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Background: Clear cell renal cell carcinoma (ccRCC), which is the most prevalent
type of renal cell carcinoma, has a high mortality rate. Lipid metabolism
reprogramming is a hallmark of ccRCC progression, but its specific mechanism
remains unclear. Here, the relationship between dysregulated lipid metabolism
genes (LMGs) and ccRCC progression was investigated.

Methods: The ccRCC transcriptome data and patients’ clinical traits were obtained
from several databases. A list of LMGs was selected, differentially expressed gene
screening performed to detect differential LMGs, survival analysis performed, a
prognostic model established, and immune landscape evaluated using the
CIBERSORT algorithm. Gene Set Variation Analysis and Gene set enrichment
analysis were conducted to explore the mechanism by which LMGs affect
ccRCC progression. Single-cell RNA-sequencing data were obtained from
relevant datasets. Immunohistochemistry and RT-PCR were used to validate
the expression of prognostic LMGs.

Results: Seventy-one differential LMGs were identified between ccRCC and
control samples, and a novel risk score model established comprising 11 LMGs
(ABCB4, DPEP1, IL4I1, ENO2, PLD4, CEL, HSD11B2, ACADSB, ELOVL2, LPA, and
PIK3R6); this risk model could predict ccRCC survival. The high-risk group had
worse prognoses and higher immune pathway activation and cancer
development.

Conclusion: Our results showed that this prognostic model can affect ccRCC
progression.

KEYWORDS

clear cell renal cell carcinoma, lipid metabolism genes, differentially expressed genes,
prognostic genes, single-cell analysis, early diagnosis

OPEN ACCESS

EDITED BY

Roberto Piñeiro,
Health Research Institute of Santiago de
Compostela (IDIS), Spain

REVIEWED BY

M. Celeste Simon,
University of Pennsylvania, United States
Matteo Ferro,
European Institute of Oncology (IEO),
Italy

*CORRESPONDENCE

Zhangzhe Peng,
pengzhangzhe@csu.edu.cn

Hui Xu,
xuhuiye@csu.edu.cn

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to Cancer Cell
Biology, a section of the journal
Frontiers in Cell and Developmental
Biology

RECEIVED 24 October 2022
ACCEPTED 18 January 2023
PUBLISHED 14 February 2023

CITATION

Li K, Zhu Y, Cheng J, Li A, Liu Y, Yang X,
Huang H, Peng Z and Xu H (2023), A novel
lipid metabolism gene signature for clear
cell renal cell carcinoma using integrated
bioinformatics analysis.
Front. Cell Dev. Biol. 11:1078759.
doi: 10.3389/fcell.2023.1078759

COPYRIGHT

© 2023 Li, Zhu, Cheng, Li, Liu, Yang,
Huang, Peng and Xu. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Original Research
PUBLISHED 14 February 2023
DOI 10.3389/fcell.2023.1078759

https://www.frontiersin.org/articles/10.3389/fcell.2023.1078759/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1078759/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1078759/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1078759/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2023.1078759&domain=pdf&date_stamp=2023-02-14
mailto:pengzhangzhe@csu.edu.cn
mailto:pengzhangzhe@csu.edu.cn
mailto:xuhuiye@csu.edu.cn
mailto:xuhuiye@csu.edu.cn
https://doi.org/10.3389/fcell.2023.1078759
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2023.1078759


1 Introduction

The Global Cancer Statistics of 2020 revealed that more than
431,000 individuals were diagnosed with primary renal carcinoma,
with more than 179,000 of these individuals dying (Sung et al., 2021).
Renal cell carcinoma (RCC) comprises a group of malignant tumors
that originate in nephrons. In 2022, 79,000 new cases and 13,920 deaths
associated with RCC was reported in the United States (Siegel et al.,
2022). Clear cell RCC (ccRCC) is the most prevalent type of RCC
(Humphrey et al., 2016; Obradovic et al., 2021) and it is not susceptible
to chemoradiotherapy (Hsieh et al., 2017). Antiangiogenic agents that
target the vascular endothelial growth factor pathway, inhibitors of the
mammalian target of rapamycin (mTOR) pathway, and
immunotherapy with programmed cell death one pathway blockers
have all been shown to improve disease control (Atkins and Tannir,
2018). Unfortunately, the current five-year survival rate for patients
with advanced ccRCC is only 10% (Sanchez-Gastaldo et al., 2017),
which is more than 90% lower than that of patients without metastases.
Therefore, the recognition of biomarkers for early diagnosis would be of
great clinical significance. With the emergence of omics technologies
such as genomics and imaging, multi-omics analysis of urinary tract
tumors has become a reliable way to effectively search for prognostic
assessment molecules and potential therapeutic targets (Ferro et al.,
2022). Several prognostic molecules have been identified through
genomic analysis of kidney cancer, among which BAP1 mutations
have been suggested to be associated with a lower ccRCC survival rate
(Motzer et al., 2020).

