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Gastric cancer (GC) is a potential dominant disease in tumor immunotherapy
checkpoint inhibitors, and adoptive cell therapy have brought great hope to GC
patients. However, only some patients with GC can benefit from immunotherapy,
and some patients develop drug resistance. More and more studies have shown that
long non-coding RNAs (lncRNAs) may be important in GC immunotherapy’s
prognosis and drug resistance. Here, we summarize the differential expression of
lncRNAs in GC and their impact on the curative effect of GC immunotherapy, discuss
potential mechanisms of activity in GC immunotherapy resistance regulated by
lncRNAs. This paper reviews the differential expression of lncRNA in GC and its
effect on immunotherapy efficacy in GC. In terms of genomic stability, inhibitory
immune checkpoint molecular expression, the cross-talk between lncRNA and
immune-related characteristics of GC was summarized, including tumor mutation
burden (TMB), microsatellite instability (MSI), and Programmed death 1 (PD-1). At the
same time, this paper reviewed the mechanism of tumor-induced antigen
presentation and upregulation of immunosuppressive factors, as well as the
association between Fas system and lncRNA, immune microenvironment (TIME)
and lncRNA, and summarized the functional role of lncRNA in tumor immune evasion
and immunotherapy resistance.
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1 Introduction

Gastric cancer (GC) has become the fifth commonest cancer in 2020, with a 5.6% incidence
rate and a 7.7% death rate, according to the updated research (Sung et al., 2021). As a kind of
cancer with poor prognosis, there are several risk factors, such as helicobacter pylori infection,
age and high salt intake (Smyth et al., 2020). Apart from common surgeries, including surgical
or endoscopic resection, adjuvant and perioperative chemotherapy, immunotherapy, especially
immunotherapy checkpoint inhibitors (ICI) therapy, is now established as an essential strategy
for chemo refractory GC therapy (Kang et al., 2017; Wang et al., 2021a). Besides, the use of
cytotoxic immunocytes and gene transferred vaccines also grow rapidly (Joshi and Badgwell,
2021). Unfortunately, GC has variable responsiveness to immunotherapy due to the
heterogeneity of the disease, which is a great challenge to this cancer treatment.

Many factors influence the efficacy of immunotherapy for that gastric tumorigenesis involves a
series of genetic, epigenetic, and epitranscriptomic alterations (Xie et al., 2021). Currently, long non-
coding RNAs (lncRNAs) has more than 200 nucleotides at length and takes emerging roles in the
immunosuppressive tumor microenvironment (Xiao et al., 2022a). As a cluster of RNAs regulating

OPEN ACCESS

EDITED BY

Xiqing Li,
Henan Provincial People’s Hospital, China

REVIEWED BY

Qun Zhao,
Fourth Hospital of Hebei Medical
University, China

*CORRESPONDENCE

Yan Yang,
632387011@qq.com

Ruihan Xu,
ruihanxu@126.com

Ziyun Li,
liziyun0412@126.com

†These authors have contributed equally to
this work

SPECIALTY SECTION

This article was submitted to
Cancer Cell Biology,
a section of the journal
Frontiers in Cell and Developmental
Biology

RECEIVED 24 September 2022
ACCEPTED 30 January 2023
PUBLISHED 16 February 2023

CITATION

Zhang Q, Wang C, Yang Y, Xu R and Li Z
(2023), LncRNA and its role in gastric
cancer immunotherapy.
Front. Cell Dev. Biol. 11:1052942.
doi: 10.3389/fcell.2023.1052942

COPYRIGHT

© 2023 Zhang, Wang, Yang, Xu and Li. This
is an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Mini Review
PUBLISHED 16 February 2023
DOI 10.3389/fcell.2023.1052942

https://www.frontiersin.org/articles/10.3389/fcell.2023.1052942/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1052942/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2023.1052942&domain=pdf&date_stamp=2023-02-16
mailto:632387011@qq.com
mailto:632387011@qq.com
mailto:ruihanxu@126.com
mailto:ruihanxu@126.com
mailto:liziyun0412@126.com
mailto:liziyun0412@126.com
https://doi.org/10.3389/fcell.2023.1052942
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2023.1052942


multiple protein-coding genes, the alterations in lncRNAs expression and
their mutations promote tumorigenesis and metastasis (Bhan et al., 2017;
Luo et al., 2020). When it comes to GC, the abnormal expressions of
lncRNAs are strongly related to its chemoresistance, drug resistance, and
immunotherapy (Wei et al., 2020a; Yuan et al., 2020). However, definite
mechanisms under the interplay between lncRNA and GC are still
unclear.

