., 2003; Frykberg
and Banks, 2015). According to their etiology, the chronic wounds
can be classified as diabetic ulcers, pressure ulcers, and vascular
ulcers (Nunan et al., 2014). Due to the healing process’s intricacies,
treating chronic wounds is still a great challenge for clinicians.

Exosomes derived from mesenchymal stem cells (MSC-
exosomes) with regenerative and immunomodulatory functions
have been shown to be beneficial in wound healing and to
accelerate the process (Casado-Díaz et al., 2020). Compared with
conventional treatment methods, MSC-exosome-based therapies
have shown higher therapeutic efficacy that play a role
throughout all stages of wound healing (Vu et al., 2021). In
addition, MSC-exosome-based therapies avoid the risks of
immune rejection and tumorigenesis associated with stem cell
transplantation (Yin et al., 2019). Therefore, MSC-exosome-based
therapy is considered to be a promising therapeutic approach in
wound repair and skin regeneration.

In clinical settings, the application of exosome-based therapy
may still face some challenges. The challenging task of isolation,
purification, and large-scale production of exosomes represents a
direct obstacle to the development of exosome-based treatment from
bench to bed (Riau et al., 2019). Exosomes may also undergo rapid
clearance in the blood circulation or show poor retention at the
wound surface (Agrahari et al., 2016; Riau et al., 2019). In addition,
safety concerns have limited the clinical applications of MSC-
exosomes. The introduction of bioengineering technologies into
MSC-exosome-based therapies is expected to address the
practical problems mentioned above.

Ideally, modified exosomes could be loaded with luminal cargos
or display specific surface molecules, thereby increasing the
efficiency of the exosomes and giving them additional therapeutic
effects (Riazifar et al., 2017; Wiklander et al., 2019; Salunkhe et al.,
2020). Genetic engineering of progenitor cells and direct
modification of exosomes are the main engineering strategies for
altering exosomes and increasing their regenerative effectiveness
(Luan et al., 2017; Shi et al., 2020a). Other strategies such as
engineering of hybrid exosomes may also be used in exosome
modification (Chen et al., 2020). Furthermore, encapsulating
exosomes into hydrogel scaffolding can be used to form a
sustained release system or wound dressing (Liang et al., 2019;
Bai et al., 2022; Hu et al., 2022). Preclinical studies and clinical trials
of chronic wound models have shown promising results,
demonstrating that modified MSC-exosomes could promote
angiogenesis, fibrogenesis, re-epithelization, and granulation
tissue formation, as well as attenuating inflammation (Shi et al.,

2020b; Li et al., 2020; Wu et al., 2021a; Xiong et al., 2022). The
application of hydrogels may have a synergistic effect in wound
closure (Das et al., 2022). Despite a lack of systematic evidence,
bioengineered modified MSC-exosomes are increasingly recognized
as beneficial to compensate for the limitations of natural exosome-
based clinical therapies in wound healing applications.

In this review, we focus on promising bioengineering
modifications of MSC-exosomes that enhance their potential
therapeutic effectiveness in wound healing and skin regeneration.
The applications of biomaterials loaded with modified MSC-
exosomes in wound dressing strategies are also addressed.
Finally, the challenges and prospects of tissue-engineered MSC-
exosomes are discussed. We hope to provide a valuable overview of
the role and the mechanisms of modified MSC-exosomes in
cutaneous wound healing and elaborate on the potential of
applying modified MSC-exosomes in clinical practice.

2 Wound healing and regenerative
management

The primary molecular regulators of wound healing are proteins
and polypeptides including growth factors, cytokines, and
chemokines (Das et al., 2015; Guo et al., 2018; Kim et al., 2019;
Su et al., 2019). During the past decades, with advances in
regenerative medicine, significant efforts have been made to
explore solutions to improve the tissue regeneration process,
thereby repairing and correcting physiological deficiencies. Such
approaches include using growth factors, stem cells, and
biomaterials to induce a more effective healing process. However,
despite promising therapeutic results in preclinical studies, the
clinical applications of these strategies have been limited by
concerns including tissue origin, standards for isolation and
culture procedures, tumorigenicity, and ethical regulatory
restrictions on the use of stem cells.

As stem cells have self-renewal capacity and multi-lineage
differentiation potential, they have been extensively explored with
respect to their potential applications in treatment of chronic
wounds (Donati and Watt, 2015; Chen et al., 2016). However,
the immunogenicity and tumorigenesis of stem cells are critical
factors affecting their therapeutic function. Owing to their
comparatively low immunogenicity, MSCs represent a promising
source for cell-based therapies for wound healing (Lee et al., 2014).
Accumulating evidence demonstrates that the multi-lineage
differentiation of MSCs and their secretion of bioactive factors
have potential therapeutic value in the treatment of various
diseases (Pittenger et al., 1999; Zhou et al., 2021). However,
despite promising results in preclinical studies and clinical trials,
MSCs fall short of expectations in clinical settings.

The main limiting factors in the therapeutic use of MSCs are
their heterogeneity and limited homing capacity in damaged tissue
(Ullah et al., 2019; Levy et al., 2020). On the one hand, MSCs may
undergo senescence during extended culture (Fang et al., 2018;
Tabibzadeh, 2022). On the other hand, the transplantation of
MSCs could induce tumorigenic scenarios. The most critical issue
is that the preparation process of MSCs remains experimentally
challenging. It is also difficult to reproduce the therapeutic potency
of an MSC.
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Previous research has attributed the therapeutic effects of MSC-
based therapies to the multi-lineage differentiation and engrafting
capacities of the MSCs. The current view is that the release of
extracellular vesicles (EVs) through paracrine mechanisms is the
major mediator of their therapeutic activities (Lener et al., 2015; Li
et al., 2018a; Zhang et al., 2019a). Various in vitro studies and
preclinical disease models have reported that EVs isolated from
MSCs cultures display therapeutic activities that equivalent to those
of MSCs (Giebel et al., 2017). Therefore, the secretome from MSCs
has attracted much attention for its potential use in tissue repair and
regeneration.