Lipids are important biomolecules that are diverse and have
complex structures; these structures determine the diversity and
complexity of their functions. The tumorigenic effects and
underlying mechanisms of lipid accumulation common in many
cancers are still poorly understood, but there are many studies
reporting a link between lipids and renal cancer. The most common
subtype of RCC is ccRCC, which is characterized by lipid-rich
cytoplasmic deposits (Shen et al., 2021), and all types of RCC are
associated with reprogramming of fatty acid (FA) metabolism
(Chakraborty et al., 2021). In RCC, lipid synthesis and metabolism
are significantly altered. Inhibition of FA metabolism promotes lipid
deposition in ccRCC and cancer progression (Du et al., 2017).
Meanwhile, inactivation of the AMPK-GATA3-ECHS1 pathway in
ccRCC can promote FA synthesis and tumor cell growth (Qu et al.,
2020). In RCC, the expression of enzymes involved in lipid metabolism
was also altered. Transcription factor E2F1 is overexpressed in RCC and
can promote the expression of lipogenic enzymes, thereby promoting
tumor growth and metastasis (Shen et al., 2021). In addition, inhibitors
of FA synthase inhibited the growth and invasion of renal cancer cells
(Horiguchi et al., 2008). Many FA-related proteins have been reported
to be closely related with ccRCC, such as FABP7 (Nagao et al., 2018)
and FATP4 (Kim et al., 2019).

In the hypoxic, acidic, and nutrient-deficient tumor
microenvironment (TME), cancer and immune cells tend to use
lipids as a source of energy and signaling molecules. In TME, lipids
are a double-edged sword that can support both antitumor and pro-
tumor immune responses (Yu W et al., 2021). Lipid deposition and
reprogramming of lipid metabolism are common in the TME of
RCC. Lipids can affect both tumor and immune cells (Xia et al.,
2021). FAs are directly involved in the signaling of immune cells,
thereby regulating their function (Xia et al., 2021). High cholesterol

can disrupt the lipid metabolism network in T cells, thus exerting an
immune suppression function (Li et al., 2003). High cholesterol
expression in tumor cells can protect them from immune
surveillance and other treatments (Xia et al., 2021). Therefore,
more attention should be focused on the changes in immune
infiltration caused by lipid metabolism in RCC.

This study attempted to develop a prognostic model based on lipid
metabolism genes (LMGs) to predict patient survival in The Cancer
Genome Atlas-Kidney Renal Clear Cell Carcinoma (TCGA-KIRC)
dataset. The results were then validated using four independent
datasets, including integrated single-cell RNA-sequencing data
(scRNA-Seq) from the Gene Expression Omnibus (GEO) database.
This study not only aimed to reveal the relationship between lipid
metabolism changes and ccRCC pathogenesis, but also to determine the
molecular mechanism and provide insights into novel therapeutic
targets for ccRCC treatments.

2 Materials and methods

2.1 Data collection and single-cell RNA-
sequencing data processing

The workflow for this current study is presented in Figure 1. The
gene expression RNA-Seq datasets GSE126964 (Zhao et al., 2020)
and GSE167573 (Sun et al., 2021), were selected and downloaded
from the GEO database (https://www.ncbi.nlm.nih.gov/geo/). The
expression matrix was annotated with gene symbols using
information from the GPL20795 and GPL20795 platform files.
GSE126964 contained 55 ccRCC tumor tissues and 11 matched
normal tissues, and GSE167573 contained 63 ccRCC tumor tissues
and 14 adjacent normal tissues. All data were processed using R
(version 4.0.4) and RStudio (version 1.2.5033).

TCGA-KIRC RNA-Seq data (both TPM and count data) and
associated clinical information were obtained from the University of
California, Santa Cruz (UCSC) browser Xena (http://xena.ucsc.
edu/).

