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Glioblastoma is the most aggressive variant of glioma, the tumor of glial origin
which accounts for 80% of brain tumors. Glioblastoma is characterized by
astoundingly poor prognosis for patients; a combination of surgery, chemo-
and radiotherapy used for clinical treatment of glioblastoma almost inevitably
results in rapid relapse and development of more aggressive and therapy resistant
tumor. Recently, it was demonstrated that extracellular vesicles produced by
glioblastoma (GBM-EVs) during apoptotic cell death can bind to surrounding cells
and change their phenotype to more aggressive. GBM-EVs participate also in
establishment of immune suppressive microenvironment that protects
glioblastoma from antigen-specific recognition and killing by T cells. In this
review, we collected present data concerning characterization of GBM-EVs
and study of their effects on different populations of the immune cells (T cells,
macrophages, dendritic cells, myeloid-derived suppressor cells). We aimed at
critical analysis of experimental evidence in order to conclude whether
glioblastoma-derived extracellular vesicles are a major factor in immune
evasion of this deadly tumor. We summarized data concerning potential use of
GBM-EVs for non-invasive diagnostics of glioblastoma. Finally, the applicability of
approaches aimed at blocking of GBM-EVs production or their fusion with target
cells for treatment of glioblastoma was analyzed.
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Extracellular vesicles transfer information between
cells

In multicellular organisms, cells mostly communicate with each other by exchanging
chemical signals, or by direct contacts. Recently, more sophisticated way of communication
was discovered. It uses small lipid bilayer-covered bubbles which may transfer cytosol from
cell to cell. These vehicles, the so called extracellular vesicles (EVs), are considered as
transporters of information and are extensively studied in the context of tumor
microenvironment. EVs are produced by the most known cell types and are presented
in essentially all body fluids from healthy donors and patients with various pathologies
(Keller et al., 2011). Production of EVs is dramatically increased in tumor cells pointing to
their potential involvement in interactions between tumor cells, tumor stroma and
infiltrating immune cells. It was suggested that EVs can deliver membrane and/or
cytosolic molecules and, hence, biological information from parent cell to its neighbors,
or potentially to distant tissues and organs. EVs size ranges from dozens of nanometers to up
to 2 μmdepending on the origin (Muller et al., 2014). Small size allows them entering narrow
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gaps between cells, while lipid envelope protects their cargo from
degradation in blood serum and other fluids (Benecke et al., 2021).
Common classification and nomenclature of EVs have not been
developed yet. The reasons are different mechanisms of EVs
generation, complex composition and various isolation protocols.
The prevailing class of EVs is exosomes that form upon fusion of
multivesicular bodies (MVBs) or endosomes with plasma
membrane (Bobrie et al., 2011). Microvesicles directly bud off
from plasma membrane and are generally larger than exosomes.
Another class of EVs are apoptotic vesicles and apoptotic bodies
generated during apoptotic cell death. Exosomes are the most
numerous, therefore, usually preparations of EVs are enriched
with exosomes (Akers et al., 2013).

The subtypes of EVs also vary in size: exosomes are the smallest
EVs (30–150 nm) and apoptotic bodies are the largest one (1000 nm
or more). Microvesicles have intermediate size ranging from 100 to
350 nm. The division of EVs into exosomes, microvesicles and
apoptotic bodies is based on the biogenesis pathway, nowadays
this nomenclature is obsolete and not recommended for use
(Sabbagh et al., 2020). The International Society for Extracellular
Vesicles established a new classification of EVs depending on their
size: small EVs (<200 nm) and large EVs (≥200 nm). This
classification was established in 2018 and is still relevant (Bălașa
et al., 2020). If it is impossible to determine the particle size, the term
«extracellular particles» is preferable. The term «extracellular
vesicles» certainly is also acceptable. Since the purity of biological
samples cannot be fully ensure, the term «separation» is
recommended instead of «isolation» or «purification» in case of
vesicles (Théry et al., 2018). A more detailed description of vesicle
biogenesis mechanisms is reviewed elsewhere (Teng and
Fussenegger, 2020; Lombardi et al., 2021; Taylor et al., 2020).

EVs from different sources are unique in molecular composition
which provides a great mean for defining their signature (van Niel
et al., 2018). It makes EVs isolated from healthy donors and patients
suitable for non-invasive diagnostics because amount of EVs and
their composition may change alongside with disease development.
By definition, EVs carry common surface markers participating in
their formation, for example, tetraspanins, flotillin, Alix (ALG-2-
interacting protein X) and other membrane proteins (Mathivanan
et al., 2010; Thery et al., 2001, Tauro et al., 2012). Aside from these
major constituents, more than 4400 proteins from EVs were
extracted and identified (Mathivanan and Simpson., 2009). EVs
contain sets of lipids such as cholesterol, ceramide and many others
found in plasma membrane of parental cells (Subra et al., 2007). The
outer surface of EVs is modified/contains sugars: mannose residues,
α-2,6 sialic acid and branched N-linked glycans (Song et al., 2019).
Essential components of EVs cargo are nucleic acids, in particular
messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs).
Amount of these RNAs in EVs lumen can dramatically differ
from that in cytosol of parent cells pointing to specific
accumulation of some RNAs in EVs (Valadi et al., 2007).

According to literature, EVs affect target cells by binding to their
surface, or they can fuse with the membrane of target cells, or
endocytosed. Depending on the type of interaction, the effect of EVs
on target cells can vary (McKelvey et al., 2015). For immune cells
and tumor vesicles, it was demonstrated that EVs can both stimulate
and inhibit lymphocytes depending on ratio and membrane
composition. Effects of tumor EVs on immune cells were

recently reviewed in (Ukrainskaya et al., 2019; Wang et al., 2022)
Below we will discuss the role of EVs produced by glioma/
glioblastoma in establishment of immune suppressive
microenvironment.

Glioblastoma: common facts

The most frequent type of the primary CNS tumors are
gliomas—a group of heterogeneous malignancies that includes
tumors of various origin, aggressiveness and growth rate. About
half of them are glioblastoma tumors (GBM) that comprise about
80% of all brain tumors. GBM is highly aggressive with 5-year
survival not exceeding 5% of patients (Ostrom et al., 2014a). The
Central Brain Tumor Registry of the United States (CBTRUS)
estimates the frequencies of gliomas and GBM as 6,61 and
3,19 per 100,000, respectively (Ostrom et al., 2014b).

According to Tamimi and colleagues, glioblastoma is often
diagnosed in old patients with average age of 64 years. It is more
frequent in males than females, at least in the United States,
(3,97 versus 2,53 per 100,000, respectively) (Ostrom et al., 2014a).
The highest occurrences of glioblastoma are reported in Western
and Central Europe and North America, while the lowest - in Africa
and some parts of Asia. This distribution suggests that genetic
predisposition may affect development of glioblastoma (Omuro,
2013; McNeill, 2016; Patel et al., 2019).

Glioblastoma is characterized by increased mitotic activity, high
invasiveness and development of necrotic zones. Increased
phenotypic heterogeneity of the glioblastoma cells led to frequent
addition of «multiforme» term in the medical literature.
Glioblastoma contains cells of various differentiation states
ranging from cells with low differentiation status along with
highly differentiated subpopulations. In this regard, each patient
with glioblastoma contains a unique set and proportions of
heterogeneous tumor cells (Soeda et al., 2015).

Surgical resection is still the prevalent way of the GBM
treatment, and complete removal of the glioma/GBM cells
positively correlates with patients’ survival (Nieder et al., 2005).
Often, glioblastoma treatment combines several complementary
approaches: the surgical resection is usually followed by chemo-
and/or radiotherapy. But even the combined protocols resulting in
substantial reduction of the tumor volume do not affect generally
poor outcome. Many glioblastoma patients survive for several years
after successful treatment, while complete cure and long-term
survival have to be achieved yet (Stupp et al., 2009).
Unfortunately, early diagnostics and treatment do not affect the
hopeless outcome questioning the usefulness of large-scale
screenings for GBM. Better understanding of GBM development
and progression should help developing specific and effective anti-
glioblastoma therapy and improve grim prognosis.

