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Fibrotic signaling plays a pivotal role in the development and progression of solid
cancers including renal cell carcinoma (RCC). Intratumoral fibrosis (ITF) and
pseudo-capsule (PC) fibrosis are significantly correlated to the disease
progression of renal cell carcinoma. Targeting classic fibrotic signaling
processes such as TGF-β signaling and epithelial-to-mesenchymal transition
(EMT) shows promising antitumor effects both preclinically and clinically.
Therefore, a better understanding of the pathogenic mechanisms of fibrotic
signaling in renal cell carcinoma at molecular resolution can facilitate the
development of precision therapies against solid cancers. In this review, we
systematically summarized the latest updates on fibrotic signaling, from clinical
correlation and molecular mechanisms to its therapeutic strategies for renal cell
carcinoma. Importantly, we examined the reported fibrotic signaling on the
human renal cell carcinoma dataset at the transcriptome level with single-cell
resolution to assess its translational potential in the clinic.
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1 Introduction

Renal cell carcinoma accounts for approximately 3% of all adult malignant diseases and
over 90% of kidney cancer (Ferlay et al., 2015). In 2020, the new cases of kidney cancer have
reached 431,288 worldwide, with 179,368 related deaths reported accordingly (Siegel et al.,
2021). Although the 5-year survival is 60% overall for kidney cancer, it drops to 10% in
patients with metastasis (Sengupta et al., 2005; Bianchi et al., 2012; Howlader et al., 2019).
Currently, over 10 histological and molecular subtypes of RCC have been identified (Lopez-
Beltran et al., 2006; Moch et al., 2016), of which clear cell renal cell carcinoma (ccRCC) is the
most common RCC subtype (75% in all RCCs) (Creighton et al., 2013), followed by papillary
RCC (pRCC, about 15% in all RCCs) (Linehan et al., 2016) and chromophobe RCC (chRCC,
about 5% in total RCCs) (Davis et al., 2014). The discovery of von Hippel–Lindau (VHL) and
other epigenetic regulatory gene mutations further advanced the knowledge of RCC
development (Creighton et al., 2013; Alaghehbandan et al., 2019; Lin et al., 2021).
However, how immune escape and distant metastasis initiate in RCC remains obscure.

Cancer-associated fibrosis was found to play a critical role in tumorigenesis, immune
evasion, metastasis, and drug resistance in various solid tumors (Coffman et al., 2016;
Kalluri, 2016; Piersma et al., 2020). Epidemiological findings strongly indicate a prognostic
relevance between tissue fibrosis and epithelial cancers, such as hepatic, gastroesophageal,
lung, and renal cancers (Neglia et al., 1995; Leek et al., 1996; Maisonneuve et al., 2013; Joung
et al., 2018; Ballester et al., 2019). Moreover, fibrosis in the tumor immune
microenvironment (TME), characterized by ITF (Chandler et al., 2019; Liu et al., 2019),
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activation of cancer-associated fibroblasts (CAFs) (Kalluri, 2016),
and extracellular matrix (ECM) deposition (Chandler et al., 2019),
supports tumor growth by producing growth factors, stimulating
angiogenesis (Ziani et al., 2018; Inoue et al., 2019). Fibrotic signaling
can also mediate immunosuppression by facilitating Treg cell and
myeloid-derived suppressor cell (MDSC) differentiation and
recruitment (Costa et al., 2018; Givel et al., 2018; Lin et al.,
2022), metabolic reprogramming (Hamanaka and Mutlu, 2021),
and long non-coding RNA (lncRNA) regulation (Shi et al., 2021).
Therefore, fibrotic signaling has become a promising therapeutic
target for cancer.

In this review, we summarized the pathogenic roles and
underlying mechanisms of various RCC-associated fibrosis in the
development and progression of RCC. In addition, we validated the
reported findings in RCC patients datasets by using gene set
enrichment analysis (GSEA) and single-cell RNA sequencing
(scRNA-seq) data mining. Furthermore, the translational
potentials of new therapeutic strategies targeting fibrotic signaling
in RCC were also discussed.

2 Prognostic relevance between
fibrosis and RCC

Fibrosis is a common feature frequently observed in RCC
(Cheville et al., 2003), characterized by ITF, CAFs, ECM
deposition, peritumoral PC fibrosis, and EMT. CAFs play an
essential and versatile role in all stages of RCC. They are a group
of robustly proliferative and metabolically activated fibroblasts
(Guido et al., 2012; Kalluri, 2016), characterized by high
expression of α-smooth muscle actin (α-SMA), fibroblast
activation protein (FAP), S100A4, and platelet-derived growth
factor receptors α and β (PDGFα and PDGFβ) (Kalluri, 2016).
CAFs can be derived from multiple sources including resident
fibroblasts (Kojima et al., 2010), mesenchymal stem cells (MSCs)
(Barcellos-de-Souza et al., 2016), and epithelial and endothelial cells
(Petersen et al., 2003; Yeon et al., 2018). Mechanistically, CAFs
continuously interplay with tumor cells by producing pro-tumor
cytokines, activating immunosuppressive leukocytes, and
promoting ECM deposition, thus offering a tumor-favorable
microenvironment (Kalluri, 2016). A recent cohort study revealed
that the CAFs are significantly correlated with shorter disease-free
survival (DFS), poorer overall survival (OS), and lymph node
metastasis among ccRCC patients (Ambrosetti et al., 2022). Xu
et al. further specified CD248 + CAFs as the pivotal CAF phenotype
that was remarkably related to poor prognosis and
immunosuppressive TME during RCC progression (Xu et al., 2021).