In the following paragraphs, we summarize the interferences
between immunological characteristics of GC and lncRNAs.
Meanwhile, we conclude the factors associated with the response to
immunotherapy of GC, focusing on the functional roles of lncRNAs in
tumor immune evasion and immunotherapy resistance emphatically.

2 LncRNAs have superior values in
optimizing patients’ selection for ICIs
therapy and predicting patients’
outcomes of ICI therapy

Programmed death 1 (PD-1) ligand (PD-L1) (CD274) expression,
tumor mutation burden (TMB), and microsatellite instability (MSI)
status of tumor tissue are potential predictors of anti-PD-1 treatment
response (Schreiber et al., 2011; Galon and Bruni, 2019). The
expression of PD-L1 was correlated with the tumor infiltration
level, TMB, MSI, and dMMR of different types of cancers (Dai
et al., 2021). Many researchers have investigated the relationship
between various biomarkers, including TMB, MSI, PD-L1
expression, etc., and the lncRNAs risk models in guiding the
treatment of ICI (Figure 1).

2.1 Genome stability and lncRNAs risk models

As a widely used indicator of tumor immunogenicity, TMB is a
quantifiable biomarker affecting immune checkpoint inhibitors. It

reflects the number of mutations in a tumor cell, usually expressed as
mutations per megabase. In other words, TMB is a statistic and
calculation of the number of tumor mutations (Alexandrov et al.,
2013). The higher the value of TMB, the more mutations that can
produce neoantigens, the higher the immune response rate, and the
better the effect of tumor immunotherapy. At present, TMB detection
methods are mainly based on high-throughput sequencing platforms
of whole exon sequencing and targeted Panel sequencing (Pardoll,
2012). It is worth noting that the definitions of TMB-H and TMB-L are
not set in stone (Carbone et al., 2017; Goodman et al., 2017; Marabelle
et al., 2020). In the current studies, TMB-H (≥10 mutations/MB) and
TMB-L (<10 mutations/MB) are mainly used to distinguish them
(Marabelle et al., 2020). For the distribution of tumor patients with
low, medium, and high load TMB expression, some studies believe
that the proportion of low TMB tumor patients is about 50%, the
proportion of medium TMB tumor patients is about 40%, and the
proportion of high TMB tumor patients is only about 10% (Goodman
et al., 2017).

In a targeted sequencing study of 529 Chinese patients with gastric
adenocarcinoma, the genetic mutations of TMB-H GC patients were
mainly in ARID1A, KMT2D, RNF43, TGFBR2 and CIC. The gene
mutations in TMB-L GC patients were mainly in ERBB2, CCNE1,
CDK12 and CCND1 (Yu et al., 2021). There have also been other
reports that mutations in the LRP1B gene are so prominent, in
Chinese GC patients with high TMB (Zhang et al., 2021).

Many researchers have built the lncRNAs risk score models in
TMB in guiding the treatment of ICI. A negative correlation is
prevalent between cancer stemness and anticancer immunity
(Miranda et al., 2019). Jiang Q et al. established a 13-DEsrlncRNA
pair-based signature. This study could provide a stemness-related
lncRNA signature for survival prediction in GC patients and establish
a model with predictive potentials for GC patients’ sensitivity to
chemotherapy and immunotherapy. The risk score presented
negative correlations with TMB values based on the Spearman
correlation analysis. Compared with CTLA4, the results may

FIGURE 1
The lncRNAs risk models in guiding the treatment of ICI.
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indicate a better efficacy of this risk score model for PD-1 therapy
response prediction (Jiang et al., 2021). Yujiao Wang et al. established
a risk model involving 8 immune-related lncRNA (irlncRNA) pairs
and found that patients in the high-risk group had lower TMB scores
and poorer prognoses (Wang et al., 2021b). Based on lncRNA, Yi
Wang et al. selected 8 lncRNAs to build a feature classifier for
predicting TMB level, which is associated with the expression of
immune checkpoint tumor-infiltrating lymphocytes and
microsatellite instability (Wang et al., 2022a).