3 EVs from MSCs

3.1 EV biogenesis

The term “extracellular vesicles” refers to a group of cell-derived
lipid bilayer membranous structures containing transmembrane
proteins and RNAs (Lötvall et al., 2014; Théry et al., 2018;
Mathieu et al., 2019). Work in the late 1960s first discovered and
recorded the presence of vesicles around cells in human plasma
(Wolf, 1967). However, the generic term “exosome” was not
proposed until 1987 (Johnstone et al., 1987). According to their
biogenesis processes, EVs can be classified into three major subtypes:
(a) microvesicles, budding from the plasma membrane, with size
between 50 and 1000 nm; (b) exosomes: a group of relatively smaller
membrane vesicles (30–120 nm) secreted from the endosomal
system and formed through the inward budding of multivesicular
bodies (MVBs) that transfer molecules into target cells; and (c)
apoptotic bodies: derived from fragments of apoptotic cells, sized
between 800 and 5,000 nm. As there is no standard production
protocol for MSC-EVs, the term “MSC-exosomes” was used to
describe exosome-containing products derived from MSCs
(Gimona et al., 2021).

The biogenesis of exosomes comprises an endosomal sorting
complex required for transport (ESCRT)-dependent mechanism
and an ESCRT-independent mechanism (Trajkovic et al., 2008;
Kajimoto et al., 2013; Mathieu et al., 2019). The ESCRT-
dependent process starts with the inward budding of the bilayer
membrane of late endosomes, resulting in the formation of
intraluminal vesicles. The bilayer membrane bubble-filled
endosome is called an MVB. The maturation of MVBs ends with
the excretion of the exosomes into the extracellular space. The
ESCRT-independent mechanism can also produce intraluminal
vesicles. The biogenesis of microvesicles mainly involves the
outward budding of the cell plasma membrane and degradation
of the cytoskeleton (Shao et al., 2018). However, other mechanisms
may be also involved in the biogenesis of microvesicles, for instance,
conversion between ceramide and sphingomyelins (van Niel et al.,
2018).

3.2 EV isolation and characterization

Differential ultracentrifugation is the most frequently used
method for isolation of EVs and remains the “gold standard”
(Théry et al., 2018). However, differential ultracentrifugation,

which can only be performed for up to about 500 ml of culture
medium per run, is unsuitable for large-scale purification (Witwer
et al., 2019). Density gradient centrifugation is an improved
ultracentrifugation method that produces EVs with higher purity.
Although other methods such as serial washes can improve purity,
they are associated with low production, risk of structural damage,
and contamination (Webber and Clayton, 2013). Therefore,
ultracentrifugation may not be an optimal method for
therapeutic applications.

Size-based isolation methods include ultrafiltration, size
exclusion chromatography, and tangential flow filtration (Li
et al., 2017; Willis et al., 2017; Wu et al., 2021b). These methods
can produce EVs with comparable or superior purity and/or
functional activity to those produced by conventional methods
(Busatto et al., 2018; Ludwig et al., 2018); however, pore clogging
may occur during the filtration process, resulting in low yield.

Polymer precipitation with polyethylene glycol (PEG) or other
polymers could be an effective way to achieve “salting out” of EVs to
aggregate (Doyle and Wang, 2019). In clinical applications, PEG or
other polymers are considered as contaminants that need to be
removed (Doyle and Wang, 2019). Immunoaffinity capture
technology, in which antigens are bound to antibodies on the
surface of EVs, allows isolation of specific EVs with certain
surface proteins.

With the development of the EV research field, various novel
strategies have been developed to isolate EVs. However, as there are
no standard evaluation metrics for MSC-EV preparation, and no
proprietary matrices have been specified, it is difficult to assess the
clinical usability of the resulting EVs, as well as the safety of the
ingredients used in these EV-harvesting strategies (Reiner et al.,
2017).

According to the Minimal Information for Studies of EVs
(MISEV) guidelines, the characterization of isolated EVs needs to
address morphology, particle size, and surface biomarkers (Théry
et al., 2018). The morphology of EVs is observed by scanning
electron microscopy, transmission electron microscopy (Théry
et al., 2018), electron cryo-microscopy, and atomic force
microscopy (Wu et al., 2021b). The size distribution and
concentration of EVs are usually determined by nanoparticle
tracking analysis, dynamic light scattering, and tunable resistive
pulse sensing (An et al., 2021). Common biochemical analysis
methods for EVs include western blotting, flow cytometry, and
liquid chromatography with mass spectrometry. As the size ranges
of exosomes and microvesicles may overlap, these two subtypes
cannot be differentiated by size alone.

According to minimal criteria for MSCs suggested by the
International Society for Cell and Gene Therapy (ISCT), surface
antigens may be the most detectable characteristics that can be
transferred to EVs (Dominici et al., 2006). MSC-EVs could be
identified based on recently reported MSC-specific surface
antigens including CD73, CD90, and CD105, and by the absence
of CD14, CD34, and CD11b by Western blot or ELISA (Witwer
et al., 2019). The proteomic and lipidomic signatures of MSC-
exosomes samples can also be utilized for the identification,
characterization, and verification of MSC-exosomes. Previous
research revealed that the origin of EV subtypes can be defined
by identifying the specific binding affinity, such as cholera toxin B
chain (CTB), annexin V (AV), and Shiga toxin B chain (ST) on lipid
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membrane (Lai and Lim, 2019). And the signature analysis of a
specific set of proteins might help in quality control of the
preparation and standardization of MSC-exosomes (van Balkom
et al., 2019).

4 MSC-exosomes in skin regenerative
medicine

MSCs that secrete effectors can be loaded into EVs, thus
enabling them to exert bioactive effects (Fu et al., 2019).
Exosomes are thought to be the critical bioactive EVs responsible
for the paracrine effects of MSCs (Joo et al., 2020), which can be
secreted from all types of cells in the human body. According to
high-throughput exosome studies, exosomes consist of and carry a
diverse load of proteins (Toh et al., 2018), lipids (Davidson et al.,
2022), metabolites, RNAs (Fan et al., 2018; Zhang et al., 2019b).
Almost 350,000 proteins and more than 27,000 mRNAs and
10,000 miRNAs have so far been detected in exosomes, based on
data from Vesiclepedia (http://microvesicles.org/, accessed on
1 August 2022).

