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Morphogenesis, the establishment and repair of emergent complex anatomy by
groups of cells, is a fascinating and biomedically-relevant problem.One of itsmost
fascinating aspects is that a developing embryo can reliably recover from
disturbances, such as splitting into twins. While this reliability implies some
type of goal-seeking error minimization over a morphogenic field, there are
many gaps with respect to detailed, constructive models of such a process. A
common way to achieve reliability is negative feedback, which requires
characterizing the existing body shape to create an error signal–but measuring
properties of a shape may not be simple. We show how cells communicating in a
wave-like pattern could analyze properties of the current body shape. We then
describe a closed-loop negative-feedback system for creating reaction-diffusion
(RD) patterns with high reliability. Specifically, we use a wave to count the number
of peaks in a RD pattern, letting us use a negative-feedback controller to create a
patternwithN repetitions, whereN can be altered over a wide range. Furthermore,
the individual repetitions of the RD pattern can be easily stretched or shrunk under
genetic control to create, e.g., some morphological features larger than others.
This work contributes to the exciting effort of understanding design principles of
morphological computation, which can be used to understand evolved
developmental mechanisms, manipulate them in regenerative-medicine
settings, or engineer novel synthetic morphology constructs with desired
robust behavior.
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1 Introduction: reaction/diffusion, positional
information and scaling

The generation of complex form during embryonic development, and its repair and
remodeling during regeneration, highlight fundamental problems that range from cell and
evolutionary biology to control theory and basal cognition (Pezzulo and Levin, 2015; Pezzulo
and Levin, 2016; Harris, 2018; Pezzulo, 2020). How can collections of cells cooperate to reliably
produce the same species-specific target morphology? Moreover, what mechanisms enable
them to robustly do so despite various perturbations? For example, planarian flatworms
regenerate their entire body from large or small fragments of any type (Cebrià et al., 2018),
while amphibian embryos maintain the right proportions even when many cells are missing
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(Cooke, 1979; Cooke, 1981) or made too large (Fankhauser, 1945a;
Fankhauser, 1945b). This homeostatic property of multicellular
morphogenesis has numerous implications beyond basic science,
as it represents an attractive target for regenerative medicine and
synthetic bioengineering approaches that seek efficient methods for
the control of growth and form. A number of mathematical
frameworks have been developed to help understand, predict, and
control the decision-making of cells in the morphogenetic problem
space. Here, we first review several popular approaches to modeling
this process, highlighting their positive features and limitations. We
then propose a new model which has interesting and useful features
for quantitative modeling of morphogenesis.

Negative feedback is a very common and effective means of
achieving reliability in nature (Alon, 2019). We will consider
negative-feedback systems to arrive at a target body shape. We
consider, as an example, the specific question of howmorphogenesis
creates bodies with five toes rather than four or six. In mice, this has
been shown to be accomplished with a five-peaked reaction-
diffusion pattern (Raspopovic et al., 2014).

More generally, reaction-diffusion (RD) and positional information
(PI) are perhaps the two best known hypotheses in the field of
morphogenesis. Green (Green and Sharpe, 2015) gives an excellent
summary of both hypotheses as well as contrasting the two. RD
(Turing, 1953; Gierer and Meinhardt, 1972; Kondo and Miura, 2010;
Marcon and Sharpe, 2012; Meinhardt, 2012; Green and Sharpe, 2015;
Painter et al., 2021) was proposed by Turing in 1952. In its simplest form,
it uses two chemical species, A and I. A (the “activator”) generates more
of A and/or I via chemical reactions; I (the “inhibitor”) similarly reduces
their concentrations. Surprisingly, combining these reactions with the
diffusion of both A and I can, in many cases, amplify small random
concentration gradients into definite and striking patterns (see (Kondo
and Miura, 2010) for many examples).

Intuitively, the activator A promotes more of both A and I. Thus,
any small excess of A at any location quickly grows by positive
feedback. Of course, [I] also grows at the same location; but I is
assumed to diffuse faster than A, so there is soon relatively little of I
at this peak, and so the peak stays a peak. The I near the peak
prevents new peaks from forming until you get far enough away for
[I] to drop, at which point the pattern repeats. This concept, local
self-activation with long-range inhibition, has been the basis of most
RD systems [though new versions have also been discovered
(Marcon et al., 2016; Landge et al., 2020)]. All of the variants
have the basic ability to start with small, random concentration
variations and amplify them into stable large-scale patterns.