Microsatellites are simple repeats of 2-6 nucleotides in the DNA
genome, also known as Short Tandem Repeat (STR). When the
function of MMR is abnormal, the alignment errors in
microsatellite replication cannot be corrected. With the
accumulation of replication errors, the base composition or
sequence length of microsatellite changes, and the genome shows a
hypermutant phenotype. It is called MSI. According to the
microsatellite state, it can be divided into MSI-H, low microsatellite
instability (MSI-L) and microsatellite stability (MSS). The detection
method of MSI mainly uses PCR technology to directly amplify the
bases of MSI sites, and then uses capillary electrophoresis to analyze
the amplified products. This method is currently considered as the
gold standard for MSI detection. Five loci “2B3D” (BAT25, BAT26,
D2S123, D5S346 and D17S250) were universally detected. The
diagnostic criteria were as follows: instability of 2 or more loci was
MSI-H; The instability of one locus was microsatellite MSI-L. If all loci
are stable, MSS. The updated NCCN guidelines in 2021 will
recommend cancer indications for MSI testing, including GC,
which explicitly states that MSI sites select 5-site panels (2B3D
National Cancer Institute (NCI) Panel and 5-single nucleotide
Panel). In addition, the 2021 CSCO guidelines explicitly state the
selection of 2B3D as recommended by the NCI for MSI sites.

In GC, lncRNAs associated with MSI mainly include LINC02678,
HOXA10-AS, RHOXF1-AS1, AC010789.1, LINC01150, and TGFB2-
AS1 (Sun et al., 2021). A model composed of 16 lncRNA features was
established to classify MSI status in patients with GC (Chen et al.,
2019). Zeng et al. established a risk score model of 15 lncRNAs. The
study found a higher proportion of MSI-H in the low-risk group of GC
patients (Zeng et al., 2022). Xiao S et al. constructed a 17-ferroptosis-
related-lncRNA signature via multivariate Cox analysis to divide
patients into low- and high-risk groups. The risk score was
significantly higher in the MSI-H or MSI subtype, respectively.
Meanwhile, TMB was pronounced in the low-risk group and
negatively correlated with the risk score (Xiao et al., 2021a). Liang
X et al. first constructed a multi-lncRNA risk model composed of
10 chemokine-related lncRNAs based on The Cancer Genome Atlas
(TCGA) expression data. The results demonstrated that the lncRNA
risk model better predicts patient survival, immune cell infiltration,
and immunotherapy effectiveness. The risk score obtained from the
risk model is negatively correlated with TMB. Low-risk patients with
single positivity for CTLA4 or PD-1 and double positivity for
CTLA4+PD-1 had higher immunotherapy scores. The chemokine-
related lncRNA risk model could be used to predict the
immunotherapy sensitivity of GC (Liang et al., 2021).

Genomic instability-associated lncRNA signature can show a
distinct immune landscape and predict prognosis in GC. To
further reveal the potential role of lncRNAs in guiding the
treatment of ICI. Genomic instability-associated lncRNA risk
models were not completely independent. At the molecular level,
TMB is associated with deficient mismatch repair (dMMR), high

microsatellite instability (MSI-H), and mutations in DNA polymerase
correction domains encoding POLE and POLD1 genes (Jardim et al.,
2021).

2.2 Expression of inhibitory immune
checkpoint molecules and lncRNAs risk
models

PD-1/PD-L1 is a key member of the immunoglobulin superfamily
B7-CD28 co-stimulatory molecules. The PD-1 receptor on the surface
of T cells binds to the PD-L1 ligand expressed on the surface of tumor
cells, inhibiting the activation and proliferation of T cells, leading to
tumor cells produce immune escape (Okazaki and Honjo, 2007).
Therefore, PD-1/PD-L1, as a negative immune regulator, is
involved in the regulation of various tumor immunity. At the same
time, TAMs, tumor-infiltrating lymphocytes, and circulating tumor
cells (CTCs) may be related to regulating the expression of PD-L1 and
affecting tumor prognosis. TAMs secrete a variety of cytokines,
including VEGF, IL-1β, TNF, IL-10, etc., which further attract
Tregs, and promote tumor cells to express PD-L1, inhibiting the
immune function of T cells. In addition, its associated exosomes
interact with tumor cells to further promote tumor cell
proliferation, invasion, migration, and angiogenesis (Gordon et al.,
2017). Tumor-infiltrating CD4+ T cells express high levels of Helios
and upregulate PD-1 expression (Toor et al., 2019). In addition, CTCs
mediate the expression level of PD-L1 and promote the distant
metastasis of tumor cells. It is worth noting that after CTCs
constitute circulating colonies, the probability of tumor progression
and metastasis increases (Winograd et al., 2020).