There is a growing recognition that MSC-derived exosomes are
the initial mediators of the therapeutic efficacy of MSCs,
maintaining the biological activity and therapeutic effects of
progenitor MSCs (Yeo et al., 2013; Brennan et al., 2017;
Ramasubramanian et al., 2019; Yin et al., 2019). The mechanisms
underlying the therapeutic potential of MSC-exosomes involve
transmission of intercellular information through direct binding
to surface ligands via ligand–receptor interactions (Chen et al., 2018;
Theodoraki et al., 2018; Yang et al., 2018) or transfer of genetic
information and proteins into acceptor cells through cellular
internalization or membrane fusion (Skog et al., 2008; Möller
and Lobb, 2020) to alter the biological properties of target cells.
Research indicates that luminal vehicles within exosomes are
absorbed by recipient cells by three methods: direct membrane
fusion (Duan et al., 2021), endocytosis (Gurung et al., 2021), and
receptor–ligand interactions (Salunkhe et al., 2020).

MSC exosome-based therapies are thought to circumvent the
hurdles faced by MSC-based therapies. The main advantages of
MSC-exosomes can be summarized as follows. First, the isolation,
concentration, storage, and therapeutic dosage of exosomes are
more controllable (Witwer et al., 2013). Second, the phospholipid
bilayer structure can merge directly with target cells, releasing
functional cargos in the receiving cells. Third, exosome-based
therapies can avoid the risks of immune rejection and
tumorigenesis (Tan et al., 2021). Therefore, MSC-exosomes, as a
promising cell-free therapy, exhibit high potential in wound healing
and skin regeneration.

4.1 Therapeutic potential of MSC-exosomes
in skin tissue regeneration

The pathology of wound healing is regulated by a well-
orchestrated processed including inflammation, re-
epithelialization, reformation, angiogenesis, and collagen
remodeling (Singer and Clark, 1999). MSC-exosomes are believed
to have equivalent biological effects to MSCs in tissue regeneration,

homeostasis, and wound healing (Yeo et al., 2013;
Ramasubramanian et al., 2019; He et al., 2022; Luo et al., 2022;
Yan et al., 2022). They can exert their effects on receptor cells by
modifying gene expression and protein production. Research efforts
have been undertaken to develop MSC-exosomes as therapies in
wound healing.

Several studies have examined the effects of MSC-exosomes on
the prolonged inflammatory phase in chronic wounds. Anti-
inflammatory M2 macrophages have essential roles in promoting
cell proliferation and tissue regeneration (Singer and Clark, 1999;
Das et al., 2015; Guo et al., 2018). He et al. revealed that bone
marrow MSC (BMMSC)-derived exosomes could modulate
M2 polarization to promote cutaneous wound healing (He et al.,
2019). Adipose tissue-derived stem cell (ADSC)-exosomes have
been proven to attenuate macrophage infiltration and reactive
oxygen species production (Xu et al., 2020).

Several studies have reported that MSC-exosomes contribute to
wound healing with an emphasis on proliferation. Angiogenesis and
re-epithelization are important tasks during the proliferation phase
of wound healing (Tonnesen et al., 2000; Sorrell et al., 2009). ADSC-
exosomes have been reported to promote the proliferation and
migration of vascular endothelial cells and sprouting of vascular
endothelial tip cells, and to rejuvenate senescent endothelial cells in
vivo and in vitro. Ren et al. reported that the angiogenesis induced by
ADSC-exosomes in human umbilical vein endothelial cells was
associated with the upregulation of platelet-derived growth
factors, VEGFA, EGF, and FGF via AKT and ERK signaling
pathways (Ren et al., 2019). In a mouse model of a full-thickness
skin defect, exosomes from fetal dermal MSCs could accelerate
wound healing by activating Notch signaling (Wang et al.,
2019a). In an ischemic disease model, miRNA-31 in ADSC-
exosomes targeted factor inhibiting HIF-1 (FIH-1) in recipient
cells to promote angiogenesis (Zhao et al., 2017; Bian et al.,
2019). In addition, preclinical studies in mouse injury models
have shown that BMMSC-exosomes accelerate wound healing by
promoting collagen synthesis and angiogenesis (El-Tookhy et al.,
2017; He et al., 2019).

Human-induced pluripotent stem cells can be generated from a
variety of adult cell types after genetic modification. Exosomes from
induced pluripotent stem cells (hiPSC)-MSCs can accelerate
cutaneous wound healing by promoting vascularization and
fibroblast proliferation in rats. After an injury, wounds treated
with hiPSC-MSC-exosomes showed improved re-epithelialization
and formation of skin appendices, including sebaceous glands and
hair follicles. Increasing expression of CD-31 and α-SMA indicates
proliferation of endothelial cells and smooth muscle cells that are
closely related to vascularization (Zhang et al., 2015). Notably,
hiPSC-MSC-exosomes were also found to enhance collagen
synthesis and fibroblast proliferation in a dose-dependent
manner of human umbilical vein endothelial cells in vitro. The
proliferation of human keratinocytes (HaCaT cells) and human
dermal fibroblasts was also found to increase significantly after
treatment with hiPSC-MSC-exosomes (Kim et al., 2018).

MSC-derived exosomes also have prominent regenerative effects
on collagen deposition and can reduce scar deposition. Data suggest
that exosomes from human ADSCs can promote fibroblast
proliferation and migration through the PI3K/Akt signaling
pathways following subcutaneous injection of umbilical cord
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blood (UCB)-exosomes at full-thickness cutaneous wounds on the
backs of mice (Zhang et al., 2018). Another study confirmed the
beneficial effects of exosomes from human umbilical cord blood
plasma (hUC-MSCs) on wound healing. Levels of collagen I,
collagen III, and α-SMA were downregulated after treatment with
hUC-MSC-derived exosomes, and expression of myofibroblast-
related protein was decreased. In addition, hUC-MSCs have been
found to inhibit the activation of the TGF-β1/Smad2/3 signaling
pathway. These data indicate that hUC-MSC-derived exosomes
could inhibit the transition of fibroblasts to myofibroblasts (Hu
et al., 2020).

However, exosome therapeutics for wound healing still face
challenges regarding their clinical applications, including poor
targeting, a rapid clearance rate, and a relatively short half-life in
the complex microenvironment of the wound (Liu et al., 2017).
Quantitative analysis of exosome-internalized skin cells show a
time-dependent decrease 24 h after injection (Hu et al., 2018).
Furthermore, the functions of these cells may have been
compromised by the time-consuming harvesting and passage
processes and the low survival rate. For these reasons, tissue
engineering technology has been introduced to modify the
therapeutic potential of natural exosomes, enabling the design of
exosomes higher stability and greater therapeutic capability in
accelerating wound healing and skin regeneration.