CAFs can directly form fibrotic tumor stroma via cross-linked
collagen matrix deposition. Such ITF is associated with decreased
lymphocyte infiltration, poorer patient survival, and various
carcinomas, including breast cancer (Solinas et al., 2017; Li et al.,
2019), lung cancer (Ballester et al., 2019), colorectal cancer
(Nazemalhosseini-Mojarad et al., 2019), pancreatic cancer (Sinn
et al., 2014), and advanced rectal cancer (Ueno et al., 2004). A
retrospective cohort study involving 204 RCC patients found that
over 80% of ccRCC cases had intratumoral fibrosis (Joung et al.,
2018). Although ITF itself does not have a significant association
with ccRCC prognosis, it is correlated with other prognostic factors

such as Fuhrman nuclear grade, intratumoral necrosis, and
lymphovascular invasion (Joung et al., 2018).

CAFs are also the major source of tumor-associated ECM (Bond
et al., 2021). A recent proteomics study revealed that the
composition of ECM in ccRCC varies significantly from their
respective counterparts in the neighboring healthy cortex. RCC-
associated ECM is more abundant, denser, and stiffer, with
increased deposition of fibronectin (FN1), collagen 1 (COL1A1
and COL1A2), and collagen 6 (COL6A1, COL6A2, and COL6A3)
(Bond et al., 2021). Also, some of these overexpressed fibrotic ECM
proteins, including fibronectin 1 and collagen 1, are correlated with a
poorer prognosis among ccRCC and pRCC patients (Steffens et al.,
2012; Majo et al., 2020).

Interestingly, in contrast to the previous findings, several studies
show that tumor-related fibrosis might limit tumor growth and
metastasis at the early stages of cancer (Bruno et al., 2013; Alkasalias
et al., 2014). In terms of RCC, such protective fibrosis is referred to as
the fibrotic PC (Xi et al., 2018). PC is a common pathologic feature
that exists in almost all the early-stage RCCs and is composed of
fibrous tissue, compressed normal renal tissue, and scaffolding of
vascular tissues in the RCC surrounding area (Huang et al., 1992;
Tsili et al., 2012; Minervini et al., 2014; Cheng et al., 2015; Cho et al.,
2017). The frequency of PC appearance varies from 33% to 72% in
RCC. As the only barrier interposing between RCC and the
surrounding normal renal parenchyma, the intact PC indicates a
limited tumor-to-immune cell and tumor-to-matrix interaction in
the TME and lower aggressiveness of RCCs. Several clinical
observations revealed that the tumor invasion of the PC
suggested a poor prognosis with a higher risk of local recurrence
and metastasis (Yamashita et al., 1996; Cho et al., 2009; Xi et al.,
2018). Qin et al. (2020) mentioned that fibrosis in PCs might
strengthen the vital barriers to prevent tumor penetration. By
quantifying collagen distribution in PCs among RCC patients,
they further noticed that fibrosis in PCs is an independent
marker of PC integrity. Lower PC fibrosis is significantly
associated with shorter progression-free survival.

3 Transcriptome profile uncovered
enriched fibrotic signaling in RCC

With the emerging RNA sequencing technologies, from bulk
RNA sequencing (bulk RNA-seq) to scRNA-seq, transcriptome
profiling of RCC has been greatly utilized in biomarker
discovery, cancer heterogeneity characterization, and studies
regarding distant metastasis and therapy resistance. More
importantly, understanding the role of fibrosis in RCC
development enlightens further therapeutic target identification
by data mining the transcriptomic database of RCC patients.
Here, we performed gene set enrichment analysis, as previously
described (Chen et al., 2022), of a public human RCC scRNA-seq
dataset (Young et al., 2018) and summarized the activated fibrotic
signaling pathways identified in different subtypes and stages of
human RCC.

Early in 2010, López-Lago et al. (2010) used RNA sequencing to
provide evidence for the association of increasedmetastatic activity with
the acquisition of amyofibroblast-like feature in both RCC cell lines and
human metastatic RCC biopsies. Later, activation of the pro-fibrotic
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TGF-β signaling pathway was further identified in the transcriptome
profile of MiTF/TFE translocation RCC (Malouf et al., 2014). Another
two bulk RNA-seq datasets, comparing mRNA expression between
human ccRCC and normal kidney tissue, also revealed pro-fibrosis
signatures ACTA2 (α-SMA), COL1A1, COL23A1, VEGFA, and TGFB1
as the top differentially expressed genes (DEGs) upregulated in ccRCC
(Xiong et al., 2014; Eikrem et al., 2016). Elevated TGF-β signaling was
also identified in the transcriptomic profile of 176 ccRCC patients,
correlated with poor disease survival and tumor metastasis (Zhao et al.,
2006; Sjölund et al., 2011). Sven Wach et al. (2019) reported over
5,000 DEGs with the criteria |log2 fold change| ≥1 in collecting duct
carcinoma (CDC), in comparison with the normal kidney tissue.
Enrichment analysis targeting those DEGs further identified the pro-
fibrosis collagen signaling pathway as the top-ranked enriched pathway
activated in the CDC group. KRT17 (keratin 17), a wounded stratified

epithelium-induced filament protein, was identified as the top DEG
with the highest fold change of expression in CDC [Wach et al. (2019)].
More recently, KRT17 high-expressing basal-like cells were defined in
fibrotic hypersensitivity pneumonitis patients with higher expression
levels ofCOL1A1, FN1, andCOL6A2 and upregulated activities in ECM
organization by scRNA-seq analysis (Wang et al., 2022b). Findings of
the scRNA-seq profile, in combination with the CDC bulk RNA profile,
suggest a potential pathogenic role of KRT17-mediated fibrosis during
RCC development.