ICI therapy has become one of the most popular
immunotherapies, which has significantly changed the current
pattern of cancer treatment, and PD-1 immunoblockade therapy is
one of the most typical representatives. Studies have confirmed that
the expression of PD-1 on the surface of tumor cells is significantly
increased in tumor tissues, including non-small cell lung cancer,
melanoma, kidney cancer, ovarian cancer, colorectal cancer,
pancreatic cancer, GC, breast cancer, etc (Brahmer et al., 2012).
Therefore, researchers focused on blocking the PD-1/PD-
L1 pathway through immunotherapy to inhibit tumor
development. Major breakthroughs have occurred in non-small cell
lung cancer (Reck et al., 2022) and Hodgkin lymphoma (Reinke et al.,
2020). A variety of immune checkpoint inhibitors related to this have
been approved by the FDA for immunotherapy of cancer patients.

The expression of PD-L1 has been shown to correlate with
response to ICIs in GC (Rizzo et al., 2020). Liangliang Lei et al.
identified 11 m6A-related lncRNA pairs associated with GC
prognosis. Patients in the low-risk group had more prolonged
overall survival versus the high-risk group. Infiltration of cancer-
associated fibroblasts, endothelial cells, macrophages, particularly
M2 macrophages, and monocytes was more severe in high-risk
patients than low-risk individuals, who exhibited high CD4+

Th1 cell infiltration in GC. Altered expressions of immune-related
genes were observed in both groups. PD-1 and LAG3 expressions were
higher in low-risk patients than in high-risk patients. Immunotherapy,
either single or combined use of PD-1 or CTLA4 inhibitors, had better
efficacy in low-risk patients than high-risk patients (Lei et al., 2022).
Three lncRNAs (AC022706.1, LINC01871, and AC006033.2) have
been identified as associated with GC immunotherapy responses
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through multi-omics data analysis. At the same time, seven gene
mutations (ARID1A, BCOR, MTOR, CREBBP, SPEN, NOTCH4, and
TET1) were identified that were associated with the prognosis of GC
patients receiving anti-PD-1/PD-L1 immunotherapy (He and Wang,
2020) which suggests that lncRNA may be used for risk stratification
in GC patients by anti-PD-1/PD-L1 immunotherapy. In subsequent
studies, GC patients were divided into high-risk and low-risk groups
based on immune-related lncRNA characteristics. PD-1 and PD-L1
were highly expressed in the high-risk group (Ma et al., 2021a). Other
studies have shown similar results, with CD274 (PD-L1), PDCD1
(PD-1), and PDCD1LG2 (PD-L2) significantly upregulated in high-
risk groups (Wang et al., 2022b) which helps identify GC patients who
might benefit from immune checkpoint therapy.

There were also some studies that screen out specific lncRNAs.
ZFPM2-AS1, located in 8q23.1, plays an oncogenic role in several
tumors. ZFPM2-AS1 was correlated with several known immune
checkpoints, including CTLA4, PD-1, PD-L1, TIGIT, LAG-3,
HAVCR2 (TIM-3), and IDO1, in most tumors. ZFPM2-AS1
expression was correlated with TMB and MSI in GAC.
NUP107 and C8orf76 were identified as potential target mRNAs of
ZFPM2-AS1, ZFPM2-AS, NUP107, and C8orf76 were highly
expressed in GC cells (Chen et al., 2022).