Protein components of GBM-EVs

EVs, as it was mentioned above, can be used by normal and
tumor cells for intercellular communications. Therefore, molecular
composition of the tumor EVs substantially differs from that of EVs
obtained from normal non-tumor cells. GBM cells also produce
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EVs. Major set of surface proteins that was identified in GBM-EVs is
presented in Figure 1. EVs fromGBM (GBM-EVs) contain common
vesicular markers: tetraspanins (CD9, CD63, CD81); flotillin-1,
HSP70, Alix and Tsg101; and, in addition, GBM-EVs possess
specific protein markers. For example, according to cytometric
and western blotting analysis, GBM-EVs carry anti-inflammatory
enzymes CD39 and CD73, both involved in tumor progression
(Scholl et al., 2020). Proteomic studies found surface chaperones in
isolated GBM-EVs, including HSP27 participating in cell
differentiation and inhibition of apoptosis (Graner et al., 2009).
Cell adhesion molecule CD44, known as one of the most common
tumor markers, is overexpressed in GBM and is presented on the
surface of GBM-EVs (Szatanek and Baj-Krzyworzeka, 2021). Non-
differentiated cells fromGBM secrete EVs with surface expression of
prominin (CD133), commonly used as a marker of cancer stem cells
(CSCs) (Thakur et al., 2021a). Receptor of epidermal growth factor
(EGFR) is overexpressed in around 50%–60% cases of GBM, while
its mutant variant, EGFRvIII, is present in ~50% of GBM. Both
proteins are poor prognostic factors, especially in patients younger
than 45 (Heimberger et al., 2005). EGFRvIII can be easily found in
cell lysates and is present in GBM-EVs (Al-Nedawi et al., 2008;
Graner et al., 2009; Ricklefs et al., 2016). Anti-inflammatory
molecules PD-L1 (programmed death ligand -1) and IDO1
(indoleamine-2,3-dioxygenase 1, the enzyme which degrades
extracellular tryptophan) are also both markers of GBM cells and
EVs, these proteins are upregulated following the treatment of GBM
cells with IFN-γ (gamma interferon, key anti-tumor
proinflammatory cytokine). PD-L1 and IDO1 play significant role
in tumor progression which will be discussed further (Jung et al.,
2022). Most of these EV surface molecules are specific for tumor
cells including GBM, and could be used as a GBMmarkers as will be
discussed below.

Composition of protein cargo of GBM-EVs also has specific
features. 133 proteins were identified in proteomes of EVs from five
primary GBM cells lines according to Naryzhny et al. 2020

(Figure 1). They were annotated and clustered according to the
function. Large group of proteins include structural vesicular
proteins, for example, clathrin (CLTC); chaperones, components
of cytoskeleton, small G-proteins and vimentin (VIME). Separate
group consists of polypeptides that interact with nucleic
acids—components of chromatin and ribosomal proteins.
Members of another important cluster include GBM-EVs
proteins participating in metabolism—enzymes, ionic channels,
transporters of amino acids and subunits of G-proteins regulating
adenylate cyclase and phospholipase C. Authors highlighted a set of
proteins supporting GBM survival. They include lactate
dehydrogenase B (LDHB) and phosphoglycerate kinase 1 (PGK1)
which promote adaptation of cells to shortage of energy; catalytic
subunit of DNA-dependent protein kinase (PRKDC), major vault
protein, and proteins involved in DNA repair (Naryzhny et al.,
2020). Other study reported a transfer of transglutaminase
responsible for increase of mitogenic signaling in cells treated
with GBM-EVs (Antonyak et al., 2011), and TGF-β
(transforming growth factor beta), the cytokine with potent
immune suppressive activity (Graner et al., 2009) in primary
GBM cell lines. These proteins are not GBM-specific, but they
are frequently overexpressed in GBM. The presence of proteins
participating in metabolism, DNA reparation and mitosis in EVs
factors in establishment of tumor microenvironment (TME).

RNAs from GBM-EVs

mRNA

RNA molecules from GBM-EVs draw major interest because
they supposedly should possess regulatory potential and induce
functional reprogramming or differentiation of target cells. The
analysis of both EVs from patient-derived GBM cells and patient
serum (Skog et al, 2008) identified about 27,000 species of mRNA.
Interestingly, around 4700 of them were found only in GBM-EVs,
and 3000 of these mRNAs differed from that in parental cells
(2238 mRNAs were enriched in EVs, and 1188 were almost
excluded from EVs). The majority of GBM-EVs mRNAs were
associated with the following functions: angiogenesis, cell
proliferation, immune response, migration of cells and histone
modifications. It should be noted that RNA isolated from EVs
circulating in the blood of patients with GBM multiforme had
reduced levels of RNAs involved in formation of ribosomal
subunits compared to healthy donors (Noerholm et al., 2012).
We summarized the information concerning major RNA and
DNA components of GBM-EVs in Supplementary Table S1.
Collectively, these data indicate non-random loading of mRNA
into GBM-EVs suggesting enrichment of RNA with potential
regulatory functions.

microRNA

Analysis of microRNAs (miR) from GBM-EVs obtained from
human U251 GBM cell line also demonstrates dramatic discrepancy
of their levels with that in the source cells. This suggests specific
production and packaging for export of multiple miR species in

FIGURE 1
Scheme shows major protein membrane components and lipids
of GBM-EVs and classes of cargo molecules (non-coding RNAs,
mRNAs and cytosolic proteins, adopted with modifications from
Benecke et al., 2021; Naryzhny et al. 2020).
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tumor cells. GBM-EVs are enriched with several oncogenic miRs
including miR-21, miR-10a, miR-23a, miR-30a, miR-221 and miR-
451 (Supplementary Table S1; Cheryl et al., 2013). Transfer of these
regulatory molecules between tumor and normal cells could be
possibly critically involved in growth, invasion and survival of tumor
cells. Van der Vos and colleagues confirmed that miR-451/miR-
21 can be transferred from GBM cells to microglia in vivo (Van Der
Vos et al., 2015). The transfer of immune suppressive miR-21 by EVs
from five low passage human GBM cell lines was also shown in other
study along with delivery of other miRs: let-7, miR-3182, miR-4448,
miR-100-5p, miR-27-3p (Mooij et al., 2020). Information
concerning the influence of miR loaded into EVs from
glioblastoma on myeloid cells and the consequent modulation of
T cell functions is shown in Figure 2.

Under hypoxic stress conditions, several miRs were upregulated
in GBM-EVs. The list includes miR-210, miR-1275, miR-376c, miR-
23b, miR-193a and miR-145. It is known that increased production
of miR-210 during hypoxia results in elevated synthesis of vascular
endothelial growth factor (VEGF) by human GBM U87 and
U251 lines supporting survival of cells (Agrawal et al., 2014).
This fact points to the possibility of positive influence of

vesicular transfer of miR-210 on survival of GBM cells under the
hypoxic conditions (Figure 2). Above, the set of miRs which level is
higher in GBM-EVs than in GBM cells were discussed. But there is a
set of miRs underrepresented in the GBM-EVs in comparison to
GBM cells. Mostly, their function relates to inhibition of cell growth
and tumor progression. For example, ectopic expression of tumor
suppressor miR-1 in GBM results in reduction of growth rate,
invasion and neovascularization. This effect was partially
explained by increased incorporation of overexpressed miR-1
into GBM-EVs. Aside from effect of miR-1 from GBM-EVs on
GBM cells, this inhibitory RNA targets prooncogenic signaling
pathways in cells forming GBM microenvironment. Transfer of
functional miR-1 using GBM-EVs to other target cells leads to
downregulation of its target mRNAs in vivo (Bronisz et al., 2014;
Rooj et al., 2016).

Long non-coding RNA

Aside from miRs, non-coding RNAs are presented in GBM cells
and GBM-EVs by a diverse class of long non-coding RNAs

FIGURE 2
Schematic representation of GBM-EVs effects on the myeloid immune cells mediated by transfer of the cargo molecules (mostly RNAs). GBM-EVs
(on the top) fuse with or get phagocytosed by macrophages, myeloid-derived suppressor cells (MDSC) and dendritic cells (DC) causing changes in
phenotype of recipient cells. Cargo molecules participating in reprogramming and resulting phenotypic responses (Cheryl et al., 2013; Mooij et al., 2020;
Liang et al., 2019; Jung et al., 2022) are shown as red (negative effect) or green (positive effect) arrows with supporting text. Subsequent influence of
changes in myeloid cells negatively affect anti-tumor immunity by suppressing functions of CD4+ effector cells and CD8+ cytotoxic lymphocytes (on the
bottom).
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(lncRNAs). We are not going to discuss biogenesis and functions of
lncRNAs because there are many excellent reviews on this topic
(Yadav et al., 2021; Nandwani et al., 2021; Taniue and Akimitsu.,
2021). lncRNA HOTAIR is involved in development of different
tumors. In gliomas it acts as oncogene and displays angiogenic
function (Ma et al, 2017). lncRNA ROR1-AS1 facilitates glioma
progressing when overexpressed and transferred from cell to cell by
EVs. ROR1-AS1 has a function of sponge RNA for miR-4686 which
inhibits tumor progression (Chai et al., 2020). ROR1-AS forms
complementary duplexes with miR-4868 and decreases amount of
free miR causing de-repression of its target genes and promotes
tumor growth. Expression of lncRNA SBF2-AS1 correlates with
resistance of GBM cells to temozolomide (TMZ) and poor
prognosis, while its overexpression makes cells more resistant to
this chemotherapeutic drug. EVs produced by cells overexpressing
SBF2-AS1 have high level of this lncRNA and converted TMZ-
sensitive GBM cells to TMZ-resistant. (Zhang et al., 2019).