The scRNA-Seq data from GSE131685 (Liao et al., 2020) and
GSE171306 (Yu Z et al., 2021) were downloaded from the GEO
database and processed using the R package “Seurat” (version 4.0.2)
(Hao et al., 2021). Three healthy kidney samples from
GSE131685 and two ccRCC samples from GSE171306 were
merged for further analysis. The scRNA-Seq data were processed
following a previously described method (Huang et al., 2021). Cell
clusters were annotated manually using the R package “SingleR”
(version 1.4.1) and previously published results. The t-distributed
stochastic neighbor (t-SNE) algorithm was used to explore and
visualize cluster classifications across cell samples. Trajectory and
pseudotime analyses of ccRCC tumor cells were performed using the
R package “monocle” (Qiu et al., 2017).

2.2 Differentially expressed gene (DEG)
identification

The “limma” R package (version 3.48.0) (Ritchie et al., 2015) was
used to identify DEGs between ccRCC and normal samples in data
from the GSE126964 and TCGA-KIRC datasets. The cut-off criteria
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(adjusted p-value and |log2fold change|) were set as <0.05 and ≥2.0,
respectively. Heatmap plots were generated using the R package
“pheatmap” (version 1.0.12).

2.3 Univariate Cox, least absolute shrinkage
and selection operator (LASSO), and
multivariate Cox regression analyses

Univariate Cox regression analysis was performed to screen
differential LMGs that were significantly associated with overall
survival (OS) in the TCGA-KIRC dataset. Genes with p <0.1 were
included in subsequent research.

The LASSO regression analysis was performed using the R
package “glmnet” (version 4.1–2). The independent variable in
the regression was the normalized expression matrix of candidate
differential LMGs; response variables were OS and patient status in
the TCGA-KIRC cohort. Then, multivariate Cox regression model
analysis was performed to establish a Cox proportional hazard
regression prognostic model. The risk score was determined
using the following formula:

Risk Score � ∑
n

i�1
βi × Exp i

where β designates the regression coefficient and Exp designates the
expression levels of each lipid metabolism gene, i., Samples in the
TCGA-KIRC cohort were divided into high- or low-risk groups
according to their median risk scores. Receiver operating
characteristic (ROC) and Kaplan-Meier analyses were conducted
between the high- and the low-risk groups.

2.4 Mutation analysis

The R package “maftools” (version 2.6.05) was used to calculate
the tumor mutation burden score for each sample from high- and
low-risk groups and to generate the oncoplot waterfall plot.

2.5 Analysis of tumor-infiltrating immune
cell abundance

The CIBERSORT algorithm (https://cibersort.stanford.edu/)
(Newman et al., 2015) was used to assess the proportions of
22 types of infiltrating immune cells, based on the TCGA-KIRC
dataset. Wilcoxon signed-rank tests were used to compare these
22 types of immune cells between groups; the R package “ggplot2”
(version 3.3.5) was used for visualization. Correlation analysis of the

FIGURE 1
Schematic diagram of the workflow of the present study.
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relationship between risk score and immune cells was visualized
using the “corrplot” R package (version 0.92).

2.6 Biological function prediction

Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
was conducted on the high- and low-risk groups via Gene Set
Variation Analysis (GSVA). Reference information was
downloaded from the Molecular Signature Database v7.4
(MSigDB v7.4, http://software.broadinstitute.org/gsea/msigdb/
index.jsp) (Hanzelmann et al., 2013). Enriched pathways with
false discovery rates of <0.05 were considered statistically significant.

Gene set enrichment analysis (GSEA) was used to detect
potential molecular mechanisms of the prognostic model.
Enriched terms that were predicted to be associated with the
KEGG pathway in c2.cp.v7.2.symbols.gmt and Gene Ontology
(GO) terms in c5.all.v7.2.symbols.gmt were screened using GSEA.
A p-value of <0.05 was considered statistically significant.

2.7 Cell culture

The ccRCC 786-o and human embryonic kidney HEK293 cell
lines were purchased from the Cell Lab of Central South University.
The cell lines were maintained in Dulbecco’s Modified Eagle’s
Medium with high glucose (Procell Life Science and Technology
Co., Ltd., Wuhan, China) and 10% fetal bovine serum (Procell Life
Science and Technology Co., Ltd.). Cells were maintained at 37°C in
a humidified incubator with 5% CO2.

2.8 RNA isolation and RT-PCR

Total RNA of cell samples was extracted using the TRIzol reagent
(Solarbio, Beijing, China) and subjected to reverse transcription with
random primers using the RevertAid First Strand cDNA Synthesis Kit
(Thermo Fisher Scientific, United States). The expression level of
targeted genes was measured with the Maxima SYBR Green/ROX
qPCR Mix (Thermo Fisher Scientific, United States) using a real-time
PCR system (Roche, Basel, Switzerland). Relative RNA expression levels
were calculated using the 2(−△△CT) method and U6 as an internal
control. Primer sequences will be provided upon request.