Almost 20 years after Turing, Lewis Wolpert published his
positional-information hypothesis (Wolpert, 1969). It is
attractively simple. First, some unspecified process creates a
gradient of a morphogen from, say, head to tail. Next, cells use a
gene regulatory network (GRN) to determine their position by
sampling the morphogen gradient, and then differentiate
accordingly. PI gained rapid popularity. But it never per se
explained where the initial gradient came from. Furthermore,
most morphogen gradients exhibit exponential decay, which
implies that much of the field will contain very low
concentrations. This would make it difficult (Lander, 2007) for a
GRN to determine spatial locations in those areas.

RD is not inherently scalable. RD patterns have a characteristic
length λRD, typically given by λRD �

���
DA
KD,A

√
(whereDA is the diffusion

constant of A in m2/sec and KD,A is the degradation constant of A in
sec−1). In a field of length L, an RD pattern typically repeats L/λRD
times. Thus, longer fields typically result in more pattern repetitions.
This was originally seen as an argument against RD (Marcon and
Sharpe, 2012); while it is reasonable for larger animals to have, say,
more spots, we would not expect a larger embryo to have extra
fingers or toes. This objection was eventually partially overcome.
Gierer andMeinhardt first proposed (Gierer andMeinhardt, 1972) a
scale-independent version of RD. The advent of modern molecular-
biology techniques produced evidence (Raspopovic et al., 2014) that
mouse digits are formed with an RD system that uses feed-forward
techniques–a molecule that affects embryo size also feeds forwards
to affect λRD, thus keeping λRD reasonably aligned with embryo size
and tending to produce the correct number of digits.

Barkai later proposed expansion-repression (Ben-Zvi and Barkai,
2010; Ben-Zvi et al., 2011), which uses a morphogen A and
“expander” species E. A is generated at one end of the field at
x = 0, and then diffuses and decays everywhere, again with a
characteristic length of λRD �

���
DA
KD,A

√
. Thus [A] falls off as x>λRD.

Because E is generated only when [A] is less than some repression
threshold Trep, then E serves as a way to detect that λRD is shorter
than L. They propose that E diffuses very quickly and causes λRD to
increase everywhere (either by increasingDA or by decreasing KD,A).
By using [E] to alter λRD, they robustly set λRD = L/2 and create
exactly one repetition of an RD pattern, proportionally scaled to L
(Figure 1). This is a negative-feedback system, where [E] essentially
measures L/λRD and then feeds back to adjust λRD.

RD and PI were typically seen as competing theories, until
experimental evidence mounted for each being used in different
circumstances. Green (Green and Sharpe, 2015) suggested that RD
and PI can work together in the same system, e.g., by having RD lay
down a gradient that PI then uses; Tewary et al. (2017) is an example
of this. So is expansion-repression; it lays down a scalable one-peak
pattern, thus creating a morphogen gradient varying from low at one
end of an organism to high at the other. Since it is scale independent,
the coordinate system scales with the length of the organism.

The central problem is how to take an existing set of features,
which may or may not be correct, and move in the correct direction
in morphospace. Our understanding of the capability of RD to adapt
to the field length L has clearly improved over time; from not at all in
Turing’s original work (Turing, 1953), to the simple feed-forward
hypothesis for mouse digits (Raspopovic et al., 2014), to negative
feedback in expansion-repression (Ben-Zvi and Barkai, 2010).

But the negative feedback in expansion-repression only applies
to RD patterns with a single peak. How might we get this level of
reliability for, say, a five-peak pattern that creates toes? One way
could be by adding reliability to RD by wrapping it in a negative-
feedback controller. This would require counting the peaks for the
current λRD, comparing it to five and adjusting λRD as needed. But
how do we count the number of peaks? While this may seem simple,
it is not as easy as it seems; here, we accomplish it using waves.

Why is not it easy? Computation outside of the nervous system
is typically done with gene-regulatory networks (GRNs). A GRN is a
system of promoters inside a cell that senses messenger signals, turns
genes on or off to control protein levels, and in turn creates new
messengers. Communication between cells then happens as signals
leave cells, and travel by diffusion or gap junctions between
neighboring cells. We thus have large numbers of small,
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independent computing entities, working essentially independently
and driven largely by local communication–but unfortunately
attempting to solve a global-scale problem.

This type of computation is reminiscent of a cellular automaton
(CA). A CA is a large collection of identical processing units (called cells,
by analogy to biological cells). Each cell in a CA communicates directly
only with its neighbors and indirectly via a chain of cells (analogous to
diffusion working most quickly at close range). In fact, our counting
problem is similar to the classic majority-detection problem for a CA,
where youmust look at afield of cells that are either 0 or 1, and determine
if there aremore 0s ormore 1s.While the problemmay seem simple, it is
not at all so (Gács and Levin, 1978; Fates, 2013).