Nevertheless, the aforementioned studies mainly focused on
biomarker identification and RCC heterogenetic phenotype
characterization without an in-depth study of fibrotic
signaling participation in RCC at single-cell resolution. To
address this question, we performed GSEA of a published
human RCC scRNA-seq dataset (Young et al., 2018)

FIGURE 1
Single-cell RNA sequencing (scRNA-seq) reveals activated fibrotic signaling pathways in human renal cell carcinoma. (A) Non-linear dimensionality
reduction on Uniform Manifold Approximation and Projection (UMAP) visualization of renal cells from RCC patients and the healthy control group. Each
point depicts a single cell, colored according to group designation. Colored UMAP plots of highlighted cells with activated gene set expression in (B) VEGF
and EMT signaling and (C)WNT, Hippo, and TGF-β signaling pathways in renal cells based on AUC scores. Each point represents a single cell. Cells
with indicated signaling activation are colored in shades of red and those without signaling activation are colored in black–blue. (D) UMAP plots of gene
expression gradients identified. Each point depicts a single cell, colored according to normalized expression levels. The average expression scale is shown
on the right side of each UMAP plot.
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downloaded from the European Genome-phenome Archive
(EGA) under study IDs EGAS00001002171,
EGAS00001002486, EGAS00001002325, and
EGAS00001002553. Subsequently, raw UMI counts of the
scRNA-seq dataset were imported into R (version 4.1.2) using
the Seurat package (version 4.0.5) for quality control. Next,
sequencing data from normal control and RCC patients were
normalized, scaled, and mapped via non-linear dimensionality
reduction on the Uniform Manifold Approximation and
Projection (UMAP) plot by using the Normalized, ScaleData,
and FindVariableFeatures functions, respectively, in the Seurat
package to map the comprehensive cell landscape as shown in
Figure 1A. Next, fibrosis-related gene set enrichment was tested
using GSEABase (version 1.56.0) and GSVA R packages (version
1.42.0) within a panel of annotated gene databases (Gene
Ontology, Reactome, and Kyoto Encyclopedia of Genes and
Genomes). The enrichment of gene sets at the single-cell level
was visualized using the AUCell (version 1.16.0) R Bioconductor
package. The transcriptomes of RCC cells were significantly
enriched in pro-fibrotic EMT and VEGF signaling (Figure 1B).
Fibrotic signaling pathways including WNT and Hippo signaling
pathways were also significantly upregulated in RCC (Figure 1C).
Although TGF-β signaling is less enriched in RCC cells, TGFB1
expression, together with three other key fibrosis regulators, FN1,
VIM, and CXCR4, was also elevated under the RCC condition
(Figure 1D). Taken together, the above findings provided solid
evidence of the activation and participation of fibrotic signaling
during RCC progression.

4 Mechanism of the interplay between
fibrosis and RCC

4.1 CAF-centered crosstalk between fibrotic
stroma and RCC

CAFs have long been recognized as a substantial element in the
TME that support tumor growth and invasion through diverse
mechanisms, including ECM remodeling, cytokine production,
immune regulation, and metabolic alteration. In this study, we
reviewed and summarized the role of CAF-centered interaction and
other critical fibrotic signaling pathways in RCC oncogenesis and
metastasis (Figure 2). In RCC, activation of CAFs results from von
Hippel–Lindau gene malfunction-induced HIF-1α accumulation
(Razorenova et al., 2011; Shen and Kaelin, 2013; Yang et al., 2020).
During tumor progression, CAFs continuously produce matrix-
crosslinking enzymes, such as LOX family oxidases and matrix
metalloproteinases (MMPs), to promote ECM remodeling. This
leads to the reorganization of collagen and fibronectin fibers and
consequently increases tumor stiffness and contributes to RCC
invasion and metastasis (Gilkes et al., 2014). Higher expression
levels of LOX family genes, for instance, LOX and LOXL2, indicate
poor survival in ccRCC patients (Hase et al., 2014; Lin et al., 2020).
Mechanistically, LOX and LOXL2 promote collagen stiffness
increment, integrin α5β1 stabilization, and fiber formation while
suppressing the protease and proteasome system in ccRCC (Hase
et al., 2014). Furthermore, MMPs, including MMP-9 and MMP-2
produced by CAFs, also contribute to tumor invasion and metastasis