2.9 Protein expression level analysis in the
human protein atlas (HPA) database

Immunohistochemistry images of ccRCC and normal renal
samples were obtained from the HPA database (https://www.
proteinatlas.org/).

2.10 Statistical analysis

Statistical analyses were performed with GraphPad Prism
(version 8.0) using Student’s t test. Data were considered
significant when *p ≤ 0.05, **p ≤ 0.01, or ***p ≤ 0.001.

3 Results

3.1 Expression profile of LMGs

In total, 1,045 LMGs were selected (Supplementary Table S1)
based on previous studies (Li et al., 2020). Intersection analysis of the
DEGs in TCGA-KIRC and GSE126964 datasets screened out a total
of 71 differential LMGs (Figure 2A). Of these LMGs, univariate Cox
regression analysis identified thirty-four OS-related LMGs (p < 0.1);
part of these LMGs and their chromosomal locations are
summarized in Figure 2B and Supplementary Table S2.

In the TCGA-KIRC and GSE126964 databases, LMG expression
profiles of ccRCC were higher for ABCB4, CD36, CYP2J2, PLIN2,
ELOVL2, APOC1, TRIB3, LGALS1, ENO2, MMP1, PLA2G2D,
PIK3R6, IL4I1, ALOX5, PLD4, and TNFAIP8L2 compared with
those of normal tissues, whereas a lower expression was observed
for ACADSB, HSD11B2, PTGER3, HMGCS2, PCK1, G6PC, ADH6,
HAO2, CYP3A4, LPA, DPEP1, PCK2, FABP1, REEP6, CYP27B1,
CEL,CYP4F3, andAPOH (Figures 2C, D). These genes were used for
subsequent analysis.

3.2 Establishment of a prognostic model

The 34 OS-related LMGs were included in subsequent LASSO
analysis (Figure 3A, B). Following cross validation, 19 genes
achieved the minimum partial likelihood deviance (ABCB4,
ALOX5, DPEP1, PTGER3, TRIB3, IL4I1, ENO2, G6PC,
HMGCS2, PLIN2, PLD4, CEL, HSD11B2, CYP4F3, ACADSB,
MMP1, ELOVL2, LPA, and PIK3R6). Multivariate Cox
regression analysis then established a prognostic model
consisting of a risk signature comprising 11 genes (ABCB4,
DPEP1, IL4I1, ENO2, PLD4, CEL, HSD11B2, ACADSB,
ELOVL2, LPA, and PIK3R6; Figure 3C). The formula for risk
score calculation was as follows: risk score = (−0.228047)*ABCB4
+ (−0.110986)*DPEP1 + 0.197628*IL4I1 + 0.120200*ENO2 +
(−0.229000)*PLD4 + 0.334393*CEL + (−0.124687)*HSD11B2 +
(−0.301579)*ACADSB + 0.121264*ELOVL2 + (−1.078219)*LPA
+ 0.231621*PIK3R6.

Kaplan-Meier analysis showed that patients with high-risk
scores had statistically shorter survival times than those with
low-risk scores, both in the training (TCGA-KIRC) and testing
cohort (GSE167573) (Figures 3D, E). For ROC analysis, the area
under the curve (AUC) for the 1-, 3-, and 5-year survival rates were
0.789, 0.745, and 0.755, respectively, indicating that the model’s
predictive effect was good in the training cohort (TCGA-KIRC)
(Figure 3D). In the testing cohort (GSE167573), the AUC values for
the 1-, 3-, and 5-year survival rates were 0.774, 0.741, and 0.397,
respectively (Figure 3E). Additionally, the risk score and these
11 genes were all significantly associated with poor prognoses
and histology grades for each of the TCGA-KIRC, GSE167573,
and GSE126964 datasets (Figures 3D, E; Supplementary Figure S1).

3.3 Gene mutations in different risk groups

According to somatic mutation data, the genes, VHL, PBRM1,
TTN, SETD2, and BAP1, had the highest mutation frequencies.
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Somatic mutation landscapes of the high- and low-risk groups
exhibited a distinct mutation ratio in the TCGA-KIRC cohorts.
Most gene mutations were more frequent in the high-risk group
than they were in the low-risk group (Figures 4A, B).