Other classes of ncRNA
Analysis of RNAs isolated from EVs circulating in peripheral

blood of GBM patients suggests that they carry excessive amounts of
uncharacterized RNA shorter than 500 nucleotides (Noerholm et al.,
2012). Many of them are new, and their function have not been
identified. Almost half of these RNAs belongs to a class of new small
RNAs which can be mapped in intronic and intergenic regions and
encoded by both sense and antisense strand of genomic DNA.
Majority of these RNAs were not detected in parenting cells
pointing to their role as export cargoes (Cheryl et al., 2013).
Most RNAs from this pool were annotated as piRNAs, snRNAs,
snoRNAs and yRNAs (Mooij et al., 2020). The variety of circRNAs

were also reported to be as a part of specific RNA cargo of GBM EVs
(Wang et al., 2021a; Ding et al., 2019). These classes of RNAs are
involved in regulation of gene activity either directly or indirectly by
affecting functions of miRs.

Mobile elements and genomic repeats
Special attention was attracted to another class of nucleic acids

contained in GBM-EVs and represented by repeating DNA elements
of the human genome. It was found that sequences from SINE
repeats, LTRs and human endogenous retroviruses (HERV), Alu
and L1 repeats can be identified in isolates of nucleic acids from
GBM-EVs secreted by primary GBM cell lines (Supplementary
Table S1). Authors suggest that repeats could participate in
silencing of genes and genomic translocations in cells receptive to
EVs. Specificity and magnitude of effects caused by multiple
repeating elements is questionable, but authors speculate that
transfer of genomic repeats causes transformation of cells and
development of tumors (Cheryl et al., 2013; Balaj et al., 2011).

Effects of GBM-EVs on TME: The non-
immune participants

There are indications that distinctive molecular pattern
characteristic for GBM-EVs is required to support tumor
development and growth. Exchange of vesicles containing
oncogenic and transforming factors help spreading tumor to new
niches (Chen et al., 2021). These niche-colonizing signals could be
delivered either by direct membrane contacts between EVs and
recipient target cells, or by internalization of EVs inner content

FIGURE 3
Schematic representation of GBM-EVs effects on the immune cells mediated by the surface molecules. GBM-EVs (in the middle) carry molecules
participating in ligand-receptor interactions with molecules on the surface of immune cells (adopted with modifications from Scholl et al., 2020; Ricklefs
et al., 2016; Jung et al., 2022; Dusoswa et al., 2019). The changes in immune cells are indicated with arrows with supporting text. Chart in the upper right
corner explains the symbols used to show different membrane proteins from GBM-EVs.
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(Katakowski et al., 2010; Ridder et al., 2015). Exchange of vesicles
can happen between different tumor cells, or alternatively, between
tumor cells and normal cells of surrounding tissue. These events can
lead to functional reprogramming (Vlassov et al., 2012). For
example, EVs from human GBM line U87 can impart properties
of transformed and tumor cells such as uncontrolled proliferation
and increased survival to normal fibroblasts and epithelial cells
(Antonyak et al., 2011). Normal astrocytes demonstrated increased
migration rates and elevated secretion of cytokines and growth
factors following treatment with tumor EVs (Oushy et al., 2018).
In this context, cytokines can synergize the effects of EGF on
recruiting of precursor cells of mesenchymal origin (Birnbaum
et al., 2007; Schichor et al., 2006). Highly beneficial effects on
GBM development were attributed to adipocytes. They can act
distantly by producing EVs increasing the size of glioma tumors
and inhibiting apoptosis of glioma cells in vivo (Del Fattore et al.,
2014). Exchange of tumor vesicles between cancer cells also
promotes tumors. Incorporation of EGFRvIII from EVs
membranes to plasma membrane of U373 cell line causes
increased production of VEGF and boosts expression of anti-
apoptotic protein Bcl-xL (Al-Nedawi et al., 2008). Apoptotic
GBM-EVs which were secreted after experimental treatment of
primary GBM cell lines with chemo- or radiotherapy are ingested
by surviving GBM cells which acquire more aggressive, highly
invasive and therapy-resistant phenotype. This observation
possibly explains very high level of post-treatment relapses in the
case of GBM (Pavlyukov et al., 2018).

Interaction of GBM with immune
system

Despite immune privileged localization, GBM eventually meets
immune cells following breaching of the blood brain barrier.
Usually, about 1% of GBM cells are CNS macrophages and
microglia which possess peculiar phenotypic features. They
express high levels of TLRs but fail to proliferate and secrete
proinflammatory cytokines following stimulation with TLR
ligands. Macrophages and glia from GBM express MHCII on the
surface but lack co-stimulatory molecules CD86, CD80 and
CD40 required for effective activation of T cells (Hussain et al.,
2006). GBM-infiltrating macrophages also express approximately
5 times less miR-142-3p in comparison to normal brain
macrophages (Xu et al., 2014). Since in GBM anti-inflammatory
CD11b+CD163+ macrophages have decreased level of miR-142-3p
in comparison to antitumor pro-inflammatory
CD11b+CD163−macrophages, this points to overall anti-
inflammatory environment in GBM (Attaran and Bissell., 2022).
Summary of effects that could be attributed to GBM-EVs effects on
various cells of immune system is shown in Figure 3.

Another tumor-infiltrating cell type that should recognize
tumor antigens and induce tumor killing are T cells.
Sometimes, tumor infiltrating lymphocytes’ (TILs) numbers can
reach 300 cells per about 100 tumor cells, and their pool contains
clones not detectable in circulating blood (Perrin et al., 1999).
Large numbers of CD8+ T cells which supposedly should kill tumor
was not sufficient to inhibit tumor due to the deficit in functional
CD4 helper cells (Miggelbrink et al., 2021). These dysfunctional

CD8+ cells are actively dividing and prone to spontaneous
apoptosis (Yu et al., 2003), or fail to undergo activation
(Hussain et al., 2006). Summary of effects that could be
attributed to GBM-EVs effects on various cells of immune
system is shown in Figure 3.

CD4+ TIL from GBM contain a large fraction, up to 50%, of
CD56+ T cells. Proportion of proliferating CD56+CD4+ T cells
was 3–4 times higher than fraction of proliferating CD56−cells,
and major fraction of CD56+ cells produced Th2 cytokines IL-4
and IL-13 (Waziri et al., 2008; Belghali et al., 2022). Another
study reports massive infiltration of
CD4+FoxP3+CD25highCD127low regulatory T cells (Treg) in
GBM and other metastatic brain tumors (Hussain et al., 2006).
Brain tumor Tregs are characterized by increased level of CTLA-
4 and FoxP3 (forkhead-box winged helix P3) in comparison to
blood Treg. In most cases tumor Treg in GBM were localized in a
close proximity to effector cells (Jacobs et al., 2009).

From the facts presented above, it is logical to assume that GBM
creates potent immune suppressive TME. GBM uses several ways to
establish and cement immune suppressive conditions: it can recruit
cells secreting anti-inflammatory cytokines; (Waziri et al., 2008;
Tamai et al., 2022), or it overexpresses ligands of immune inhibitory
receptors such as PD-L1, HLA-E/HLA-G on the surface
(Mittelbronn et al., 2007; Wiendl et al., 2002; Jacobs et al., 2009).
In addition to this arsenal, GBM cells often express FasL directly
inducing apoptosis of activated tumor-specific T cells (Husain et al.,
1998; Frankel et al., 2000). Apoptotic Fas-positive T cells can be
often found close or in contact with tumor cells expressing FasL
(Didenko et al., 2002; Saas et al., 1997).