FIGURE 2
Schematic representation of the role of fibrotic signaling in renal cell carcinoma (RCC). CAFs are themajor source of fibrotic stroma in the RCC TME,
which could be activated due to HIF-1α accumulation and TGF-β and mTOR signaling regulation from cancer cells. Activated CAFs secreted MMPs and
LOX to promote ECM remodeling with enriched collagen IV, TGF-β1, fibronectin, tenascin C, and periostin, thus promoting tumor stiffness, drug
resistance, and tumor invasion. CAFs in RCC also produce SDF-1 and VEGF to promote tumor angiogenesis and favor RCC metastasis. CAFs fed
cancer cells with increased lactate as a direct energy supply via aerobic glycolysis, which is known as the “reverse Warburg effect.” RCC also expressed
pro-fibrotic signaling pathways, including TGF-β and its downstream lncRNA, WNT, and mTOR signaling pathways, to mediate the EMT process, tumor
cell proliferation, and migration. This figure was created in BioRender.com.
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and have been recognized as potential prognostic biomarkers in ccRCC
(Awakura et al., 2006; Chen et al., 2017). In addition, microRNA mir-
124-mediated suppression of MMP-9 can attenuate RCC invasiveness
in vitro (Wang et al., 2018). Regulated by TGF-β1, MMP-13 is more
related to bone metastasis of RCC than to primary RCC and healthy
kidneys (Kominsky et al., 2008). Moreover, CAFs are also the major
producers of the stromal cell-derived factor (SDF-1) (Orimo et al., 2005;
Wang et al., 2021). In RCC, CAF-secreted SDF-1 interacts with the
chemokine receptor 4 (CXCR4) on renal cancer cells and consequently
promotes tumor angiogenesis and organ metabolism (Pan et al., 2006).

CAFs are also capable of transducing the non-muscular myosin
II- and PDGFRα-mediated contractility and traction forces to
fibronectin via integrin α5β1, thus aligning the fibronectin-rich
ECM to favor tumor migration (Erdogan et al., 2017; Gopal
et al., 2017). Previous scRNA-seq transcriptomic analysis revealed
CAF-specific feature expression and identified CAFs as the major
sources of ECM in human ccRCC (Young et al., 2018; Bond et al.,
2021; Liu et al., 2021). In contrast to the healthy cortex, CAF-
contributed ECM production in ccRCC was characterized by high
enrichment of collagen VI, fibronectin, tenascin C, TGF-β1, and
periostin (Bond et al., 2021). Fibronectin and collagen were the most
abundant components in CAF-produced ECM. CAF-induced
fibronectin promotes the proliferation and inhibits the apoptosis
of precancerous bronchial epithelial and carcinoma cells through the
activation of PI3K/AKT signaling in the lung (Han et al., 2006; Han
and Roman, 2006). As for RCC patients, higher fibronectin
1 expression showed an increased disease-related mortality rate
(Steffens et al., 2012) and a more advanced clinical stage (Dong
et al., 2021). Competing endogenous RNA networks further proved
the direct correlations between FN1 and C3, FN1 and pro-fibrotic
signaling pathways, including WNT, HIF, PI3K/AKT, MAPK, and
TGF-β pathways, in ccRCC (Dong et al., 2021). The TGF-β1/Src axis
is a well-studied pro-fibrotic signaling pathway that promotes renal
fibrosis and tumor progression by promoting macrophage-to-
myofibroblast transition (MMT) (Meng et al., 2016; Tang et al.,
2018). An in vitro study on human RCC cells showed that silencing
fibronectin in vitro attenuated cell proliferation and migration by
suppressing TGF-β1/Src signaling (Ou et al., 2019). Collagen I,
another essential CAF-produced ECM component, also facilitates
EMT by upregulating MMP-2 and transcription factors ZEB2 and
SNAIL in multiple RCC cell lines (Majo et al., 2020), which
consequently enhances the proliferation, adhesion, and migration
of RCC.

CAFs also influence tumor behavior by reprograming cancer cell
metabolism (Martinez-Outschoorn et al., 2014). Aerobic glycolysis, also
known as the Warburg effect (Warburg, 1925), has long been
recognized as the hallmark metabolic pathway in various solid
tumors, including RCC (Singer et al., 2011). During cancer
development, anabolic cancer cells rapidly interact with the
neighboring CAFs through metabolite exchange and oxidative stress
induction and thus consequently promote aerobic glycolysis in CAFs.
Such a “dual chamber” process is proposed as a CAF-dependent
“reverse Warburg effect” (Pavlides et al., 2009; Benny et al., 2020).
To be specific, aerobic glycolysis occurringwithin CAFs underWarburg
metabolism results in lactate generation and deposition in RCC TME.
Increased lactate not only acts as a major metabolic fuel for cancer cells
directly (Guo et al., 2019), but also contributes to RCC progression and
metastasis through indirect mechanisms. Accelerated lactate leads to

acidification in TME, which consequently suppresses T-cell cytotoxicity
against RCC (Sun et al., 2022). In addition, lactate also accelerates
angiogenesis (Trabold et al., 2003), promotes EMT (Miranda-
Gonçalves et al., 2020), and weakens cancer sensitivity to
programmed cell death (Daneshmandi et al., 2019), thereby
enhancing tumor aggressiveness.