3.4 Association between ccRCC progression
pathways and risk score groups

The GSVA results suggested that LMGs included in the risk
score model could modulate pathways of the TCA cycle,
adipocytokine signaling, FA metabolism, endometrial cancer,
cytokine-cytokine receptor interaction and prostate cancer
(Figure 4C). GO biological process and KEGG analyses from
GSEA, based on DEGs between the high- and low-risk groups of
the TCGA-KIRC dataset, also supported this conclusion
(Figures 4D, E).

3.5 Immune microenvironment differed
between risk groups

After analyzing tumor-infiltrating immune cell abundance in
the TCGA-KIRC dataset using the CIBERSORT algorithm, we
drew a heatmap of the 22 infiltrating immune cell types
(Figure 5A). Next, we performed correlation analysis between
tumor infiltrating immune cells. The highest significantly
positive correlation was between activated CD8 and follicular
helper T cells, whereas the highest significantly negative
correlation was between CD8 and CD4 memory resting
T cells (Figure 5B). Comparison analysis revealed that the
infiltration level of the “Plasma cells,” “T cells CD8,” “T cells
CD4 memory activated,” “T cells follicular helper,” “T cells
regulatory (Tregs),” and “Macrophages M0” were significantly
higher in the high-risk group than in the low-risk
group. However, “B cells memory,” “T cells CD4 memory

FIGURE 2
Screening for differential lipid metabolism genes (LMGs). (A) Venn diagram of common differential LMGs between GSE126964 and TCGA-KIRC
datasets. (B) Chromosomal locations of LMGs. Heatmap illustrating LMG expression differences between clear cell renal cell carcinoma (ccRCC) and
normal tissues in (C) TCGA-KIRC and (D) GSE126964 databases.
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resting,” “T cells gamma delta,” “Macrophages M2,” “Dendritic
cells resting,” “Mast cells resting,” and “Eosinophils” were
significantly lower in the high-risk group (Figure 5C). Finally,
we analyzed the correlation between infiltrating immune cell
types and risk scores. The results showed that Macrophages M0,
Tregs, plasma cells, T cells CD8, T cells follicular helper, T cells
CD4 memory activated and B cells memory were significantly
positively correlated with the risk score, whereas the risk score
had a significantly negative correlation with mast cells resting,
T cells CD4 memory resting, dendritic cells resting,
Macrophages M2, T cells gamma delta, eosinophils and
dendritic cells activated (Figure 5D). Collectively, our results
show that these 13 cell types (plasma cells, T cells CD8, T cells
CD4 memory activated, T cells follicular helper, Tregs,
Macrophages M0, Macrophages M2, B cells memory, T cells
CD4 memory resting, T cells gamma delta, Dendritic cells
resting, mast cells resting, and eosinophils) may play an
important role in the lipid metabolism related ccRCC
microenvironment.

3.6 Single-cell transcriptomic context of
prognostic LMGs

The scRNA-Seq data from GSE131685 (containing three
healthy kidney samples) and GSE171306 (containing two
ccRCC samples) datasets further verified the prognostic model
and expression profiles of LMGs. In detail, a total of 27 different
cell clusters and five cell groups were identified (Figures 6A, B;
Supplementary Figure S2). Calculating the risk scores for each
cell and constructing t-SNE and violin plots (Figure 6C;
Supplementary Figure S3A, B) revealed that most prognostic
LMGs showed differential expression signatures between
different cell types (from ccRCC and healthy renal tissues),
similarly to the abovementioned results in the
transcriptome data.

The tumor cells were profiled and arranged into four clusters:
tumors 1–4 (Figure 7A). Pseudotime and trajectory analyses
revealed a continuous cell fate that started at tumor 2 and tumor
3, then progressed towards tumor 1 (tumor 4 was a transitioning

FIGURE 3
Prognostic model constructed based on lipid metabolism genes (LMGs). (A, B) Least absolute shrinkage and selection operator (LASSO) regression
complexity (controlled by lambda using the R package “glmnet”). (C) Multivariate analysis of risk LMGs in clear cell renal cell carcinoma (ccRCC). (D)
Survival and receiver operating characteristic (ROC) analyses between high- and low-risk score groups in the training cohort (TCGA-KIRC). (E) Survival
and ROC analyses between high- and low-risk score groups in the testing cohort (GSE167573).
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state; Figures 7B, C). The distribution of risk scores was also
visualized in relation to LMGs (Figure 7D; Supplementary Figure
S4A–C). The risk score results indicated a differentiation trajectory

from low- (tumors 2 and 3) to high-risk tumor cells (tumors 4 and
1). Together, these results further validated the predictive effect of
the developed LMG prognostic model.