CAs have been used to navigate morphospace; e.g., by
Mordvintsev (Mordvintsev et al., 2020) to robustly create images.
However, (Mordvintsev et al., 2020) uses an entire neural network in
each cell, which is an unrealistic amount of compute power.
Furthermore, like many deep neural networks, theirs is so complex
that it is difficult to know if it is correct, let alone understand how to
modify it to generate slightly different shapes. CAs have also been
used to evolve spiking neural nets for the purpose of evolving artificial
brains (de Garis et al., 1993). Most CAs use discrete (e.g., Boolean)
state variables, though some CAs use analog state [e.g., the floating-
point numbers in (Mordvintsev et al., 2020)].

There are several simulators that are capable of simulating
networks of cells with GRNs, as well as reactions and diffusion
between the cells. Garmen (Kaul et al., 2023) models GRN nodes
as multilevel, with state variables either on, off or medium. PhysiBoss
(Letort et al., 2019) is a combination ofMaBoSS for Booleanmodels of
the GRN and multicellular behaviour using agent-based modelling
(PhysiCell). CompuCell 3D (Swat et al., 2012) is a well-known
simulator based on the Cellular Potts model. It can simulate a
wide variety of partial differential equations (PDEs). Any of the
above simulators would probably have been suitable for this work.
We use a simulator based on BETSE (Pietak and Levin, 2016; Pietak
and Levin, 2017), largely for our convenience based on familiarity

with it. Our simulator supports numerical integration of the PDEs for
diffusion and for chemical reactions by efficient implicit techniques.

Waves of various types have been well researched in biological
tissues (Deneke and Di Talia, 2018; Durston et al., 2018), regulating
outcomes ranging across cell death (Cheng and Ferrell, 2018),
proliferation (Anderson et al., 2017), and handedness (Anderson
et al., 2017). Differentiation waves (Gordon and Gordon, 2019;
Gordon and Stone, 2021) are mechanical waves that have been
proposed as the driving force behind embryonic differentiation. It
was hypothesized that a mechanical differentiation wave reaches a
cell, which then decides (via a “cell-splitter” organelle) between one
of two resultant states, and which results in one of two refinements
of the cell state as well as potentially launching a new differentiation
wave. The computational methods by which a differentiation wave
might cause a state decision to be reached are unknown. By contrast,
our wave is chemical rather thanmechanical, and we are proposing a
specific GRN to, specifically, count.

Chhabra et al. (2019) describes a fascinating example of waves
during gastrulation of human embryonic stem cells in vitro. After
seeding with BMP4, they see waves of WNT and NODAL signaling,
with cell differentiation happening along with the waves. They show
that the cell fates are not decided as a result of reading static
concentration gradients left by RD. Rather, the waves are not
part of a RD process but arise from some other method; and the
cells decide their fate dynamically during the waves. In fact, the
WNT and NODAL waves eventually die and concentrations become
homogeneous, but the cell fates remain. They have thus used waves
as an integral part of differentiating a gastrula into its three layers. By
contrast, we will divide a tissue into an arbitrary number of layers,
and easily make some layers larger or smaller, using waves that are
part of a robust negative-feedback process.

Waves have been observed in many different biological systems
using disparate signaling modalities. Bacillus subtulus biofilms produce
systemic oscillations in response to nitrogen stress [Figure 2A (Chou
et al., 2022)]. Colonies of facultative social Dictyostelium amoebae

FIGURE 1
RDpattern profiles in 1 dimension. (A) Shows a simple one-peak pattern, otherwise called LH (low [A] on the left and high [A] on the right). (B) Shows a
three-peak pattern (LHLHLH). Note that the inhibitor I spreads wider than A due to its higher diffusion coefficient. In both figures, the x axis is cell number
(numbered from 0 at the left). With a constant cell diameter d, the number of cells is roughly the field length L divided by d (with some small inter-cell
spacing as well).
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produce chemoattractive spiral waves of cAMP [Figure 2B (Fujimori
et al., 2019; Singer et al., 2019; Ford et al., 2023)]. In culturedmammalian
MDCK cells, Erk signaling waves manifest in response to wounding
[Figure2C (Aoki et al., 2017; Hino et al., 2020)]. The Xenopus laevis
embryo displays numerouswaves from the fertilization-triggered calcium
wave that initiates development (Busa and Nuccitelli, 1985) to the cell
cycle trigger waves that coordinate early cell divisions (Chang and Ferrell,
2013; Anderson et al., 2017), to travelling gene expressionwaves that help
establish the segmental pattern of the embryo (Jen et al., 1999).