CAFs in RCC expressed common fibrotic signaling pathways,
including TGF-β, mTOR, MAPK, and WNT/β-catenin signaling
pathways, which are similar to those found in most solid tumors
(Wu et al., 2021a). Meanwhile, it is increasingly recognized that
CAFs and their fibrotic signaling exhibit phenotypic and functional
heterogeneity in different tissues/organs and origins. For example,
CAFs in lung cancer express distinctively high levels of elastin and
collagen (Hao et al., 2019a). Diverse CAF subpopulations with a
distinguished transcriptome profile have been recognized in breast
cancer (Bartoschek et al., 2018; Costa et al., 2018). Knowledge of
CAF heterogeneity will help develop a precision cancer treatment.
However, our understanding of RCC-specific CAFs is still very
limited. A recent study combining scRNA-seq and cell line
sequencing profile has identified the transcriptome signatures of
RCC-specific CAFs, including COL1A1, COL1A2, COL5A1,
COL16A1, elastin microfibril interfacer 1 (EMILIN1), lysyl
oxidase-like 1 (LOXL1), and lumican (LUM) (Liu et al., 2020).
Functional enrichment analysis indicates that RCC-specific CAF
signatures are significantly associated with extracellular matrix
function, collagen synthesis, cell surface interaction, and cell
adhesion. Further studies are required to validate the phenotype
and functional heterogeneity of CAFs among RCC patients.

4.2 TGF-β-centered regulation of fibrosis in
RCC progression

TGF-β is the master regulator of renal fibrosis and immune escape
in renal cancer (Meng et al., 2015; Chung et al., 2021). Early in 1998,
Wunderlich et al. (1998) observed that the latent TGF-β1 was
commonly and significantly elevated among RCC patients and even
higher among those with pyelonephritis, indicating the oncogenetic role
of TGF-β in RCC. With the emerging in-depth studies targeting the
pathological role of TGF-β in cancer development, researchers have
revealed the dual roles of TGF-β and its downstream cascades during
cancer development (Massagué, 2008; Kubiczkova et al., 2012; Chan
et al., 2022; Tang et al., 2022). Under normal conditions or at
precancerous stages, TGF-β mainly exhibits antitumor activities by
maintaining tissue homeostasis and inducing cell cycle arrest to regulate
epithelial cell differentiation and apoptosis (Song, 2007; Xu et al., 2018).
Nevertheless, cancer cells can always find ways to bypass TGF-β-
mediated inhibition, in turn taking advantage of TGF-β signaling or
directly producing TGF-β to benefit themselves (Biswas et al., 2014;
Yang et al., 2016a; Tang et al., 2017; Rasti et al., 2021). In TME, TGF-β is
the key mediator of EMT during tumor progression (Hao et al., 2019b;
Xue et al., 2020; Chung et al., 2021). Stimulation with recombinant
TGF-β1 significantly promotes EMT in renal carcinoma cells in vitro
(Boström et al., 2012; Tretbar et al., 2019). Inhibition of TGF-β-induced
EMT resulted in suppressed metastasis capacity of RCC (Boström et al.,
2013; Wang et al., 2020). TGF-β also promotes EMT by regulating long
non-coding RNA (lncRNA) expression in RCC TME. TGF-β1-
dependent activation of lncRNA-ATB enhances EMT and tumor
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cell invasion in hepatocellular carcinoma (Yuan et al., 2014). In RCC,
lncRNA-ATB was found to be positively correlated with metastasis and
poorer prognosis (Xiong et al., 2016; Qi et al., 2017). Mechanistically,
lncRNA-ATB downregulates the tumor suppressor p53 through the
regulation of the DNA methyltransferase enzyme DNMT1 and thus
strengthens the proliferation and migration of RCC cells (Song et al.,
2019). Meanwhile, silencing lncRNA-ATB represses EMT in RCC by
suppressing the expression of mesenchymal signatures such as
N-cadherin and vimentin (Xiong et al., 2016). Another TGF-β1-
induced lncRNA SPRY4-IT1 also demonstrates similar pro-EMT
functions both in human RCC and RCC cells in vitro (Zhang et al.,
2014).

4.3 ITF shapes the immune landscape
of RCC

Immune cells in TME are considered critical and versatile players in
tumor development. Fibrotic tumoral stroma is a significant source of
immunosuppressive activity in the TME (Yamauchi et al., 2018; Baker
et al., 2021). By producing CXCL12, activated CAFs directly inhibit
cytotoxic T-cell recruitment and upregulate immunosuppressive Treg
cell infiltration via binding to the CXCR4 receptor on cytotoxic T cells
and Treg cells in pancreatic cancer (Feig et al., 2013). Yang et al. (2016b)
found that FAP + CAFs are the major producers of CCL2 through the
uPAR-induced FAP/STAT3/CCL2 axis in the murine liver cancer
model. CAF-derived CCL2 in turn induces the recruitment of
MDSCs by interacting with CCR2 on circulating MDSCs, thus
favoring tumor evasion from immune surveillance. Other molecules
produced by CAFs such as MMPs, latent TGF-β, IL-10, and VEGFA
were also found to reshape the immune system toward a pro-tumoral
pattern (Baker et al., 2021). In addition, CAFs contribute to ECM
remodeling by producing MMPs, fibronectin, and collagen, thus
increasing ECM stiffness around tumors (Acerbi et al., 2015; Altorki
et al., 2019). Consequently, the thickened ECM prevents T-cell
infiltration and antitumor drug delivery to cancer cells. Till now,
there are still very limited evidence regarding the fibrotic stroma
and its interaction with immune activity in TME of kidney cancer.
A recent cohort study of 45 ccRCC patients uncovered a significant
association between intratumoral fibrosis and cytotoxic T-lymphocyte-
associated protein 4 (CTLA4) expression (Han et al., 2022), indicating
the potential regulatory role of fibrosis in the tumor immune
microenvironment of RCC. However, the underlying mechanism of
fibrosis interaction with TME of RCC needs further investigation.