4.2 Challenges in the development of MSC-
exosomes-based therapies

Although several preclinical studies have shown promising
result, some challenges still hinder the development of exosome-
based treatments (Liu et al., 2017; Hu et al., 2018). In clinical settings,
the drawbacks of exosome-based therapy may outweigh the
advantages. Challenges in achieving a therapeutic effect in clinical
settings are found throughout the whole process of MSC-exosome
preparation.

To date, various studies are evaluating the biodistribution of
exosomes obtained from different sources and used for treatment in
several disease models. The underlying mechanism of action (MoA)
of MSC-exosomes in each stage of wound healing needs further
elucidating. To achieve the therapeutic effect, MSC-exosomes need
to present on the target site in a spatiotemporal manner. However,
no specific markers are yet available to specifically label and track the
biodistribution of MSC-exosomes (He et al., 2019). Moreover, to
elucidate the MoA of the therapeutic MSC-exosomes is often
implemented by gene editing of the donor MSCs to down-
regulated the candidate RNAs or proteins of MSC-exosomes,
which may eventually lead to major alterations of MSC-exosomes
products (Théry et al., 2018).

The variability of parental MSC sources, the processes for
isolation, purification, and identification of exosomes, and the
need for a standardized definition of MSC-exosomes need to be
addressed (Witwer et al., 2019). In addition, the therapeutic efficacy
of MSC-exosomes may be affected by local conditions, the delivery
route, and the time window for intervention. For clinical
applications of MSC-exosomes, xenogenic components should be
avoided during the preparation process. Non-MSC-exosomes
derived from the culture media may exist (Witwer et al., 2019).

After administration, the biological effects of MSC-exosomes
should be elicited only after they have been engulfed by the target
cells. Otherwise, MSC-exosomes would be depleted by immune cells
in the circulation. Exosomes are often administered intravenously,
subcutaneously, or intraperitoneally (Figure 1). There are also
drawbacks also associated with the administration of the
exosomes. Systemic administration of exosomes may cause an
instant inflammatory reaction and rapid clearance from the
blood circulation, resulting in insufficient residence time and
homing. The half-life of local administration of exosomes may be
even shorter with low bioavailability owing to flushing by body fluid,
resulting in a short retention rate of exosomes (Agrahari et al., 2016;
Riau et al., 2019). Moreover, therapeutic efficacy may differ between
exosomes harvested from in vitro MSC culture and exosomes
secreted by MSCs after administration in vivo.

5 Bioengineering modified MSC-
exosomes

To solve the problems of low effective concentration and limited
therapeutic effect, researchers have introduced bioengineering methods
into exosome-based therapy. This has resulted in the design of highly
specialized bioengineering-modified MSC-exosomes. The features of
modified MSC-exosomes are as follows: targeted binding to a specific
cell type or tissue; the capacity for loading molecules, drugs, proteins, or
genetic information into exosomes or on their surface; and enrichment
of an endogenous molecule in the lumen of exosomes or on their
surface (Kojima et al., 2018). Current bioengineering methods fall into
two main categories: parental MSC-based exosome engineering and
direct MSC-exosome engineering (Figure 1A). Several studies have
shown the therapeutical roles of bioengineeredMSC-exosomes in tissue
regeneration and the treatment of CNS disease and cancer (Figure 2)
(Haney et al., 2015; Samadikuchaksaraei et al., 2016; Togliatto et al.,
2016; Gilligan and Dwyer, 2017; Tao et al., 2017; Yuan et al., 2017; Li
et al., 2018b; Liao et al., 2018; Luo et al., 2019; Mathew et al., 2019; Sisa
et al., 2019; Kaminski et al., 2020; Xuan et al., 2020; Nuzzi et al., 2021;
Sandonà et al., 2021; Yao et al., 2021; Dong et al., 2022; Kurniawati et al.,
2022; Miyasaki et al., 2022; Thomas et al., 2022; Rong et al., 2023).

5.1 Parental MSC-based exosome
engineering

The genetic engineering of parental MSCs produces specific
exosomes loaded with functional surface display molecules to
specificically label MSC-exosomes or increase exosome
accumulation. The most common procedure for encapsulating a
protein at the surface of exosomes is the use of an exosome signal
peptide such as lysosome-associated membrane protein 2b (LAMP2b)
(Alvarez-Erviti et al., 2011). The LAMP2bmembrane protein combined
with a neuron-targeted short peptide of rabies virus glycoprotein (RVG)
is expressed. RVG displayed on the surface may lead to the
accumulation of exosomes and enhance exosome delivery (Alvarez-
Erviti et al., 2011; Barile and Vassalli, 2017). Vesicular stomatitis virus
glycoprotein is an exosome-anchored transmembrane protein
containing ectoplasmic, transmembrane helix, and cytoplasmic
domains (Meyer et al., 2017). Specific proteins can replace the
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ectoplasmic and cytoplasmic domains without altering the structures of
the exosome membrane. Other documented exosome surface proteins
include tetraspanins (CD63, CD9, CD81) (Mathieu et al., 2021; Shi
et al., 2021), glycosylphosphatidylinositol (GPI)-anchored cadherin
(Nakamura et al., 2020), platelet-derived growth factor receptors
(Ohno et al., 2013), and lactadherin (C1C2 domain) (Tian et al.,
2021), which could be used for similar purposes.

The EXOtic device can be used to carry mRNAs into parental
MSCs to improve exosome production, deliver mRNAs into
recipient cells, and promote cell-to-cell communication (Kojima
et al., 2018). CRISPR/Cas9 technologies are employed for in vivo

gene editing. For example, CRISPR/Cas9 has been used to knock
down specific gene sequences in human umbilical MSCs to enhance
therapeutic effects (Shao et al., 2020). Such strategies have great
potential for gene manipulation in exosome-based therapy and are
awaiting further investigation. Transfection has been used to
incorporate small RNAs and endogenous molecules into
exosomes via loading into parental MSCs. Parental MSCs co-
transfected with plasmids encoding production enhancement
genes may increase exosome production by 15- to 40-fold as
determined by measuring a luminescent reporter (Kojima et al.,
2018).