GBM-EVs inhibit anti-tumor immunity

GBM-EVs play critical role in suppression of anti-tumor
immune response. They do it by a various means, and immune
suppressive mechanisms make complex TME even more
complicated. The main result of interactions between GBM-EVs
and TILs is functional exhaustion and inability of T cells to kill the
tumor (Dunn et al., 2007). Below we will discuss the most potent
mechanisms of immune suppression mediated by GBM-EVs and
directed towards T cells or immune suppressive subtypes of tumor-
infiltrating cells (Figure 2, Figure 3).

PD-L1/PD-1

GBM usually secrete EVs with high level of PD-L1. This Ig-like
molecule binds its ligand PD-1 located on the surface of activated
T-cells. Stimulation of PD-1 recruits tyrosine phosphatases SHP-1/-
2 to phosphorylated ITAM motifs. As a result, TCR’s components
become de-phosphorylated and do not transfer activating signals to
downstream molecules. Thus, PD-L1 on the GBM-EVs blocks
activation and proliferation of T cells caused by stimulation of
TCR (Salmaninejad et al., 2019). It was shown, that PD-L1 from
EVs directly binds PD-1 on T cells. PD-L1 level in GBM correlates
with aggressiveness and surface phenotype. PD-L1-rich GBM
variants usually have mesenchymal phenotype, while PD-L1low

cells demonstrate less aggressive pro-neural phenotype. Since
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tumor could contain both mesenchymal and pro-neural cells, T cell
inhibition was expected to be more profound by GBM with
predominantly mesenchymal phenotype due to high level of PD-
L1 on the EVs (Doucette et al., 2013). However, EVs fromGBM stem
cells (GSCs) with high and low PD-L1 level similarly strongly inhibit
T cell activation according to changes in early and late activation
markers CD69 and CD25. It was suggested that EVs with low PD-L1
utilize the molecular mechanism distinct from PD-L1/PD-
1 signaling. Uptake of these PD-L1low EVs was found to increase
the levels of IDO1 and IL-10 mRNAs in recipient cells; both mRNAs
encode immune suppressive proteins. Interestingly, the treatment of
GBM cells with low PD-L1 with IFN-γ resulted in upregulation of
PD-L1 on the cell surface and on the EVs, indirectly confirming
importance of PD-L1 in GBM-EVs-mediated immune suppression
(Figure 3; Ricklefs et al., 2018).

Extracellular enzymes

GBM-EVs carry two nucleosidases - CD39 and CD73—on the
outer side of membrane (Scholl et al., 2020). These enzymes convert
extracellular ATP to adenosine. CD39, first, hydrolyzes ATP to ADP
and 5′-AMP, which is then further degraded to adenosine by CD73.
The shift from ATP to adenosine changes extracellular pro-
inflammatory ATP rich milieu to adenosine high anti-
inflammatory environment. High levels of CD39 and CD73 can
be detected on activated T lymphocytes, especially, on CD4+ and
CD8+ T cells, and in CD4+Foxp3+ Treg that normally suppress
excessive immune responses. Subpopulation of Treg with distinct
transcriptomic signature is attracted by various tumors to inhibit
specific anti-tumor immune response (Bavaresco et al., 2008).
Elevated expression of CD73 was described in various
malignancies, for instance GBM, and usually is associated with
poor prognosis. CD73 can be transported by EVs to T cells.
Uptake of vesicular CD73 by lymphocytes limits their expansion
initiated by stimulation with anti-CD3/CD28 mAbs. CD73 from
EVs changes energy consumption by T cells. This enzyme
downregulates glucose transporters Glut1 and Glut3 and inhibits
expression of several enzymes in aerobic glycolysis cascade (Ohta
et al., 2006). But main suppressive effect of CD73 is caused by
conversion of 5′-AMP to adenosine. Adenosine is a signaling
mediator which binds to isoform of adenosine receptor A2AR.
Signaling through A2AR increases production of cyclic AMP and
dephosphorylation of phosphoSTAT5 (Signal transducer and
activator of transcription 5). These events negate signals from IL-
2 receptor and TCR in T cells. Involvement of adenosine in immune
suppression was indirectly confirmed by elevated levels of adenosine
in GBM patients and mice with transplanted GBM tumors (Wang
et al., 2021b).

Other molecules

Proapoptotic surface molecule FasL limits T cell responses by
induction of apoptosis during direct contacts between cell with
surface Fas (usually activated T cells) and cells/EVs which expose
FasL. Several types of brain tumors, for example, astrocytoma and
oligodendroma produce EVs that carry FasL on their surface

(Frankel et al., 2000; D’Agostino et al., 2006). GBM also
expresses FasL on the surface (Husain et al., 1998). It was
reported that GBM-EVs secreted by glioma model cell line
GL26 promote the growth of implanted tumor and inhibited
cytotoxic activity of CD8+ T cells both in vitro and in vivo. Also,
they negatively affected the proportion and number of splenic CD8+

cells, this effect was accompanied by decreased secretion of IFN-γ
and granzyme B. Authors of this study suggest involvement of Fas/
FasL in induction of apoptosis in T cells in vitro and in vivo (Liu
et al., 2013). In other work, preincubation of naïve T cells (as fraction
of PBMC) with EVs from medulloblastoma cell line resulted in
diminished activation by phytohemagglutinin (PHA) detected by
downregulation of CD69 and IFN-γ production. These phenotypic
changes were induced by low doses of EVs (100 mg/mL) but were
more dramatic at higher doses (2000 mg/mL). Even very low doses
of EVs (5–50 mg/mL) were capable to induce exhausted phenotype
in T cells during activation (Epple et al., 2012). Despite expectations,
the authors failed to detect FasL in cells and EVs preparations using
western blotting (Hellwinkel et al., 2015). These data hint that FasL
could be transferred by GBM-EVs to target cells, but direct evidence
is missing.

Oligodendroma can make EVs that transport other pro-
apoptotic molecule—the tumor necrosis factor (TNF)-related
apoptosis-inducing ligand (TRAIL). 25%–50% astrocytes, treated
with these EVs had signs of cell damage (Di Liegro et al., 2011). In
GBM, this mechanism has not been reported yet.

There are implications that vesicular LGALS9 (Galectin-9), the
ligand of CD4 T cell surface molecule TIM-3 (T cell
immunoglobulin and mucin domain containing-3), is also
involved in EVs-mediated immune suppression. Binding of Gal-9
to TIM-3 on T cells results in T cell apoptosis. High level of
LGALS9 is an indicator of bad prognosis for all stages of glioma
(Liang et al., 2019) It should be noted that LGALS9/TIM3 signaling
pathway regulates T cell functions in several different ways such as
regulation of apoptosis in CD4+ T cells and functional exhaustion of
CD8+ T cells (Wang et al., 2020).

Once absorbed, GBM-EVs could also influence the immune
response by passing cargo molecules to recipient cells. GBM-EVs
contain TGF-β which was reported to be transferred in vesicles and
directly inhibits the function of T cells (Graner et al., 2009).
Identification of GBM-EVs cargo proteins which interact with
nucleic acids could indicate that fusion with EVs possibly
interferes with transcription of genes in recipient immune cells.
Other cargo proteins such as enzymes, ion channels, transporters of
amino acids, and G-proteins participating in metabolic processes
could likely change the metabolic pathways (Naryzhny et al., 2020).
GBM-EVs were also reported to contain spliceosomal proteins and
snRNAs which affect mRNA splicing in recipient cells (Pavlyukov
et al., 2018).

The transcripts of immune inhibition proteins in vesicular
mRNAs pool (for example, leukocyte elastase inhibitor and homo
sapiens cytokine receptor-like factor 1) were found to be selectively
loaded into the EVs from GBM patients (Noerholm et al., 2012).
miR-10a and miR-21 are involved in RORα and Pten signaling
and activate myeloid-derived suppressor cells which affect function
of T cells (Guo et al., 2018). Repeating and mobile genome elements
were reported to cause multiple mutations in recipient cells
disrupting vital functions (Cheryl et al., 2013; Balaj et al., 2011).
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All these cargomolecules inhibit T cell anti-tumor immune response
through disturbance of normal biological processes inside the
recipient cells and changing signaling pathways (Naryzhny et al.,
2020).

GBM-EVs target cell types involved in
suppression of immune response

As it was mentioned before, TME is formed by multiple cell
types including tumor cells itself, vascular cells, stromal cells and
immune cells. Some of them are directly involved in immune
suppression and are recruited by tumor to shield off immune
response. Recruiting of suppressors and instructing their
precursors by TME, for example, by interaction with GBM-
EVs is likely a key event in tumor immune evasion (Hussain
et al., 2006; Attaran and Bissell., 2022). The most studied cell
types affected by GBM-EVs and having potent immune
suppressive activity include the abovementioned tumor Treg,
tumor macrophages, myeloid-derived suppressor cells (MDSC)
and tumor dendritic cells (DCs). The most important data
concerning effects of GBM-EVs on these adverse cells will be
discussed below.