FIGURE 4
Landscape of mutation profiles and pathway enrichment between patients with high and low-risk clear cell renal cell carcinoma (ccRCC). Waterfall
plots representing mutation information in each sample for (A) high- and (B) low-risk groups. (C) Heatmap of KEGG analysis based on risk scores in the
TCGA-KIRC dataset. GSEA analysis for (D) GO biological process and (E) KEGG enrichment in the TCGA-KIRC dataset according to risk score.
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3.7 Validation of mRNA and protein
expressions of prognostic LMGs

RT-PCR results showed that the expression of ACADSB, CEL,
ELOVL2, ENO2, and IL4I1 were significantly higher in the 786-o
cell line compared with that in HEK293. However, expression of
ABCB4, DPEP1, HSD11B2, and PLD4 were significantly lower in
ccRCC cell lines (Figure 8A). Immunohistochemistry staining
results from the HPA database validated the expression levels of
prognostic LMGs. ABCB4, ENO2, IL4I1, and PIK3R6 proteins
were upregulated in ccRCC samples compared with those in
normal controls, whereas expression levels of ACADSB, DPEP1,
HSD11B2, and LPA were downregulated (Figure 8B).
Collectively, only ENO2, IL4I1, DPEP1, and HSD11B2 had a
similar expression pattern at the transcriptional and
translational levels.

4 Discussion

The most prevalent type of RCC with a high mortality rate is
ccRCC. It is therefore important to identify biomarkers for the
early diagnosis of ccRCC. Here, a novel prognostic model was
developed based on 11 lipid metabolism genes (ABCB4, DPEP1,
IL4I1, ENO2, PLD4, CEL, HSD11B2, ACADSB, ELOVL2, LPA,
and PIK3R6). Eight LMGs (ABCB4, DPEP1, IL4I1, PLD4, CEL,
HSD11B2, ACADSB, and PIK3R6) were also identified as
independent prognostic markers for ccRCC via integrated
bioinformatics analysis.

Metabolic disorders, especially lipid metabolism disorders, are a
hallmark for ccRCC progression. The term “clear cell” alludes to the
lipid and glycogen-rich cytoplasmic deposits that form in ccRCC
tumor cells (Sim and Johnson, 2015). Bianchi et al. (2017)
performed oil red staining in ccRCC tissue sections and primary

FIGURE 5
Tumor-infiltrating immune cell landscape estimation. (A) Heatmap of 22 infiltrating immune cell types in the TCGA-KIRC dataset. (B) Correlation
between different infiltrating immune cell subtypes. Blue represents negative correlation and red represents positive correlation. *, p < 0.05. (C)
Differences in distribution of the tumor-infiltrating immune cells between high- and low-risk groups. *p < 0.05, **p < 0.01, ***p < 0.001. (D) Correlation
analysis of the risk score and different infiltrating immune cell subtypes.
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cell cultures, confirming the abundance of lipid-loaded deposits
inside tumor cells. However, the detailed mechanism of this lipid
storage and its role in ccRCC are unclear. Qiu et al. (2015) proposed
that lipid storage in ccRCC cells maintains the integrity of the
endoplasmic reticulum (ER) and suppresses cytotoxic ER stress
responses, thereby promoting tumor cell survival. At the
molecular level, the LoF mutation or downregulation of the von
Hippel–Lindau (VHL) gene has been identified in over 90% of
ccRCC cases (Latif et al., 1993; Noonan et al., 2016). As an
E3 ubiquitin ligase, VHL can target alpha subunits of the
hypoxia-inducible factor (HIF) heterodimeric transcription factor
for ubiquitin-mediated degradation. Following the LoF of VHL,
HIFs are constitutively activated (Shen and Kaelin, 2013). Du et al.
(2017) recently found that the lipid loading of lipid droplets inside
ccRCC cells was driven by repression of carnitine
palmitoyltransferase 1A (CPT1A). CPT1A is a HIF target gene
that participates in the transportation of FA into mitochondria.
When HIFs were activated by the downregulation of VHL, the
system of FA transport entry into the mitochondrion was destroyed
by CPT1A suppression, forcing FAs to act as lipid droplets for
storage in tumor cells . Here, analysis of ccRCC transcriptome data
further confirmed the expression shift of LMGs between ccRCC and
normal tissues (Figure 2C, D; Figure 4A, Figure 5, Figure 6C), even
in pan-cancer (Supplementary Figure S5). LMGs, including ABCB4,
DPEP1, IL4I1, PLD4, CEL, HSD11B2, ACADSB, and PIK3R6, were
also identified as independent prognostic factors for ccRCC.