4.4 The role of other fibrosis signaling in
RCC tumorigenesis

Except for TGF-β/Smad signaling, other pro-fibrotic pathways
such as WNT, mTOR, and NOTCH signaling pathways also
contribute to tumorigenesis in renal cancer (Table 1). The WNT/
β-catenin pathway is one of the most well-studied signaling
pathways in renal fibrosis and is activated in human fibrotic
chronic kidney disease and the unilateral ureteral obstruction
(UUO) mouse model (Tan et al., 2014; Huffstater et al., 2020). In
response to injury, renal cells from the tubular epithelium or
interstitium ubiquitously produce WNT ligands, such as WNT1,

WNT7A, and WNT10A (He et al., 2011; Kuma et al., 2014;
Huffstater et al., 2020). The activation of WNT signaling
upregulates β-catenin-mediated downstream gene expression,
including fibronectin, Snail 1, MMP-7, PAI-1, FSP1, and HGF,
which consequently leads to fibroblast activation, EMT, and renal
fibrosis (Edeling et al., 2016; Zhou et al., 2017). In RCC, the
activation of WNT signaling through WNT ligand secretion,
WNT receptor overexpression, and function loss of WNT
antagonists has been reported to promote tumorigenesis and
metastasis (Xu et al., 2016). Ligands of the WNT canonical
pathway, such as WNT1 and WNT10A, are associated with
tumor progression, poor prognosis, and tumor invasiveness in
ccRCC patients (Kruck et al., 2013; Piotrowska et al., 2020) by
oncogene activation, such as c-Myc and cyclin D1 (Furge et al., 2007;
Karim et al., 2016). On the contrary, some ligands of the WNT non-
canonical pathway, including WNT5A and WNT7A, demonstrate a
potential tumor-suppressive role in renal cancer (Tamimi et al.,
2008; Kondratov et al., 2012). In addition, the functional loss of
WNT antagonists is another vital trigger of WNT signaling
activation in RCC. Early in 2006, Urakami et al. (2006) reported
that RCC patients significantly demonstrated high methylation
levels of WNT antagonists, including sFRP-1, sFRP-2, sFRP-4,
sFRP-5, WIF-1, and Dkk-3, compared to healthy controls.
Specifically, the methylation level of sFRP-1 serves as an
independent biomarker for RCC prognosis. Later, the same team
also identified that WIF-1, a WNT antagonist belonging to the
secreted frizzled-related protein (sFRP) class, functions as a tumor
suppressor in RCC cells. Overexpression of WIF-1 enhances RCC
cell apoptosis and inhibits tumor growth in vivo (Kawakami et al.,
2009). A similar antitumor potential has also been identified in
IGFBP-4, DKK-1, and DKK-3 (Ueno et al., 2011; Xu et al., 2017;
Chen et al., 2018).

Activation of the mTOR signaling cascade also plays a pro-
fibrotic role during chronic kidney injury. In diabetic nephropathy,
induced glomerular mesangial hypertrophy and matrix expansion
were mediated by TGF-β1 and its downstream AKT/PRAS40/
mTOR axis in glomerular mesangial cells (Dey et al., 2012; Maity
et al., 2020). Further studies confirmed that the activation of either
mTOR1 or mTOR2 promotes fibroblast activation and
myofibroblast proliferation (Jiang et al., 2013; Li et al., 2015).
Moreover, the activation of mTOR2 facilitates macrophage
polarization toward the pro-fibrotic M2 phenotype through the
Rictor/mTORC2/AKT axis in the UUO mouse model (Ren et al.,
2017). Both activated myofibroblasts and M2 macrophages are the
main contributors to collagen production and ECM deposition
during renal fibrosis. Intriguingly, downstream cascades of
mTOR signaling also contribute to RCC oncogenesis and
metastasis. The activation of mTOR is correlated with poor
prognosis and aggressive tumorigenesis in RCC (Pantuck et al.,
2007; Damayanti et al., 2018). Wu et al. (2021b) further uncovered
that the activation of the mTOR pathway initiated RCC
development from renal proximal tubular cells. Mechanistically,
activated mTOR signaling upregulates MEK1 expression and
promotes ERK activation, which induces pro-proliferation cyclins
and Myc expression. Meanwhile, activated mTOR also suppresses
the anti-proliferation p53/p16 axis viaMKK6/p38 MAPK signaling.
As a result, the TSC1 or VHL mutation-induced pathologic mTOR
activation and its downstream cascades lead to renal cyst formation
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and RCC carcinogenesis [Wu et al. (2021b)]. Other mTOR-
regulated molecules, such as autophagy-related light chain (LC3),
fatty acids, EMT-associated eIF4E-binding protein 1 (4E-BP1), and
ribosomal S6 kinase (S6K), were also found to contribute to RCC
development and invasion (Dey et al., 2019; Qu et al., 2020; Tao
et al., 2020).

The pro-fibrotic Notch signaling pathway also contributes to
tumorigenesis. The interaction of Notch2 with its receptor
Jagged1 not only promotes renal fibrosis and metabolism by
regulating TFAM and PGC1-α expression (Han et al., 2017;
Huang et al., 2018) but is also associated with RCC proliferation

and metastasis through histone modification and gene amplification
of cell fate determination features, KLF4 and SOX9, renal
development-related features, PAX2 and SALL1, the stem cell
maintenance-associated features, PROM1 and ALDH1A, and
chromatin modification-related feature, MYST3 (Fendler et al.,
2020).