Tumor Treg

Recruiting of Treg by tumors is a critical step in establishment of
TME. They accumulate in large numbers in the tumors of different
origin and support/provide potent immune suppression. Tumor
Treg express chemokine receptor 4 (CCR4), while its ligand CCL12
(chemokine ligand 12) is secreted by GBM that could explain
infiltration of tumor by Treg (Jacobs et al., 2010). Earlier studies
demonstrate that TIL contain higher proportion of Treg than T cells
from CNS of healthy individuals (Heimberger et al., 2008). At the
same time, proportion of CD4+ T cells among TILs was gradually
declining with time probably suggesting decreasing of CD4+ effector
T cells. Proportion of Treg in the spleen of mice with transplanted
gliomas was markedly lower in animals with tumors in comparison
to healthy mice, these splenic Treg were enriched with cells
expressing immune suppressive cytokine IL-10 (Figure 3;
Kennedy et al., 2009).

Massive infiltration of Treg with surface phenotype
CD4+FoxP3+CD25highCD127low in GBM and metastatic brain
tumors was found in other study. Authors report that tumor-
infiltrating Treg express higher levels of CTLA-4 and Foxp3 than
blood Treg from the same patients. The majority of tumor Treg,
according to immunohistology of tumor sections, were localized in
proximity from effector T cells (Jacobs et al., 2009).

GBM-EVs could mediate the recruiting of Treg and other
suppressor cells to GBM tumors (Epple et al., 2012), but the
most effective recruiting molecule for Treg is CCL12.
Consumption of CD39−and CD73−expressing GBM-EVs by
murine Treg results in increased production of adenosine
and defects in energy generation pathways in effector T cells
(Wang et al., 2021a). PD-L1 from GBM-EVs obtained from
primary GBM lines participates in conversion of naïve and T
helper cells to Treg, while expression of PD-1 and PD-L1 in Treg

regulates their ability to inhibit function of effector T cells. At
the same time, incubation of purified activated T cells with
GBM-EVs did not result in induction of Treg phenotype (Li
et al., 2017). Moreover, multiple reports (Himes et al., 2020; De
Vrij et al., 2015; Jung et al., 2022) failed to detect direct
inhibition of T cells or induction of apoptosis by GBM-EVs.
In several reports, it was shown that tumor EVs and GBM-EVs
had positive effect on proliferation of purified CD4+ T cells
(Domenis et al., 2017; Ukrainskaya et al., 2021). It is likely that
other populations of immune cells act as mediators between
GBM-EVs and T cells, or depending on the amount of the EVs,
they may modulate functions of both effector and suppressor T
cell subpopulations.

Macrophages and microglia

The majority of cells from proinflammatory infiltrate of the
CNS tumors are microglia and macrophages. In healthy
humans’ CNS, these cells are the main innate immune cells
maintaining immune homeostasis. Microglia and several
populations of CNS macrophages derive from precursors
starting from embryonic stages of development. In case of
infection, microglia and macrophages switch to
proinflammatory state and secrete cytokines to induce
cytotoxic response against invading microbes (Tamai et al.,
2022). The situation is complicated by the fact that
monocytes can migrate to CNS where they differentiate to
macrophages in adults with neurotrauma (Kumar et al.,
2015). According to simplified classification, macrophages
belong to either M1 or M2 polarized cells which produce
different sets of cytokines and support proinflammatory or
anti-inflammatory conditions. M1/M2 classification is
simplified and not recommended for use. It is better to use
the combination of genes and/or protein markers to describe the
chosen macrophage population (Paolicelli et al., 2022).
Nevertheless, the M1/M2 classification is still widely used as
it takes time for new one to come into use.

The macrophages uptake pathogens by phagocytosis and
participate in tumor surveillance (Poon et al., 2017), therefore
inhibition of their function is the other way of immune evasion
by GBM. Macrophages and microglia sponge GBM-EVs when they
are added to unfractionated PBMC. This phenomenon accounts for
decreased influence of GBM-EVs on T cells in such experiments.
Several studies showed fast adsorption of EVs by monocytes (Di
Trapani et al., 2016) as well as efficient uptake of GBM-EVs from
primary cell lines by microglia leading to increased proliferation and
skewing of cytokine profile to immune suppressive (Van Der Vos
et al., 2015). Since GBM-EVs cargo is enriched with proteins
interacting with extracellular matrix and affecting cell migration,
their uptake by monocytes changes the differentiation of the latter.
Incubation of PBMC with EVs from U87 human GBM cell line
results in dramatic increase in expression of markers CD14, CD16,
CD32, CD45, CD163; and increased secretion of IL-6, MCP-1 and
VEGF (Azambuja et al., 2020; Xu et al., 2021a). Likewise, EVs
isolated from the cultures of primary GSC supported the
differentiation of blood monocytes to anti-inflammatory
macrophages. EVs from GSC increased expression of membrane
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type 1-matrix metalloproteinase (MT1-MMP, tumor-promoting
factor and marker of glioblastoma-associated microglia) upon
incubation with primary human microglia. Overall, EVs from
GBM of mesenchymal subtype provided stronger effect on
differentiation of monocytes to CD11b+CD163+ macrophages and
increase in secretion of VEGF, growth factor having a role in
progression of mesenchymal GBM (De Vrij et al., 2015).
Deregulation of macrophage polarization by GBM-EVs is further
supported by accumulation of CD11b+CD14+CD163+ macrophages.
CD163 is a scavenger receptor which senses both gram-negative and
gram-positive bacteria (Fabriek et al., 2009). High levels of
CD14+CD163+ monocytes in circulation is often detected in
GBM patients; in combination with elevated levels of serum IL-4
and IL-13. Th2 cytokines produced by CD163+ monocytes are
reliable indicators of the immune deregulation by GBM
(Harshyne et al., 2015). Taken together, skewing of macrophage
polarization towards pro-oncogenic phenotype is the main strategy
used by GBM-EVs to combat immune system.

Van der Vos and colleagues described another mechanism of
macrophage suppression in GBM. They confirmed GBM-EVs-
mediated transfer of miR-451 and miR-21 to microglia leading to
downregulation of their target RNA, c-Myc. GBM-EVs were isolated
from primary GBM cell lines (Van Der Vos et al., 2015). c-Myc
controls multiple genes involved in proliferation. In cancers this
particular mRNA is usually overexpressed but decrease in c-Myc
mRNA in macrophages and microglia helps inhibiting anti-tumor
immunity (Esser et al., 2020). EVs from established glioblastoma cell
lines can also directly negatively affect expression of HLA-DR
(human leucocyte antigen DR isotype) in macrophages
(Iorgulescu et al., 2016) and, therefore, limit their antigen-
presenting capacity. In addition, treatment of macrophages with
GBM-EVs from patients’ blood and primary GBM cell lines resulted
in almost complete loss of co-stimulatory molecules CD86,
CD80 and CD40 (Hussain et al., 2006). These changes in
macrophages following EVs treatment critically decrease their
ability to activate T cells.

Local and systemic suppression of T cell responses by anti-
inflammatory macrophages largely depends on secretion of
immune suppressive cytokines such as IL-10. But under the
influence of the EVs suppressive modes can change. For example,
PD-L1 delivered by EVs could be passed to macrophages and other
cells. In TME PD-L1 can be found on macrophages and microglia,
these cells by themselves could be a source of vesicle-associated PD-L1
(Ricklefs et al., 2018). This PD-L1 of EVs origin also can positively
affect differentiation of monocytes to anti-inflammatory
CD11b+CD163+ macrophages (Himes et al., 2020; Jung et al.,
2022). It was shown that monocytes pre-cultured with GBM-EVs
significantly inhibit proliferation of T cells. PD-L1 and IDO1 are
required for this monocyte-mediated suppression. Interestingly, the
decrease in T cell proliferation was even more substantial when
monocytes were cultured with EVs isolated from cultures of IFN-
γ-treated GMB cells. This finding is in accordance with the fact that
IFN-γ boosts production of PD-L1 by GBM cells and increases PD-L1
level in the GBM-EVs. Two-fold increment in CD14+/PD-1+/CD16+/
HLA-DRhigh macrophages in monocyte cultures treated with PD-L1-
enriched GBM-EVs confirms that PD-L1 participates in alternative
polarization of macrophages. EVs were isolated from low passage
stem-like GBM lines (Jung et al., 2022).