FIGURE 1
(A) Biogenesis of Mesenchymal stem cell-derived exosomes. The bioengineering modifications include genetic modification of MSCs and direct
modification of exosomes. (B) Current administration procedures of modified exosomes are co-administration with hydrogels and administered by
intravenous, subcutaneous, or intraperitoneal injections. Modified MSC-exosomes could accelerate skin wound repair by promoting angiogenesis,
fibrogenesis, re-epithelization, and granulation tissue formation, as well as alleviate inflammation.
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Genetic modification of parental MSCs seems feasible for
improving protein surface display, increasing yield of exosomes,
loading specific mRNAs into the exosomes, and increasing exosome
uptake by recipient cells without any alteration in exosome
structures. However, alteration of genetic information may not be
suitable for use in exosomes for clinical applications.

5.2 Direct MSC-exosome engineering

Direct exogenous loading approaches after exosome isolation
include co-incubation, electroporation, and sonication; other

methods such as freeze-thaw and extrusion are rarely used
(Figure 1).

Co-incubation is a frequently used strategy to maintain the
integrity of the exosome membrane and is especially suitable for
loading of hydrophobic molecules such as drugs and RNAs (Xiao
et al., 2022; Zhuang et al., 2022). Electroporation is a promising
strategy for loading small-molecule drugs or nucleotides into
exosomes by creating small-transit pores on the phospholipid
bilayer (Lv et al., 2020; Xiong et al., 2022). The membrane gap is
automatically restored without altering the morphology of the
exosomes. Given that large compounds cannot easily be
encapsulated in exosomes, the electroporation approach is

FIGURE 2
The potential therapeutical applications of bioengineered MSC-exosomes for tissue regeneration and nanoscale delivery system. (A) The
bioengineered MSC-exosomes loading with specific signaling molecules, such as proteins, RNAs, and nanoparticles can achieve repair and regenerative
effects on various tissues. (B) The bioengineered MSC-exosomes can cross the BBB in the brain or to the tumor for the treatment of CNS diseases and
cancer. (MSC, mesenchymal stem cells, BBB, blood-brain barrier, CNS, central nervous system).
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particularly suitable for loading nucleotides (Luan et al., 2017).
Sonication is also a popular method for exosome engineering
(Haney et al., 2015). Exogenous cargo diffuses into the exosomes
by passing through the membrane breaks caused by a probe’s
mechanical force. Although the loading efficiency of the
sonication method is higher than those of co-incubation and
electroporation, this approach has some important shortcomings.
For instance, the high power of sonication may cause irreversible
deformation of exosomes and may disrupt the integrity of exosomes
(Haney et al., 2015; Luan et al., 2017).

Extrusion can be used to load exogenous cargos such as gold
nanoparticles into exosomes (Khongkow et al., 2019; Van Deun
et al., 2020). Freeze–thaw methods have been used to load water-
soluble molecules into exosomes by forming ice crystals within lipid
membranes that temporarily break the integrity of the exosome
membrane (Haney et al., 2015; Hajipour et al., 2021). According to a
previous study, extrusion and freeze-thaw methods have notable
drawbacks, including low efficiency, low throughput, and the risk of
altering the membrane stability of exosomes, resulting in
unpredictable side effects (Fuhrmann et al., 2015; Haney et al.,
2015; Van Deun et al., 2020). Therefore, such methods are not
conventionally used for loading cargo into exosomes.

Exosomes can be modified by using chemical engineering
strategies such as click chemistry and metabolic glycoengineering
to conjugate ligands to the exosome surface, enabling regulation of
the directional migration and targeting of exosomes (You et al.,
2021). The advantage of this method is that the highly effective
reaction can maintain the size of exosomes without any undesirable
side reaction related to the association between exosomes and
recipient cells (Smyth et al., 2014; Yoon et al., 2017).

Engineered hybrid exosomes are emerging as an alternative
strategy for encapsulating and transferring large nucleic acids
such as DNA to target cells and organs and exert therapeutic
effects (Lin et al., 2018). Fusing exosomes with synthetic
liposomes modifies and tunes the exosome interface to decrease
immunogenicity, increase colloidal stability, and improve the half-
life in circulation (Lin et al., 2018). Composite carriers enable the
efficiency of drug loading to be improved while retaining the
function of exosomes. However, there have been few
comprehensive evaluations of hybrid exosomes. Hybrid exosomes
have been reported to show cytotoxicity slightly greater than that of
pure exosomes, as demonstrated by their effects on cell proliferation,
which was attributed to the conjugation of the nanoparticles (Chen
et al., 2020). As the incubation time or the concentration of hybrid
exosomes increased, the viability of progenitor cells decreased.

In summary, various therapeutic molecules and nanoparticles
can be efficiently transferred to exosomes using the abovementioned
modification procedures. However, these methods require repeated
purification and centrifugation using detergents, enzymes or other
methods, which might disrupt the integrity of exosomes or reduce
bioactivity (Levy et al., 2022). Therefore, novel bioengineering
procedures are needed to compensate for these limitations.

5.3 Co-administration with hydrogels

Deepening understanding of exosome-based therapies has
spurred research combining biomaterials to formulate sustained-

release therapeutic systems. Improving the ability of MSC-exosomes
to accelerate wound healing is the driving force behind the research
integrating biomaterials and bioengineering. Ideal biomaterials can
be used to maximize the therapeutic functions of exosomes as
wound dressings or scaffolds by increasing their durability and
stability.

A variety of biomaterials, including membranes, electrospun
nanofibers, colloidal nanoparticles, and hydrogels, have been used to
facilitate the controlled release of bioactive molecules for skin
regeneration (Liang et al., 2019; Bai et al., 2022; Hu et al., 2022).
Among them, hydrogels have recently attracted attention for
applications as delivery systems and scaffold dressings with
multifunctional properties such as antibacterial activity,
hemostatic ability, tissue adhesion, anti-ultraviolet activity,
injectability, and self-healing (Lokhande et al., 2018; Safari et al.,
2022). Hydrogels can mimic natural extracellular matrix (ECM) and
provide a three-dimensional framework to support growth and
proliferation of loaded cells and regulate biomolecule activation
(Riha et al., 2021). Moreover, three-dimensional hydrophilic
polymer networks can maintain moisture at the wound site.