Efforts have also been made to identify how RCC-specific fibrotic
signaling differs from that of other types of cancer. Yang et al. (2021)
identified 11 cytokines that are significantly associated with fibrosis in
ccRCC, including brevican, prolactin, presenilin 1, and GRO. The team
further found that ccRCC expressed a distinctly higher level of prolactin

TABLE 1 Fibrotic signaling in RCC.

Key molecule Associated pathway Mechanism Biological function

CAF-mediated fibrotic signaling in RCC

LOX/LOX2 ECM remodeling Promotes collagen stiffness increment and integrin
stabilization and fiber formation and suppresses the
protease and proteasome system

RCC invasion and metastasis

MMP-2/9 AKT/NF-κB/MMP-9 and collagen I/
MMP-2

Degrades ECM proteins; proteolytic breakdown of
tissue barriers to invasion; and promotes circulating
tumor cell extravasation

RCC invasion and metastasis

MMP-13 TGF-β1/MMP-13 Promotes osteoblastic matrix degradation and
osteoclastic activation

Bone metastasis

SDF-1 SDF-1/CXCR4 interaction Promotes angiogenesis and organ metabolism RCC proliferation and invasion

Collagen I Upregulating MMP-2, ZEB2, and SNAIL Facilitates EMT Enhances RCC proliferation, adhesion, and
migration

Fibronectin Fibronectin/TGF-β1/Src/cyclin D1 and
vimentin

Interacts with integrin α5 and integrin β1; promotes
RCC cell migration; and promotes cyclin D1 and
vimentin expression, TGF-β1 production, and Src
and Smad phosphorylation

Enhances RCC cell growth and migration

Lactate Aerobic glycolysis Energy supply to the tumor; TME acidification;
suppresses T-cell anticancer activities; and accelerates
angiogenesis

Enhances RCC aggressiveness

TGF-β-centered fibrotic signaling in RCC

lncRNA ATB TGF-β1/ATB/DNMT1/p53 Regulates DNMT1 to suppress p53 and promotes the
expression of N-cadherin and vimentin

Enhances RCC cell proliferation and migration

lncRNA
SPRY4-IT1

ND ND Promotes RCC cell proliferation, migration, and
invasion

Other fibrotic signaling in RCC

WNT1 WNT canonical pathway Activating oncogenes c-Myc and cyclin D1 Promotes ccRCC progression and invasiveness

WNT10A

WNT5A WNT non-canonical pathway Directly regulated by PAX2 Potentially related to blastemal predominant
Wilms tumorigenesis

WNT7A WNT7A hypermethylation due to genetic/epigenetic
alterations and promotes ccRCC oncogenesis

ccRCC tumor suppressor

WIF-1 WNT antagonist Loss function of WIF in ccRCC triggers WNT
signaling activation and inhibits RCC apoptosis and
proliferation

Enhances RCC cell apoptosis and inhibits tumor
growth

mTOR mTOR/MEK1/ERK and mTOR/MMK6/
p38 MAPK

Induces pro-proliferation gene (cyclins and Myc)
expression and suppresses the anti-proliferation p53/
p16 axis

Promotes RCC tumorigenesis, proliferation, and
metastasis

Notch2 Notch2/Jagged1 interaction Notch2/Jagged1 interaction modifies histone and
gene amplification of oncogenesis-related genes.

Promotes ECC proliferation and metastasis
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and prolactin receptors, compared to other malignant tumors like lung,
liver, and breast cancers. Such ligand–receptor interactions are also
correlated with the prognosis of ccRCC patients.

5 Therapeutic implications targeting
fibrosis signaling

Due to the highly fibrotic feature of the RCC intratumoral
environment, therapies targeting fibrosis signaling are exploited
to suppress the progression of RCC (Table 2). In 2009, the
mTORC1 inhibitors everolimus and temsirolimus had already
been approved by the U.S. Food and Drug Administration (FDA)
as single agents in the second-line setting and in the first-line in RCC
patients’ treatment at advanced stages (Hudes et al., 2007; Motzer
et al., 2008). Interestingly, another mTORC1/2 dual inhibitor AZD-
2014 was also able to downregulate HIF-1α/2α and cyclin D
expression and further inhibit RCC cell proliferation preclinically
(Zheng et al., 2015). However, the phase II randomized control study
among 49 patients with VEGF-refractory metastatic ccRCC showed
that AZD-2014 was less toxic but also less effective than everolimus
in improving patients’ overall survival and preventing tumor
progression (Powles et al., 2016). Roulin et al. (2011) revealed
that combined treatment with sorafenib and NVP-BEZ235, a
novel dual PI3K/mTOR inhibitor, demonstrated enhanced
antitumor efficacy in RCC cell lines, 786-0 and Caki-1, compared
to either of the single treatments. Other mTOR inhibitors, such as
mTORC2 inhibitors, PP242 and PP30 (Feldman et al., 2009; Li et al.,
2021), and the mTORC1/2 dual inhibitor, WYE-125132 (Yu et al.,
2010), all demonstrated ideal antitumor capacity in RCC
preclinically. The aforementioned findings provide new insights

into the development of mTOR-targeted novel antitumor
therapeutic strategies for RCC.