Myeloid-derived suppressor cells (MDSC)

MDSC are suppressor cells of myeloid origin, they are highly
heterogeneous, actively proliferate in various pathologies including
malignancies and, according to surface phenotype, resemble
granulocytes (Himes et al., 2020). MDSC promote tumor
angiogenesis, increase drug resistance, metastasis and systemic
immune suppression. In some aspects, MDSCs’ phenotype is
similar to that of tumor-infiltrating M2 macrophages, namely,
they are CD14high/HLA-DRlow. MDSC can be usually found in
monocytic fraction of circulating cells in GBM patients and is
associated with poor prognosis (Jung et al., 2022).

Along with other types of immunocytes, MDSC are also affected
by GBM and GBM-EVs. Treatment of PBMC with GBM-EVs
in vitro increases amount of MDSC approximately 1,5-fold.
GBM-EVs from cultures treated with IFN-γ increase MDSC level
even more potently—up to three-fold (Jung et al., 2022).
Accordingly, MDSC from these cultures have more profound
immune suppressive phenotype and changes in the miR profile
(Ridder et al., 2015).

MDSC suppress immune responses by secreting anti-
inflammatory IL-10 and TGF-β cytokines, but uptake of GBM-
EVs may change the mechanism of immune suppression by MDSC.
Similar to macrophages, induction of MDSC requires PD-L1 and
IDO1, delivered by GBM-EVs (Jung et al., 2022). The rate of EVs
uptake by MDSC is comparable to that of microglia and
macrophages; MDSC can also serve as a source of PD-L1-loaded
EVs (Ricklefs et al., 2018). It was shown that under hypoxic
conditions GBM secretes larger numbers of EVs which differ
from normal GBM-EVs according to their mRNA profile. These
so-called hypoxic GBM-EVs induce generation of MDSC which
secrete arginase to extracellular space leading to
depletion of-arginine and inhibits activation and proliferation of
T cells. T cells which appear to be right next to these arginase-
secreting MDSC have dramatically reduced expression of granzyme
B and marker of proliferation Ki67 (Grzywa et al., 2020). Hypoxic
GBM-EVs were more potent in MDSC induction in comparison to
normal non-hypoxic EVs in vivo. The transfer of miR-10a and miR-
21 by EVs which were generated under hypoxia was confirmed.
Transferred miRs activate generation and increase suppressive
potential of MDSC and, hence, reduction of target proteins
involved in RORα/IκBα/NF-κB and Pten/PI3K/AKT signaling
cascades (Guo et al., 2018).

Taken together, the major populations involved in inhibition of
T cell responses are macrophages and MDSC. This fact is directly
confirmed by results of the study showing that removal of monocytic
cells which are CD14+ from PBMC restores proliferation and
activation of T cells, for instance, according to increase in
CD69 and CD25 levels (Domenis et al., 2017).

Dendritic cells (DC)

DC play a key role in induction of anti-tumor response because
they are main professional antigen-presenting cells. In cerebrospinal
fluid of GBM patients, the number of DC is higher than in healthy
donors. These DC take up twice less EVs thanmonocytes but 3 times
more than DC from peripheral blood (Harshyne et al., 2014). The
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effect of GBM-EVs on DC is not uniform. Published reports show
that, despite increased numbers and activated status of DC from
cerebrospinal fluid of GBM patients, most of these cells cannot
effectively present tumor antigens. In some cases, GBM-EVs
strongly decreased antigen-presenting potential of DC (Wang
et al., 2020). At least one study demonstrated the inhibition in
antigen processing and presentation in peripheral DC mediated by
LGALS9+ from GBM-EVs isolated from primary GBM (Wang et al.,
2021b). GBM-EVs bind Siglec-9, inhibitor of immune response,
presented on DC in significant amounts. Surprisingly, another DC-
specific molecule CD209 or DC-SIGN (Dendritic Cell-Specific
Intercellular adhesion molecule-3-Grabbing Non-integrin, DC-
SIGN, CD209) which mediates endocytosis and picking of
antigens and activation of CD4+ and CD8+ T cells was not
involved (Dusoswa et al., 2019).

The study by Sheybani and colleagues demonstrates the
influence of DC by EVs from apoptotic GL261 GBM cells which
were subjected to hypothermic conditions. Normal, non-apoptotic
EVs from GBM suppressed DCs’ activation according to reduction
of IL-12p70 production. However, treatment of these suppressed DC
with hypothermic apoptotic EVs restored production of IL-12p70 to
close to normal levels (Sheybani et al., 2020). This finding points to
the possibility that, depending on conditions, GBM-EVs could
inhibit or, oppositely, increase DC functions. This feature of DC
could be useful in terms of anti-tumor immune responses activation,
especially for specific anti-tumor T cells (Hao et al., 2007). One
possible application of DC in clinical treatment of GBM will be
discussed in the paragraph «Future perspectives of EV-based GBM
treatment».

Extracellular vesicles in diagnostic and
prognosis of GBM

EVs are involved in most pathological processes in cancer. The
distribution of GBM-EVs not only promotes the tumor immune
escape, but also can change the tumor cells themselves due to their
specific cargo. Thus, glioblastoma-derived vesicles have been shown
to be involved in anti-tumor therapy resistance. Studies have
reported that tumor EVs could transport non-coding RNAs and
thus influence on the status of recipient cells. The presence of
hypoxia-associated molecules in patient-derived vesicles such as
AHIF and miR-301a was correlated with radiotherapy resistance of
glioblastoma cells (Dai et al., 2019). Overexpression of macrophage
movement inhibitory factor in glioma EVs from patients is related
with TMZ resistance and can enhance therapy resistance in TMZ-
sensitive glioma cells (Wei et al., 2021). The levels of vesicular miR-
151a, miR-21 and miR-221 are negatively correlated with
chemotherapeutic response of patients (Zeng et al., 2018; Mooij
et al., 2020; Cheryl et al., 2013). The expression of SBF2-AS1 was
significantly increased both in TMZ-resistant cells and in vesicles
in vitro and in vivo (Zhang et al., 2019). Different circRNAs such as
circNFIX and circ-METRN were reported to enhance radio
resistance and progression of glioblastoma (Wang et al., 2021a;
Ding et al., 2019). Vesicular miR-148a levels were higher in GBM
patients compared with healthy donors so miR-148a can act as a
GBM marker (Cai et al., 2018). Tumor-inhibiting miR-375 was
downregulated in GBM patients. Lower miR-375 levels were also

typical for vesicles from peripheral blood of GBM patients and
correlated with poor prognosis (Xu et al., 2021b). MiR-944 could
define tumor malignancy as high-grade gliomas express lower levels
of miR-944 and correlate with lower overall survival of patients
(Jiang et al., 2021; Guo et al., 2022). PD-L1+ vesicles were also found
in peripheral blood and PD-L1 level was positively correlated with
tumor size (Shenoy et al., 2021; Vautrot et al., 2021). These features
of the EVs composition and the correlation between the expression
levels and clinically significant indexes such as patient therapy
response prediction and prognosis could not be unnoticed. EVs
were suggested to use as biomarkers and there are several reasons
for this.

Diagnosis of GBM is dependent on result of neuroimaging and
tissue biopsies. However, neuroimaging such as magnetic resonance
imaging (MRI) detects only well-developed brain tumors and
contrast can change during chemotherapy leading to incorrect
interpretation of image. Tumor biopsies can cause brain swelling
and hemorrhage (Azam et al., 2019). One more problem is changing
in MRI image indicating the tumor progress, but not necessarily
accompanying by it. So-called pseudoprogression is a temporally
local tumor necrosis resulting in tissue inflammation and occuring
in response to radiotherapy. The incorrect interpretation of MRI
image is problematic in terms of further treatment decisions for the
patient (Strauss et al., 2021; Tankov and Walker., 2021). As a result,
new diagnostic methods should be developed to solve these
problems. Extracellular vesicles from GBM could be a promising
biomarker, suitable not only for GBM presence confirmation, but
also patient prognosis. Compared to most tumors, other circulating
biomarkers such as circulating tumor cells or cell-free nucleic acids
are of little use in case of brain tumors because of blood-brain barrier
(Shi et al., 2020). However, EVs can cross the blood-brain barrier
presumably using transcytosis (Banks et al., 2020; Ridder et al.,
2014), so EVs could be found in biological fluids. Non-invasive
liquid biopsy of blood or cerebrospinal fluid (CSF) could be used for
GBM EV analysis (Alix-Panabières and Pantel., 2021).