The combination of hydrogels and exosomes plays a crucial part
in adjusting the wound inflammation microenvironment,
promoting vascularization, enhancing re-epithelialization, and
accelerating wound healing (Qian et al., 2020; Zhang et al.,
2021a; Kudinov et al., 2021; Geng et al., 2022). Furthermore, a
comparative study has demonstrated a synergistic effect of
hydrogel–exosome complexes compared with exosome therapy
alone (Zhou et al., 2022).

In summary, although several studies have shown great
potential for MSC-exosomes in clinical applications, many
unresolved issues still limit their practical use. Before exosomes
are introduced into clinical settings, safety concerns, cytotoxicity,
and reproducibility of production need to be solved (Luan et al.,
2017; Murphy et al., 2019). The development of bioengineering
methodologies for exosome-based therapy could provide a means
of bridging the gap.

6 Applications of bioengineering-
modified MSC-derived exosomes in
skin wound healing and regeneration

In this section, we review the therapeutic applications of
modified MSC-exosomes in wound healing and skin
regeneration and the improvements in regenerative efficiency
that have been achieved compared with MSC-derived exosomes.
As mentioned in the previous discussion on modified exosomes
and bioengineering technology, there are two current trends for
implementing modifiedMSC-exosomes in wound healing and skin
regeneration.

6.1 Bioengineering the properties of MSC-
exosomes

One solution is to bioengineer the properties of exosomes, such
as their cargos or surface molecular functions, before administration
(Table 1).
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The RNA cargo of MSC exosomes is considered a pivotal factor
in eliciting biological functions to target cells and has raised great
attention. Previous mechanistic studies have shown that exosome-
derived RNAs play a crucial role in immunomodulatory capacity
(He et al., 2019; Zhao et al., 2021; Wang et al., 2022), stimulate the
differentiation of fibroblasts, keratinocytes, and endothelial cells,
promote angiogenesis (Liang et al., 2016), and prohibit tissue
hyperplasia and scar formation (Fang et al., 2016). Such
abilities can be enhanced after bioengineering modification. For
example, modified exosomes derived from bone marrow MSCs
(BMMSCs) enriched with miRNA-542-3p could enhance
proliferation, migration, and angiogenesis of human skin
fibroblasts/human dermal microvascular endothelial cells
in vitro and in vivo (Xiong et al., 2022). The potential
therapeutic value of exosomes loaded with circular RNAs has
been studied in full-thickness skin wound repair in diabetic
rats. The MSC-exosomes enriched with mmu_circ_
0000250 could efficiently regulate miR-128-3p and the
expression of SIRT1 to control inflammation (Shi et al., 2020b).
Another study modified MSCs to generate exosomes enriched for
long ncRNA H19, leading to the regulation of the PI3K/AKT
signaling pathway and suppression of inflammatory responses and
apoptosis in a diabetic foot ulcer mouse model (Li et al., 2020).
Nanoparticles can be loaded into the exosomes to promote
angiogenesis. BMSCs-exosomes loaded with magnetic Fe3O4

nanoparticles, with upregulation of exosome miR-1260a, were
confirmed to enhance angiogenesis (Wu et al., 2021a).

Deep sequencing of MSC exosomal RNA revealed that MSC
excretes exosomal miRNAs in a selective manner, many of which are

precursor miRNAs incapable of protein-coding (Chen et al., 2010;
Pritchard et al., 2012). In addition, a prerequisite for RNA-basedMoA
is that the exosome-derived miRNAs reach a therapeutic dose.
However, the amount of miRNAs in standard preparation is
approximately 60 ng per 100 μg exosome. Leaving aside the fact
that the distribution of a specific miRNA in an exosome is about
1:100 (Chevillet et al., 2014; Albanese et al., 2021). According to the
analysis of Toh WS et al., MSC-exosome-derived miRNAs are unable
to achieve the therapeutic effect as their low concentration in single
exosome, immature status, and the absence of RNA-induced silencing
complex (RISC) (Toh et al., 2018).

The protein-mediated mechanism of MSC-exosomes in wound
healing has raised attention (Sung et al., 2019; Bari et al., 2020;
Kudinov et al., 2021; Camões et al., 2022; Zhang et al., 2022).
Comprehensive proteomic analysis showed that the proteins
TGF-β, ITGA1-3/5, IL-6, CDC151, S100A10, and Wnt5α, as
being enriched in MSC-exosomes in 3D culture, were confirmed
to be associated with wound healing (Camões et al., 2022). In
infected burn injury, PGE2, IL-6, IL-8, or IFN-γ, IL-10, growth
factors, and chemokines secreted by placental MSC secretome were
found to accelerate dermal fibroblast and keratinocyte migration
and proliferation, stimulate angiogenesis, and reduce scarring
(Kudinov et al., 2021). Angiogenic protein cargos, including
angiogenin, angiopoietin-1, HGF, and vascular endothelial
growth factor (VEGF) in thrombin preconditioning MSC-
exosomes were enhanced compared with that of naïve MSC-
exosomes, thus boosting angiogenesis (Sung et al., 2019). As with
RNA-based MoA, the proteins should be in therapeutic doses to
elicit their therapeutic effect.

TABLE 1 Summary of research concerning engineered exosomes in wound repair.