3 LncRNAs and the mechanism of
immunotherapy resistance in GC

3.1 Tumor induced antigen presentation

LncRNA is related to the tumor induced antigen presentation.
T cells are lymphoid stem cells derived from bone marrow. T cell
receptor (TCR) is a specific receptor for T cells to recognize and
bind foreign antigens. TCR cannot directly recognize and bind free
soluble antigens, but only recognize antigen molecules processed
by antigen presenting cells and connected with major
histocompatibility complexes (MHC-I and -II) (Gaud et al.,

2018). The initiation of tumor immune response begins with the
recognition of tumor specific antigens by MHC on the surface of
antigen cells (Boyne et al., 2021). Downregulation of antigen
presentation mechanism (MHC-I) will inhibit immunogenicity
and accelerate immune escape (Di Tomaso et al., 2010). In
patients with GC, the expression of MHC-I is generally reduced,
and the frequency of downregulation of MHC-I in metastatic cells
is higher than that in primary tumor cells (Erdogdu, 2019).
Histocompatibility leukocyte antigen complex P5 (HCP5), an
important lncRNA located between the MICA and MICB genes
in MHC-I region (Zou and Chen, 2021). Targeting lncRNA
HCP5 may be a novel approach to enhancing the efficacy of
chemotherapy in GC through miR-3619-5p/AMPK/PGC1α/
CEBPB axis (Kulski, 2019).

3.2 LncRNA is a regulator of
immunosuppressive factors in GC

More andmore evidence showed that lncRNAs are associated with
the upregulation of inhibitory immune checkpoints and thus involved
in the development and progression of GC.

LncRNA hypoxia-inducible factor 1 alpha-antisense RNA 2
(HIF1A-AS2) expression is elevated in GC tissues and is associated
with poor prognosis of GC (Wen-Ming et al., 2015). It is found that
HIF1A-AS2 directly binds to microRNA 429 (miR-429) and
negatively regulates miR-429 expression, while MiR-429 directly
targets PD-L1and inhibits PD-L1 expression. In summary, HIF1A-
AS2 can promote PD-L1 expression by targeting and inhibiting miR-
429 (Mu et al., 2021). Urothelial carcinoma-associated 1 (UCA1), also
significantly highly expressed in GC tissues, could act as competing
endogenous RNA (ceRNA) for miR-193a and miR-214, reducing its
transcriptional inhibition of PD-L1, thus promoting PD-L1 expression
(Wang et al., 2019). Small nucleolar RNA host gene 15 (SNHG15), a
ceRNA of miR-141, increased the expression level of PD-L1 on GC
cells, thereby improving the resistance of GC cells to tumor immune

TABLE 1 LncRNAs involved in TIME of GC disease.

LncRNA Expression Pathway References

LINC00001 Upregulated in GC tissuses miR-497/MACC1 axis Ma et al. (2017)

LINC00008 Upregulated in GC tissuses miR-138/E2F2 axis Yu et al. (2020)

LINC00023 Downregulated in GC tissuses p53 signaling pathway Wei and Wang (2017)

LINC00047 Upregulated in GC tissuses PI3K/AKT pathway Zhu et al. (2019)

LINC00152 Upregulated in GC tissuses EGFR-dependent pathway Zhou et al. (2015)

LINC00256A Upregulated in GC tissuses FAM225A-miR-206-ADAM12 axis Chen et al. (2021)

LINC00342 Upregulated in GC tissuses miR-545-5p/CNPY2 axis Liu and Yang (2021)

LINC00902 Downregulated in GC tissuses p53 and mIR-23b Qi et al. (2015)

LINC01082 Upregulated in GC tissuses suppressed GC cells and PD-L1 Wang et al. (2022f)

LINC01540 Upregulated in GC tissuses miR-378 to modulate MAPK1 expression Diao et al. (2018)

LINC-POU3F3 Upregulated in GC tissuses TGF-beta signal pathway Xiong et al. (2015)

HIF1A-AS2 Upregulated in GC tissuses HIF1A-AS2/RP11-366L20.2-miR-29c axis Nai et al. (2022)

MACC1: metastasis-associated in colon cancer 1; E2F2: E2F transcription factor 2; PI3K: phosphatidylinositol 3-kinase; EGFR: epidermal growth factor receptor; ADAM12: A disintegrin and

metalloprotease 12; CNPY2: canopy FGF signaling regulator 2; MAPK1: mitogen-activated protein kinase 1; TGF-beta: transforming growth factor-beta.
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response (Dang et al., 2020). Ji Wang et al. demonstrated that targeting
the NUT family member 2A antisense RNA 1/miR-376a/Tet-eleven
translocation 1/PD-L1 (NUTM2A-AS1/miR-376a/TET1/PD-L1) axis
may provide a new strategy for GC diagnosis and treatment (Wang
et al., 2020a). Specifically, NUTM2A-AS1 is important in GC drug
resistance. MiR-376a targets suppressing the expression levels of
downstream TET1 and HIF-1A, while the TET1/HIF-1A complex
positively regulated PD-L1. Other lncRNAs, such as prospero
homeobox 1-antisense RNA 1 (PROX1-AS1), is also extremely
highly expressed in GC and can promote GC cell proliferation and
invasion via miR-877-5p/PD-L1 axis (Guo et al., 2021).