There are a variety of methods to isolate vesicles from biological
fluids. Ultracentrifugation procedure allows isolating vesicles with
good yield and acceptable purity for subsequent functional studies
(Ludwig et al., 2019). However, this method requires an expensive
special equipment (ultracentrifuge) and a lot of time. Moreover, the
vesicles obtained tend to aggregate or damage. The recommended
volume of the beginning sample is not less than 25 mL, which is
unreachable for biological fluids (Takov et al., 2018). These facts
make this method more suitable for laboratory use than for clinical
applications.

Ultrafiltration is also promising technique which allow to isolate
the particles of determined size depending on the diameter of the
pores in the selected membrane (Zhang et al., 2021). It seems to be
less complex and not so time-consuming than ultracentrifugation.
Dependence on the type of filter is the main difficulty of
ultrafiltration. Furthermore, the final samples contain much more
impurity non-vesicular proteins compared with samples isolated by
centrifugation. Nevertheless, the combination of these two methods
can solve the problem of aggregation and contamination (Lin et al.,
2019), but it is still not applicable in clinics.

The commercially available isolation kits simplify the isolation
of vesicles. These kits were shown to produce pure EVs with high
yield for a short time from a sample less than 1 mL in volume. No
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expensive special equipment is needed, but isolation kits based on
polymers change vesicles surface. It causes vesicle aggregation and
impossibility to separate GBM EVs from the total mass (Sjoqvist
et al., 2020).

Another isolation method is immunoaffinity capture. Antibody-
coated magnetic beads or nanoparticles are used to separate vesicles
with determined surface markers (Yousif et al., 2021). A new
Aethlon ADAPT™ system (adaptive dialysis-like affinity platform
technology) is a promising method for vesicles capture and
removing (Qian et al., 2022). It consists of affinity agents or
antibodies immobilized in the separator cartridges (Basu and
Ghosh., 2019). However, definition and selection of the most
specific GBM-markers is needed for future clinical applications of
this system. It is also important to easily remove vesicles from
antibody-coated matrix unless the vesicles would be damaged and
unsuitable for further studies.

Size-exclusion chromatography is the most perspective vesicle
isolation method, which is based on differential elution of biological
fluid components depending on their size, shape, and molecular
weight from stationary porous phase. It provides to obtain a very
pure EV sample with a high yield from a low volume of fluid for a
short time (Sidhom et al., 2020). However, the unwanted
interactions between molecules in samples and stationary phase
should be avoided. If the particles are not perfectly spherical, it may
elute at a different stage than other spherical vesicles. There
difficulties could lead to impurities in samples. Nevertheless, the
application of this method is becoming more common (Guan et al.,
2020).

Circulating EVs incapsulate specific GBM proteins, miRNAs,
mRNAs, DNA and preserve them from proteases, so studying of
vesicle-carried molecules could give more accurate results (Pathania
et al., 2021). The analysis of vesicular profiles can give information
about type, origin, differentiation and malignancy of brain tumor
and also predict the therapeutic response and patient prognosis.
RNAs described above are promising molecules to reach these goals
(Shi et al., 2020). Themain difficulty is to distinguish GBMEVs from
other EVs in biological fluid. Surface EV proteins such as CD44 and
CD133 could serve as biomarkers for GBM EVs because GSC
express these tetraspanins on cell surface. GSC are also
responsible for tumor metastasis and therapy resistance, which
makes CD44 and CD133 important protein markers. Several
GBM-associated vesicular components such as EGFRvIII,
mutated isocitrate dehydrogenase 1, miR-151a and miR-21 are
also interesting candidates for markers (Ludwig et al., 2022).

The analysis of EVs consists of quantitative and qualitative
characterization. The most frequently used in laboratory methods
(cryo-electron microscopy, nanoparticle tracking analysis, electron
microscopy) are not suitable for clinics because of complexity of
procedure and expensive special equipment needed (Nawaz et al.,
2014). For quantitative analysis dynamic light scattering could be
used due to wide size detection range and relative simplicity of
method. Size analyzers are more available equipment in comparison
with particle imagers used for nanoparticle tracking analysis (Tiwari
et al., 2020). The commercially available protein assay kits are also
could be used to determine the approximate amount of EVs in a
sample by the concentration of protein (Nguyen et al., 2020).
However, this method is inaccurate because of impurity proteins
occurs, but seems to be attractive due to its cheapness and simplicity.

The calibration for specific analysis conditions or kits measuring the
determined proteins could bring this method closer to clinical
application. Available qualitative methods include western blot,
ELISA and flow cytometry (Nawaz et al., 2014). Molecular
methods such as qRT-PCR or ddPCR are suitable for detection
in EVs from blood or CSF and showed a high specificity and
sensitivity (Azam et al., 2019).

The clinical application of EVs would simplify diagnosis and
choice of therapy. However, some difficulties need to be solved
first. For the beginning, the obtaining of EV sample with high
purity is a very challenging task - there is no satisfactory isolation
method that could provide good yield and high purity of samples
and not requiring expensive equipment or time-consuming
procedure. It may lead to low efficiency of the assay or false-
positive results because of technical limitations in removing of
contaminating proteins (Sidhom et al., 2020). Size-exclusion
chromatography and immunoaffinity capture are the most
promising methods for clinical application. As described above,
the usage of immunoaffinity capture is limited by absence of the
data about specific GBM-markers and impossibility to remove
antibodies (Guo et al., 2022). So, specific GBM EVs surface
markers are still needed to be defined and selected carefully.
Next, not all markers could be easily identified in both EVs
from blood and CSF because of differences in characteristics of
EVs from different sources and patients. Sensitivity and specificity
of the assays in early diagnostics and prognosis should be
improved. The problem of impurities in size-exclusion
chromatography could be solved by coupling of methods (Guan
et al., 2020), so a lot of work has to be done to prepare a mixed
protocol and to select optimal conditions.

Future perspectives of EV-based GBM
treatment

As described above, tumor EVs could be a reason of tumor
progression and consequent irreparable damage to the entire
body of the patient. They could also negatively influence the
efficiency of therapy. It is obvious that elimination of GBM-EVs
could improve the physical and mental state of patients and
change the course of treatment. To minimize damage from
vesicles, two strategies were suggested: blocking or inhibiting
the release or uptake of tumor EVs.

To inhibit vesicles release, proton pumps inhibitor can be used
(Federici et al., 2014). RAB27A and RAB27B proteins play an
important role in vesicle biogenesis and can act as a target in
cancer therapy. RAB27A inhibitors were shown to have a
therapeutic potential in cancers (Zhang et al., 2020). Research on
inhibition of glioma vesicles is at an early stage. MCT1, CD147,
annexin A1 and VEGF-A were found to be a potential anti-glioma
targets as silencing reduced vesicle release (Thakur et al., 2020; Treps
et al., 2017; Vecchi et al., 2021). GW4869 is believed to be a possible
anti-cancer therapeutic agent. GW4869 is a dihydroimidazolamide
compound that is used as a specific inhibitor of neutral
sphinogomyelinase which prevents the ceramide-dependent
budding of MVBs and release of exosomes from MVBs (Peng
et al., 2022). GW4869 was shown to reduce the levels of
extracellular vesicles in serum and brain in a mouse model of
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Alzheimer disease (Broekman et al., 2018), so it probably should be
tested in glioblastoma model.

Another way to influence the communication of tumor EVs and
microenvironmental cells is uptake inhibition. The involvement of
different glycoproteins on the vesicular membrane as well as the
recipient cell is supposed in this process. The crucial role of
heparanase and heparan sulfate proteoglycans in biogenesis of
EVs has been confirmed (Nicholson et al., 2019). It was reported
that the uptake of EVs from oral squamous cell carcinoma in vivo
was blocked in presence of heparin (Sento et al., 2016). Christianson
et al obtained the same result on model glioblastoma cell line U87
(Christianson et al., 2013). Heparin prevents interaction between
vesicles and recipient cells on the surface ligand binding stage. It is
supposed that heparin binds to cell receptors and interferes EV-
recipient cell binding. Another mechanism of heparin action is that
heparin causes aggregation of vesicles (Atai et al., 2013). Finally,
heparin treatment helped to avoid monocyte reprogramming during
incubation with patient-derived glioblastoma vesicles (Himes et al.,
2022). Unfortunately, studies on heparin in glioblastoma model in
vivo were not found in literature.