Exosome type Model Engineering strategy Function Reference

BMSC-exosomes skin wound mouse
model

Loading miRNA-542-3p into exosomes by
electroporation

promote cellular proliferation, collagen deposition,
neovascularization, and accelerated wound closure

Xiong et al.
(2022)

BMSC-exosomes calvarial defect rat
model

BMSC-exosomes incubated with
Fe3O4 nanoparticles with or without a

magnetic field

Enhance angiogenesis and osteogenesis Wu et al.
(2021a)

UCMSC-exosomes In vitro study three-dimensional coculture of UCMSCs and
endothelial cells under hypoxic conditions

promoting proliferation and inhibiting apoptosis Zhang et al.
(2021b)

Engineered miR-31
exosomes

chronic diabetic
wounds

transfected miR-31-5p lentiviral vector into
HEK293 cells

enhancing angiogenesis, fibrogenesis and
reepithelization

Huang et al.
(2021)

engineered exosomes-
derived from monocytic

cells

HUVEC Exosomes treated with immunomodulating
compounds

facilitate HUVECs tube formation and enhance skin
cell proliferation and migration

Su et al. (2022)

BMSC-exosomes diabetic (db/db)
mice

BMSCs transfected to overexpress long non-
coding RNA HOX transcript antisense RNA

promote angiogenesis and wound healing Born et al.
(2022)

miR-29a-modified
hADMSC-exosomes

thermal mouse
model

Transfected miR-29a mimics into hADSCs reduce excessive scar formation Yuan et al.
(2021)

TSG-6 modified MSC-
exosomes

mouse full-
thickness wound

model

overexpression and knockdown of TSG-6
lentivirus infection into hBMSCs

suppressed scar formation via reducing inflammation
and inhibiting collagen deposition

Jiang et al.
(2020)

MSC-EV In vitro: HUVECs thrombin preconditioning regimen enhanced proliferation, the migration and tube
formation of HUVECs in vitro, and cutaneous wound

healing in vivo

Sung et al.
(2019)

In vivo: cutaneous
wound healing

Abbreviations: Exo: exosome; HUMSC: human umbilical mesenchymal stem cell; ADMSC: adipose-derived mesenchymal stem cell; SMSC: synovial mesenchymal stem cells; MSC:

mesenchymal stem cell; EV: extracellular vesicles.
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TABLE 2 Summary of research concerning exosome-loaded scaffold in wound repair.

Exosome type Model Scaffold Function Reference

fibrosarcoma cell line
HT1080-Exos

In vitro study A thermo-responsive polymer of poly(N-vinyl caprolactam) (PNVCL) for
encapsulation of exosomes

facilitate thrombus degradation and healing of endothelium lining Das et al.
(2022)

GMSCs-Exos diabetic rats GMSC-Derived Exosomes Combined with a Chitosan/Silk Hydrogel Sponge promoting the re-epithelialization, deposition and remodeling of collagen and
enhancing angiogenesis and neuronal ingrowth

Shi et al.
(2017)

hADMSCs-Exos In vitro study Elastomeric Scaffolds (polycaprolactone) increasing the wound healing properties and collagen type I and vitronectin of the
MSC, and improving the M2 phenotype of the macrophages

Chachques
et al. (2021)

BMSC-exosomes chronic diabetic wound
healing

BMSC-exosomes-loaded carboxyethyl chitosan (KimParaiso et al., 2011)-
dialdehyde carboxymethyl cellulose (DCMC) hydrogel (MSC-exosomes@CEC-

DCMC HG)

adjusted the wound inflammation microenvironment, promoted
neovascularization, and accelerated wound healing in type 1 diabetic rats

Geng et al.
(2022)

ADMSC-exosomes rat full-thickness skin
injury model

AMSC-exosomes-loaded β-chitin nanofiber hydrogel acceleration rate of wound closure Liu et al.
(2022)

Abbreviations: Exo: exosome; ADMSC: adipose-derived mesenchymal stem cell; GMSC: gingival mesenchymal stem cell.
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6.2 Hydrogel encapsulation of MSC-
exosomes

Another bioengineering strategy combines exosomes and
hydrogels to exert synergistic functions after administration
(Table 2) (Wang et al., 2019b). Hydrogels act as three-
dimensional porous scaffolds to provide a favorable environment
for cell proliferation and ECM remodeling (Yang et al., 2020). A
complex of exosomes and hydrogels can also act as a sustainable
release system for an extended period and exert lasting curative
functions. The flexible morphology of biomaterials enables the
construction of more variable forms of exosomes (Wang et al.,
2019c).

MSC-exosomes encapsulated by biomaterials could avoid being
rapidly released into the bloodstream and exert their therapeutic
effect in a dose-dependent manner at designated sites. Hydrogels
can be used as loading vehicles to enhance exosome retention rates
and achieve synergistic therapeutic efficacy (Wang et al., 2019b; Das
et al., 2022). A thermoactivated polymer has been shown to enable
sustained administration of exosomes, maintaining 65% of the initial
number of exosomes after 25 days (Das et al., 2022). This study also
found no cytotoxic effects on cells in contact with the hydrogels or
when cells were embedded in the hydrogel constructs. Surface
modification with nanoparticles increases the production of
exosomes. Bioavailable nanoparticles based on iron oxide with
poly(lactic-co-glycolic acid) were designed to improve the yield
of exosomes by stimulating MVB formation (Park et al., 2020).

Biomaterials may also combine engineered exosomes to improve
the therapeutic efficiency of exosomes in wound healing (Table 3). As
three-dimensional porous scaffolds, hydrogels provide exosomes with a
favorable environment that promotes cell proliferation and ECM
remodeling and have thus gained more research attention.
Furthermore, the transformation of biomaterials provides a greater
scope for applications of exosomes (Wang et al., 2019c; Yang et al.,
2020). An in vivo study showed that incorporating gingival-MSC-
derived exosomes into a chitosan/silk-based hydrogel sponge could
facilitate wound healing by promoting re-epithelialization, angiogenesis,
and neuronal ingrowth, as well as collagen remodeling (Shi et al., 2017).

In a study by Wang et al., an injectable methylcellulose-chitosan
hydrogel loaded with exosomes derived from human placental
MSCs was constructed to synergistically promote angiogenesis and
inhibit apoptosis (Wang et al., 2019b). The modified exosome hydrogel
complex forms a suitable injectable wound dressing with appropriate
gelation time, mechanical properties, and high self-healing efficiency. In
a diabetic wound-infected model, BMSC-exosomes were loaded in an
antibacterial hydrogel and enabled the wound inflammation
microenvironment to be adjusted, as well as promoting
neovascularization and accelerating wound healing (Geng et al., 2022).

6.3 Clinical trials of MSC-EVs for wound
healing and skin regeneration

Overall, bioengineering technologies have been implemented
in exosome-based therapy to make MSC-derived exosomes more
effective in treating chronic wounds. Previous valuable research
findings have expanded the scope of applications of exosomes in
treatment of cutaneous wounds and established a theoretical
basis for clinical trials of bioengineered MSC- exosomes.