3.3 LncRNAs and fas ligand

Recently, lots of researches proved that lncRNAs and Fas ligand
(FasL) are participated in a majority of tumor immune progression.
FasL induces programmed cell death through receptors. FasL
expression may kill infiltrating lymphocytes and inflammatory cells.
On the other hand, some relevant studies have shown that when FasL
is expressed in tumors or transplants, the proinflammatory function of
FasL may cause rejection (Simon et al., 2002; Newsom-Davis et al.,
2009). Some important ceRNAs, such as FAS and hsa-miR-125b-5p,
and tumor-infiltrating immune cells might relate to distance
metastasis and prognosis of Colon Adenocarcinoma Metastasis (Ai
et al., 2020; Chang et al., 2020). In addition, lncRNA cancer
susceptibility candidate 7 (CASC7) can downgrade the malignant
behaviors of breast cancer with miR-21-5p/FasL axis (Wang et al.,
2021c).

3.4 LncRNA and immune microenvironment
(TIME)

Tumor microenvironment plays an important role in the
development of GC. LncRNA is also involved in the regulation
of tumor microenvironment (Wang et al., 2022c). Many
abnormally expressed lncRNAs have been recognized in GC
tissues, which affect the occurrence and prognosis of tumors
(Table 1). Moreover, lncRNA regulate immunity in several ways
in GC through influencing the polarization of GC-associated
macrophages (Xie et al., 2020), the differentiation of natural
killer cells (Ou et al., 2021), the regulation of dendritic cells
(Demaria et al., 2019) and so on (Xiao et al., 2022b).

Moreover, lncRNA in tumor microenvironment is often used as a
prognostic marker of tumors. LncRNA and focal cell apoptosis can be
used as a prognostic tool for gastric adenocarcinoma (Wang et al.,
2022d). Ferroptosis-related lncRNAs in tumor microenvironment also
related to the prognosis of GC (Ma et al., 2021b; Xiao et al., 2021b).
LncRNA and immune microenvironment can help us better identify
the stage and prognosis of GC (Wang et al., 2020b). LncRNA HOX
transcript antisense RNA (lncRNAHOTAIR) promotes the metastasis
of GC according tomiR-1277-5p and increasing Collagen type V alpha
1 chain (COL5A1) (Wei et al., 2020b). The tumor immune
microenvironment and prognosis of N6-methyladenosine (m6A)
related lncRNA in GC (Wang et al., 2022e). Meanwhile,
ferroptosis-related lncRNA can predict the treatment and prognosis
of GC (Li et al., 2022).

Conclusion

To date, surgeries, cytotoxic immunocytes, gene transferred
vaccines and immunotherapy, remain the mainstay of clinical
therapies for GC. Especially ICI, has been employed as an essential
strategy for refractory GC. LncRNA had superior values in optimizing
patients’ selection for ICIs therapy and predicting patients’ outcomes
of ICI therapy, as revealed in the following. Firstly, lncRNA risk score
models have been built in TMB in guiding the treatment of ICI.
Secondly, inhibitory immune checkpoint molecules related lncRNA
have been shown to correlate with response to ICIs in GC. The
mechanisms of lncRNA in immunotherapy resistance are revealed
in the following. On the one hand, lncRNA is related to the tumor
induced antigen presentation and a regulator upregulation of
immunosuppressive factors in GC. On the other hand, lncRNA can
regulate the malignant behaviors via FasL axis. In particular, lncRNA
regulate immunity in several ways to GC tumor growth and
progression. LncRNA in tumor microenvironment is often used as
a prognostic marker of tumors. Therefore, lncRNA targeting GC
immunotherapy has a wide range of potential applications, the use
of lncRNA as a therapeutic target will contribute to the development of
novel GC treatment strategies.
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