Another group of vesicle production inhibitors includes
inhibitors of clathrin- and caveolin-induced endocytosis.
Dynasore inhibits dynamin-2, which is essential for cell
membrane curvature changing (Thakur et al., 2021b).
Chlorpromazine binds surface receptors and inhibits formation
of clathrin-coated pits. Blocking of phosphatidyl serine with
annexin V also inhibits the EV uptake into microglia and other
recipient cells (Pancholi et al., 2022).

ExoBlock is a novel phosphatidyl serine-binding molecule, which
could be used to eliminate immunosuppressive vesicles from tumor
microenvironment. It has been shown that ExoBlock treatment
inhibited melanoma development in vivo and recovered T cell
function including clonal expansion and IFN-γ production.
Vesicular phosphatidyl serine was shown to reprogram macrophages
to immunosuppressive phenotype. ExoBlock could change the
polarization of macrophages to pro-inflammatory phenotype (Bhatta
et al., 2021; Shenoy et al., 2021). Probably, this reagent or its
counterparts will be useful in case of glioblastoma.

Immune checkpoint inhibitors could also be useful in cancer
treatment. Anti-PD-1 and anti-PD-L1 antibodies have shown to be
very promising in metastatic melanoma treatment (Chen et al.,
2018). In case of glioblastoma immune checkpoint inhibitors did not
demonstrate a survival benefit in phases 2 and 3 of clinical trials. It is
believed that glioblastoma cells have a lower expression of PD-L1
and TILs have lower expression of PD-1 compared to melanoma
(Ho andHo, 2021; Lawler et al, 2020). Onemore reason is absence of
tumor-specific T cells, which may be present in peripheral blood, but
not in tumor microenvironment (Lee, 2021).

Tumor-derived extracellular vesicles also can be used in anti-
cancer vaccines. The ability of EVs from tumors to inhibit anti-
cancer immune responses makes it impossible to use them directly
in vaccines. Moreover, EVs also have been reported to bear self-
recognition molecules MHC-1 on their surface (Basu and Ghosh.,
2019). Therefore, the usage of patient-deriver EVs in vaccines is
considered to have no immunologic effect. Antigen-presenting cells
could be a suitable intermediate between tumor EVs and activation
of anti-tumor immunity. For instance, DCs were shown to produce
specific dendritic cell-derived vesicles when incubated with tumor

vesicles. This DC vesicles activated antitumor CD8+ T cells in vivo
(Hao et al., 2007). The EV-based vaccines are currently being tested
for melanoma and non-small-cell lung carcinoma cases, but the
development of anti-glioma DS vesicles vaccine is also possible soon.

As described above, some studies showed the inhibitory effect of
glioma EVs on DCs (Wang et al., 2021b). It could be a serious
difficulty for application of EVs in anti-glioma vaccines. Dusoswa
et al identified the presence of sialic acid and the absence of DC-
SIGN ligands on the surface of glioblastoma EVs as the main reasons
of inhibitory effect. The desialylation of EVs and the insertion of
carbohydrate antigen palmitoyl-LewisY led to more than four-fold
increase in the EVs uptake by DC. The modification of tumor EVs
for DC targeting could solve the problem of DC inhibition by glioma
EVs and accelerate the development of EV-based anti-glioma
vaccine (Dusoswa et al., 2019).

All these strategies are very perspective, but they have been applied
only in preclinical studies. The main difficulty in release-uptake
inhibitors usage in therapy is the non-selectivity of action. The
inhibitors do not distinguish tumor-specific extracellular vesicle
interactions from normal physiological processes (Bhatta et al.,
2021). Much work will be needed to explore safe and effective
routine clinical applications. The application of glioma EVs in
vaccines could make some new difficulties too. The heterogeneity
and the variety of brain tumors raises a question of EV sample
selection. The vaccination with DC vesicles produced after
incubation with one type of glioma EVs does not exclude the
appearance of brain tumor characterized with another subtype,
different surface and inner markers, etc. Nevertheless, considering
numerous difficulties with glioma treatment and impossibility of full
recovery, the approach avoiding the appearance of brain tumor,
especially glioblastoma, could seem to be more attractive.

Conclusion

In conclusion, it should be stressed that we are still far from
understanding of intricate and extremely complex interplay between
various factors forming immune suppressive TME. Heterogeneity of
tumor cells, which is especially important in the case of GBM,
interactions with tumor stroma, including immune cells of different
origin and function, further complicate the task. Limitations of animal
models of human GBM and lack of genetic and molecular instruments
that would allow depletion of tumor EVs and/or definitive dissection of
mechanisms utilized by EVs to transfer molecules/information slow
down the progress in the field. On the positive side, tumor-derived EVs,
especially, from GBM patients are recognized now as essential factor
that may adversely influence the prognosis and efficacy of anti-tumor
therapy. Other clinically useful feature of the GBM-EVs is their unique
molecular signature which will have increasing value in non-invasive
and early GBM diagnostics.
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Glossary

ADP Adenosine diphosphate

Akt Protein kinase B

ALG Apoptosis-linked gene 2

Alix ALG-2-interacting protein X

AMP Adenosine monophosphate

AS1 Antisense RNA 1

ATP Adenosine triphosphate

Bcl-xL B cell lymphoma-extra large

CBTRUS The Central Brain Tumor Registry of the United States

CCL12 Chemokine ligand 12

CCR4 C-C chemokine receptor type 4

CD Cluster of differentiation

CLTC Clatrin

CNS Central nervous system

CSCs Cancer stem cells

CSF Cerebrospinal fluid

CTLA-4 Cytotoxic T-lymphocyte-associated protein 4

DC Dendritic cell

DC-SIGN Dendritic Cell-Specific Intercellular adhesion molecule-
3-Grabbing Non-integrin

EGF Epidermal growth factor

EGFR EGF receptor

EGFRvIII EGFR variant III (mutated)

EV Extracellular vesicles

FasL Fas ligand

FoxP3 Forkhead-box P3

GBM Glioblastoma

GBM-EVs EVs from GBM

GSC Glioblastoma stem cell

HERV Human endogenous retroviruses

HLA Human leucocyte antigen

HLA-DR Human leucocyte antigen DR isotype

HOTAIR HOX transcript antisense RNA

HOX Homeobox gene

HSP Heat shock protein

IDO1 Indoleamine-2,3-dioxygenase 1

IFN-ɣ Gamma interferon

IL Interleukin

ITAM Immunoreceptor tyrosine-based activation motif

IκBα Nuclear factor of kappa light polypeptide gene enhancer in
B-cells inhibitor, alpha

Ki67 Marker Of Proliferation

LDHB Lactate dehydrogenase B

LGALS9 Galectin-9

lncRNA Long non-coding RNA

LTRs Long terminal repeats

MCP-1 Monocyte chemoattractant Protein 1

MDSC Myeloid-derived suppressor cells

MHCII Major histocompatibility complex class II

miR MicroRNA

MRI Magnetic resonance imaging

mRNA Messenger RNA

MT1-MMP Membrane type 1-matrix metalloproteinase

MVB Multivesicular bodies

ncRNA Non-coding RNA

NF-κB Nuclear factor kappa B

PBMC Peripheral blood mononuclear cells

PD-1 Programmed cell death 1

PD-L1 Programmed cell death ligand-1

PGK1 Phosphoglycerate kinase 1

PI3K Phosphatidylinositol-4,5-bisphosphate 3-kinase

piRNA Piwi-interacting RNA

PRKDC DNA-dependent protein kinase, catalytic subunit

PTEN Phosphatase and tensin homolog

ROR1 Regulator of reprogramming 1

RORα Retinoic acid receptor-related orphan receptor alpha

SBF2 SET Binding factor

SHP Src homology region 2 domain-containing phosphatase-1

Siglec-9 Sialic acid-binding Ig-like lectin 9

SINEs Short interspersed nuclear element

snoRNA Small nucleolar RNA

snRNA Small nuclear RNA

STAT5 Signal transducer and activator of transcription 5

TCR T cell receptor

TGF-β Transforming growth factor beta

TILs Tumor infiltrating lymphocytes

TIM-3 T cell immunoglobulin and mucin domain containing-3

TME Tumor microenvironment

TMZ Temozolomide

TNF Tumor necrosis factor

TRAIL TNF-related apoptosis-inducing ligand

Treg Regulatory T cells

Tsg101 Tumor susceptibility gene 101

VEGF Vascular endothelial growth factor

VIME Vimentin
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