ATP Binding Cassette (ABC) transporters belong to a family
containing various molecules found across extra- and intra-
cellular membranes. Many available data have provided
evidence for their potential role in cancer development and
drug resistance (Fletcher et al., 2010; Nobili et al., 2020). To
date, 49 different ABC transporters of seven subfamilies (A–G)
have been identified in humans. Among them, ABCA, ABCB, and
ABCC are the largest subfamilies. As a member of ABCB,
ABCB4 is located in the canalicular membrane of hepatocytes
and acts as a translocator of phospholipids into bile, and defects
may cause rare biliary diseases (Smit et al., 1993; Wang et al.,
2009). Thus, Abcb4−/− mice are widely used as a model for
sclerosing cholangitis (Reich et al., 2021). Recently,
accumulating evidence indicates that ABCB4 has a close
relationship with tumor progression. Huang et al. (2018)
showed that ABCB4 mediated the efflux transport of
doxorubicin and contributed to the acquired resistance of the
drug in breast cancer cells. Furthermore, ABCB4 takes part in 5-
fluorouracil resistance. Hu et al. (2018) revealed that loss of
ABCB4 may enhance the resistance of colon cancer to 5-
fluorouracil via inhibiting apoptosis. However, the underlying
mechanism of ABCB4 in ccRCC requires further research.

DPEP1, also known as kidney membrane dipeptidase, is
involved in the metabolism of glutathione. DPEP1 is highly
expressed in proximal tubular cells and peritubular capillaries of
the normal kidney (Choudhury et al., 2019; Nitanai et al., 2002). Lau

FIGURE 6
Prognostic expression profile based on single-cell sequencing analysis. (A, B) Composition and distribution of single cells from GSE131685 and
GSE171306 datasets. (C) Expression profiles of ABCB4, DPEP1, IL4I1, ENO2, PLD4, CEL, HSD11B2, ACADSB, ELOVL2, LPA, and PIK3R6, and risk scores for
each cell. t-SNE, t-distributed stochastic neighbor; Im., immune; Epi., epithelial; Endo., endothelial; Mes, mesenchymal; CD, collecting duct; CT,
connecting tubule; iEn, injured endothelial cells; Fib, fibroblast; Mast, mast cell; MC,macrophage; Mono,monocyte; PT, proximal tubule; iPT, injured
proximal tubule; VR, vasa recta.
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et al. (2022) reported that DPEP1 deficiency could block neutrophil
adhesion to peritubular capillaries and reduce inflammatory
monocyte recruitment to the kidney after ischemia reperfusion
injury, and DPEP1 itself could be a potential therapeutic target
for acute kidney injury. DPEP1 has also been implicated in several
types of cancers. Ren et al. (2021) identified DPEP1 as one of six
antioxidant genes that regulate ccRCC. Cui X et al. (2019) revealed
that the overexpression of DPEP1 could distinctly activate PI3K/
Akt/mTOR signaling, thereby promoting hepatoblastoma cell
proliferation, migration, and invasion (Cui X et al., 2019). In our
study, DPEP1 showed significantly low expression in ccRCC
(Figures 2C, D). Survival analysis showed that downregulation of
DPEP1 was associated with poor prognosis in ccRCC patients
(Figure 3). However, the detailed mechanism underlying the
involvement of DPEP1 in ccRCC remains unclear.

Interleukin-4-induced-1 (IL4I1) is a glycosylated protein that
belongs to the L-amino-acid oxidase family (Lasoudris et al., 2011;
Molinier-Frenkel et al., 2019). A recent study revealed that IL4I1
expression was enhanced in most tumor entities compared with that
of normal tissues, and IL4I1 is a metabolic immune checkpoint,
thereby suppressing adaptive immune responses and promoting
chronic lymphocytic leukemia progression (Sadik et al., 2020).
Moreover, IL4I1 was found to play a critical role in the
development of ovarian cancer (Zhao et al., 2021), head-neck
cancer (Mazzoni et al., 2021), cutaneous melanoma (Prevost-
Blondel and Richard, 2019), and ccRCC (Liu et al., 2020). These
findings suggest that IL4I1might be a potential therapeutic target for
patients with ccRCC.