The classic pro-fibrosis TGF-β signaling pathway is another
promising therapeutic target of RCC. Early in 2014, a phase I
clinical study used the human TGF-β1/β2/β3 neutralizer GC1008
(fresolimumab) to treat patients with advanced malignant melanoma
and RCC (Morris et al., 2014). However, only seven out of the total
29 patients achieved a partial response. Later, in 2017, another phase I
study among advanced cancer patients using the TGF-β receptor
2 monoclonal antibody LY3022859 failed to determine the
maximum tolerated dose due to adverse side effects (Tolcher et al.,
2017). The difficulties in the clinical application of anti-TGF-β
antibodies among cancer patients might be related to the dual
functions of the diverse TGF-β-dependent downstream cascades
(Meng et al., 2012a). Smad3, one of the key downstream
transcription factors of TGF-β signaling, plays a major pathogenic
role during renal fibrosis and inflammation. However, the activation of
TGF-β-dependent Smad2 and Smad7 pathways demonstrates anti-
fibrosis and renal protective effects (Meng et al., 2012b). Nevertheless,
efforts have been continuously made to improve the therapeutic effects
of TGF-β-targeted treatments. Strauss et al. (2018) led another phase I
study using a novel bifunctional fusion protein M7824 against PD-L1
and TGF-β among patients with an advanced solid tumor, and this
novel targeted agent demonstrated encouraging antitumor effects with a
good safety profile (Strauss et al., 2018). Previously, Lian et al. (2018)
used a Smad7 inducer asiatic acid (AA) in combination with a
Smad3 inhibitor naringenin (NG) to restore the balance of
Smad3 and Smad7 signaling pathways in invasive melanoma and
lung cancer mouse models and achieved significant anticancer
effects by enhancing natural killer (NK) cell-mediated cytotoxicity
through attenuating Smad3-induced suppression on two

TABLE 2 Anticancer therapies targeting fibrosis in RCC.

Drug Target Mechanism Type Current status

Target mTOR signaling

Everolimus mTORC1 Selective inhibition of mTORC1 Small-molecule inhibitor FDA approved

Temsirolimus mTORC1 Selective inhibition of mTORC1 Small-molecule inhibitor FDA approved

AZD2014 mTORC1/
mTORC2

Dual inhibition of mTORC1 and
mTORC2

Small-molecule ATP competitive
inhibitor

Phase II trial completed

NVP-BEZ235 combined with
sorafenib

PI3K/mTOR Dual inhibition of PI3K/Akt/mTOR Small-molecule ATP competitive
inhibitor

Preclinical study conducted on RCC cell
lines

PP242 and PP30 mTORC2 Selective inhibition of mTORC2 Small-molecule ATP competitive
inhibitor

Preclinical study conducted on RCC cell
lines (UMRC6, 786-0, and UOK121)

WYE-125132 mTORC1/
mTORC2

Dual inhibition of mTORC1 and
mTORC2

Small-molecule ATP competitive
inhibitor

Preclinical study conducted on the
mouse RCC model

Target TGF-β signaling

Fresolimumab TGF-β Human TGF-β1/β2/β3 neutralizer Human monoclonal antibody Phase I trial completed

LY3022859 TGF-β2 Human TGF-β2 neutralizer Human monoclonal antibody Phase I trial completed

Valproic acid Smad4 Smad4 suppressor Preclinical study conducted on RCC cell
lines (786-0 and Caki-1)

Pirfenidone TGF-β TGF-β inhibitor Broad-based anti-fibrotic drug Preclinical study conducted on the
mouse RCC model
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transcription factors essential for NK development and functions,
namely, ID2 and IRF2. In addition, the same group discovered SIS3,
a small-molecule inhibitor of Smad3, which effectively delays tumor
development by suppressing TGF-β-mediated angiogenesis and
immune escape in lung cancer (Tang et al., 2017; Lian et al., 2022).
Although there is still very limited clinical evidence, preclinical studies
have already revealed the promising anti-RCC potential of TGF-β
signal-targeted therapies. A study using valproic acid, a
Smad4 suppressor, significantly decreased cancer cell viability by
inducing cell apoptosis and inhibiting EMT marker (E-cadherin and
vimentin) expression in RCC cell lines (Mao et al., 2017).More recently,
the anti-fibrotic drug pirfenidone (PFD), which has been approved by
the FDA for the treatment of renal fibrosis, has been shown to be
capable of suppressing RCC progression in vivo (Wang et al., 2022a).
Mechanistically, PFD significantly downregulates TGF-β production in
the RCC mouse model, thus mitigating TGF-β-mediated EMT and
immunosuppressive MDSC infiltration into the TME.

6 Conclusion

Fibrosis has long been recognized as a major contributor to cancer
progression and invasion. In this review, we systematically summarized
the clinical association between renal fibrosis and poorer RCC
outcomes and how a fibrotic microenvironment interacts with RCC
in the form of ITF, CAFs, and PC fibrosis. In addition, we further
conducted transcriptomic analysis on an up-to-date scRNA-seq profile
of human RCC to confirm the participation of diverse fibrotic signaling
in RCC development at single-cell resolution. The crosstalk between
common pro-fibrotic pathways, including TGF-β, WNT, mTOR, and
NOTCH signaling pathways, and RCC has also been discussed. In
conclusion, the discovery of the mechanisms through which fibrotic
signaling promotes tumorigenesis and aggressiveness in RCC provides
inspiration for the development of anti-fibrotic therapies, such as
mTOR inhibitors or anti-TGF-β antibodies, as novel therapeutic
strategies for renal cancer.
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