7 Prospects and conclusion

Skin wound healing is a complex multi-stage biological process.
Chronic wounds characterized by poor vascularization and
prolonged inflammation still threaten patients’ health and quality
of life. Traditional treatments for skin damage are time-consuming
and costly, and existing therapies have little therapeutic effect in
promoting chronic wound healing. Therefore, new therapeutic
options are needed.

Over the past decades, therapies based onMSCs with multi-lineage
potential have shown impressive therapeutic efficacy in regenerative
medicine (Pittenger et al., 1999). However, significant challenges
regarding immunocompatibility, stability, migration capacity, and
pluripotent development still need to be addressed (Jiang et al.,
2002). Current opinion is that MSCs exert their therapeutic effects

TABLE 3 Summary of research concerning engineering exosomes-loaded scaffold in wound repair.

Exosome
type

Model Engineering strategy Function Reference

hADSCs-Exos a diabetic wound festers
model

reductive 2D COFs as a nanocarrier to immobilize
engineering exosomes (E-Exos) collected from TNF-
α-treated mesenchymal stem cells (MSCs) under

hypoxia

suppressing oxidative injury and tissue
inflammation, promoting angiogenesis and

eradicating bacterial infection

Sun et al.
(2022)

HUMSCs-Exos P. aeruginosa infected
mouse skin wound defect

model

an asymmetric wettable dressing with a composite of
exosomes and silver nanoparticles (CTS-SF/SA/Ag

Exo dressing)

CTS-SF/SA/Ag-Exo dressing enhanced wound
healing by accelerating collagen deposition,

angiogenesis and nerve repair

Qian et al.
(2020)

ADMSC-
exosomes

Chronic full-thickness
non-healing diabetic

wound

Engineering Bioactive Self-Healing Antibacterial
Exosomes Hydrogel

enhanced wound closure rates, fast angiogenesis,
re-epithelization and collagen deposition within the

wound site

Wang et al.
(2019d)

SMSCs-126-
Exos

diabetic chronic wound SMSCs-126-Exos with hydroxyapatite/chitosan
(HAP-CS) composite hydrogels (HAP-CS-SMSCs-

126-Exos)

promote wound surface re-epithelialization,
accelerate angiogenesis, and expedite collagen

maturity

Li et al. (2016)

Abbreviations: Exo: exosome; COF: covalent organic framework; HUMSC: human umbilical mesenchymal stem cell; ADMSC: adipose-derived mesenchymal stem cell; SMSC: Synovial

mesenchymal stem cells.
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mainly via their paracrine activity, mostly through the release of EVs
(Herrera et al., 2010; Lai et al., 2010; Lener et al., 2015). As the main
bioactive factor of the MSC secretome, MSC-exosomes are reported to
have similar therapeutic effects to MSCs that transfer genetic
information or biologically active molecules into target cells (Zhang
et al., 2014).

In light of these properties, considerable research efforts have
been put into MSC-exosomes therapies. In preclinical models,
MSC-exosomes have been shown to have several advantages
compared with MSCs, including minimal immune rejection
and tumorigenesis risk (Zhang et al., 2014) and no side effects
in vivo (Kordelas et al., 2014). However, before translation of
MSC-exosome-based therapeutics into clinical settings, several
issues need to be addressed.

The challenges include the manufacturing process of MSC-
exosomes, such as characterization, isolation, purification, clinical
safety of donor cells and recipient cells, and the manufacturing
process. In addition, quality control hinders the translation of MSC-
exosome-based therapies into clinical applications.

Microvesicles and exosomes have some common characteristics;
for instance, they both have a bilateral phospholipid membranous
structure and contain specific proteins, lipid, as well as RNAs, and
their size ranges overlap; thus, current isolation procedures cannot
discriminate different EV subtypes (Gould and Raposo, 2013; Giebel
et al., 2017). Moreover, different manufacturing processes and
apparently homogenous EV-releasing MSCs can result in
different EV subtypes (Börger et al., 2017).

Currently, the definition of MSC-exosomes is based on the ISCT
minimal criteria and the MISEV recommendations (Dominici et al.,
2006; Théry et al., 2018). However, both of these sources of guidance
are insufficient to distinguish MSC-exosomes from non-MSC-
exosomes, and there is no process for functional assessment of
MSC-exosomes. Therefore, in this review, the term “MSC-exosome”
was used to describe exosome-containing products derived from
MSCs. Another challenge during the application of MSC-exosomes
in clinical studies is the lack of a standardizedmanufacturing process
to produce the final product. Quality tests for batch size, purity,
potency, reproducibility, safety, and storage stability of the MSC-
exosome products need to be established. Currently, there is no
optimal isolation method to achieve high purity without
compromising the integrity, yield, or functionality of the product
(Reiner et al., 2017). Finally, storage and transport conditions of
MSC-exosome products must also be addressed. Recently, several
studies on the storage conditions and biological activity of the native
and cargo-loading MSC-exosomes have carried out the ideal storage
conditions (Levy et al., 2022). These results may suggest that
lyophilization and storage at room temperature can preserve the
enhanced bioactivity of cargo-loading exosomes. In this case,
additional steps are required to verify the producibility of the
MSC-exosomes as a clinical product.

With advances in engineering and biotechnology (Alvarez-Erviti
et al., 2011; Haney et al., 2015; You et al., 2021; Xiao et al., 2022;
Zhuang et al., 2022), MSC-exosomes produced under given
conditions may mitigate some of the shortcomings of natural

MSC-exosomes mentioned above. MSC-exosomes, as natural
carriers of genetic information and proteins, can potentially be
modified as targeted therapeutic delivery systems by genetic
editing of parental MSCs (Alvarez-Erviti et al., 2011) or by direct
modification of MSC-exosomes (Haney et al., 2015; You et al., 2021;
Xiao et al., 2022; Zhuang et al., 2022). Comparing with synthetic
nanoparticles delivery system, EVs delivery RNA and protein cargos
to cells shown higher efficacy (Murphy et al., 2021). However, the
underlying MoA, feasibility, efficiency and producibility of
engineering MSC-exosomes products need to be confirmed.

Taken together, the studies reviewed here suggest that MSC-
exosomes could provide an alternative option for wound healing.
However, more research is required to make modified MSC-
exosomes more widely available and suitable for clinical
applications in wound healing and skin regeneration.
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