Phospholipase D4 (PLD4) is a member of the phospholipid
enzyme family. Previous research has found that the expression of

FIGURE 7
Pseudotime and trajectory analyses of tumor cells. (A) The t-distributed stochastic neighbor (t-SNE) plot of four clusters of tumor cells. (B, C)
Tendency curve from tumor 2 and tumor 3 clusters to tumor 1 and tumor 4 clusters. The y-axis shows the value of principal component 1 (the first
principal direction of maximum sample change) and x-axis shows the value of principal component 2 (second principal direction of maximum sample
change). (D) Expression profiles of risk scores annotated in pseudotime and the trajectory plot.
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PLD4 is upregulated in mice and human kidneys after fibrosis.
Blocking PLD4 expression protected mice from folic acid–induced
kidney fibrosis and inhibited the increase in TGF-β signaling
(Trivedi et al., 2017). However, the potential roles of PLD4 in
tumor progression is still largely unknown. Only Gao et al.
(2017) reported that PLD4 might promote the activation of
M1 macrophages and thereby suppress colon cancer. Here, we

firstly identified PLD4 as an independent prognostic marker for
ccRCC, though in-depth research into its role in ccRCC is still
lacking.

Carboxyl ester lipase (CEL) is a lipolytic enzyme that can
hydrolyze a wide variety of lipid substrates, including cholesteryl
esters, glycerides, phospholipids, and ceramide (Hui et al., 2002).
CEL is mainly expressed in the pancreas and lactating mammary

FIGURE 8
Validation of mRNA and protein expressions of prognostic lipid metabolism genes (LMGs). (A) The expression level of ABCB4, DPEP1, IL4I1, ENO2,
PLD4,CEL,HSD11B2, ACADSB, and ELOVL2 between HEK293 and 786-o cell lines were detected using RT-PCR. Data are shown asmean ± SD. Statistical
significance was measured using Student’s t test. *p < 0.05; **p < 0.01; ***p < 0.001. (B) Protein expression levels of ABCB4, DPEP1, IL4I1, ENO2, PLD4,
CEL, HSD11B2, ACADSB, LPA, and PIK3R6 in tumor and normal tissues. Bar: 200 μm.
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glands (Xiao et al., 2016). As a novel tumor-associated gene, CEL has
been implicated in breast (Cui Y et al., 2019) and pancreatic cancers
(Dalva et al., 2017). However, the underlying mechanism by which
CEL participates in tumor progression requires further research.

In the TME, the above 11 genes (ABCB4, DPEP1, IL4I1, ENO2,
PLD4, CEL, HSD11B2, ACADSB, ELOVL2, LPA, and PIK3R6)
related to lipid metabolism can also act on immune cells and
even affect immunotherapy. In head and neck squamous cell
carcinoma, IL4I1 was confirmed to inhibit T cell proliferation
(Mazzoni et al., 2021). The aryl hydrocarbon receptor (AHR) can
enhance tumor malignancy and inhibit antitumor immunity.
IL4I1 was found to be strongly associated with AHR activity in
32 solid tumors. The combination of immune checkpoint blockade
(ICB) and IL4I1 inhibitors is expected to play a therapeutic role in
solid tumors such as renal cancer and glioma (Sadik et al., 2020). The
study indicated thatDPEP1 can be used as an independent predictor
of prognosis in patients with RCC, and is expected to be used as a
target of immunotherapy, providing a new avenue for the
immunotherapy of renal cancer (Ren et al., 2021). PIK3R6 is
used in combination with ICB (atezolizumab) as one of the
tumor vaccine antigens. In the treatment of metastatic castration-
resistant prostate cancer, a Phase Ib clinical trial demonstrated that
the combination treatment is safe, well tolerated and beneficial to
patients (Dorff et al., 2021).

Our study had some limitations. First, we screened DEGs
from kidney and para-cancer tissues in TCGA (TCGA-KIRC)
and GEO (GSE126964) databases. However, the sample size of
cancer tissues was much larger than that of para-cancer tissues
and, might have resulted in statistical errors for the screened
DEGs. Second, the dataset for verification, GSE167573, lacked
sufficient clinical data and, could not be verified and analyzed
using TNM staging and other clinical data using our model.
Third, further clinical cases and tissue specimens need to be
collected to verify the clinical effectiveness and reliability of our
model.

5 Conclusion

In summary, LMG expression was shown to be associated with
the survival outcomes of patients with ccRCC. A novel risk score
model based on a signature of 11 LMGs (ABCB4, DPEP1, IL4I1,
ENO2, PLD4, CEL, HSD11B2, ACADSB, ELOVL2, LPA, and
PIK3R6) was established. This model was shown to be capable of
predicting survival outcomes. Furthermore, LMGs were identified to
have the potential to become therapeutic targets for ccRCC.
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