Systems-level wave phenomena are likely under-reported in
biological datasets as their detection requires long-term live
imaging with faithful dynamic reporters. Many commonly used
endpoint techniques, like in situ hybridization and
immunohistochemistry, are poorly suited to detect dynamic
patterns as they require the tissue to be fixed. Others, like RNA
sequencing, remove both temporal and spatial information from the
assayed tissue. Recent breakthroughs in live imaging of non-neural
tissue signaling have revealed a diverse array of mesoscale
temporospatial dynamic patterns.

Perhaps the most studied example of waves of gene expression is
the segmentation clock, which helps establish the segmental pattern
of the vertebrate axis [Figure 2D (Palmeirim et al., 1997; Soroldoni
et al., 2014)]. It originated as the clock-and-wavefront model (Cooke
and Zeeman, 1976; Tabin and Johnson, 2001) and typically requires
a global clock; some versions (Cotterell et al., 2015) avoid this
requirement and have an RD-like flavor. It is able, across species,
to produce a variable number of vertebrae.

Furthermore, the segmentation clock is remarkably resistant to
perturbation. Dividing cells add noise to the system, lose their phase
but are re-synchronized to the phase of their neighbors via local
interactions (Zhang et al., 2008). When segmentation is transiently
chemically interrupted it will reliably recover, even when clock
components are heterozygously mutated (Mara et al., 2007).
When paraxial mesoderm is surgically removed and cultured ex
vivo it will manifest waves and form segments in its new geometry
[Figure 2E (Lauschke et al., 2013)], and even when completely
dissociated and re-aggregated it will re-establish coordinated
oscillations (Tsiairis and Aulehla, 2016; Hubaud et al., 2017).

Despite decades of research, many details of the segmentation
clock–including reasons for its robustness–remain unknown. Some
segmentation-clock errors do not seem to self-correct (Pourquie,
2022). Its waves are an integral part of the differentiation process. By
contrast, our waves perform measurement, are part of an even more
robust negative feedback system, and do not require a clock.

Our work, then, combines the two themes of robust
morphogenesis and wavefronts. We introduce a GRN that, when
replicated in cells and properly stimulated at one end, launches a wave.
We will show that the wavefront counts the peaks in an RD pattern as
it passes them. This then allows for a closed-loop negative-feedback
system to robustly control the number of peaks. In our system,
observable waves of morphogen concentration essentially occur as
a side effect of computing the properties of a tissue.

Consider a simple RD pattern on a 1D field of cells. The number of
replications of the basic RD pattern will depend on the length L of the

FIGURE 2
Examples of waves in biological systems (A–E). (A) Gene expression waves in bacterial biofilms. (B) Circular cAMP waves in Dictyostelium
facultatively social amoeba. (C) Waves of ERK signaling in MDCK cells in response to wounding. (D) Gene expression waves during vertebrate
segmentation. (E) Cultures paraxial mesoderm tissue will form segments in its new variant geometry.
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field and the pattern’s intrinsic length λRD; we typically get roughly L/λRD
pattern repetitions in a field of length L. Expansion-repression, as noted
above, can alter λRD so that we always get exactly one peak at the source,
independent of L. We go a step further: given an integer goal N, we will
alter λRD so as to instead obtain exactly N peaks (Figure 1), again
independent of L. To do this, we use a wave, based on an identical simple
GRN in each cell, that serves to count the number of peaks. We then
wrap theGRNs in a top-level control loop that iteratively adjusts λRD and
launches a new wave until the wave counts exactly N peaks. Essentially,
we have built a closed-loop negative-feedback goal-seeking machine for
morphogenesis. It knows its target pattern shape and adjusts parameters
iteratively until that goal is achieved.

We add one more capability. Green (Green and Sharpe, 2015)
has proposed systems where RD acts downstream of PI, with a
morphogen gradient inducing a gradual increase in λRD so that, e.g.,
digits in a mouse paw are wider at their distal end than their
proximal end (Sheth et al., 2012). Meinhardt (2021) has
proposed a similar mechanism in Hydra. Both of these serve to
build an RD pattern where λRD varies from a small, tight pattern at
one end of the field to a larger λRD at the other end. As our wave
counts the peaks in an RD pattern, it leaves behind digital
breadcrumbs such that each cell knows its exact ordinal position.
A small amount of per-cell logic can then examine those signals and
increase or decrease λRD in any given cell(s). As a result (Figure 3),
we too can make λRD larger or smaller at different locations in the
field; but we can do it arbitrarily, rather than only a simple
monotonic increase from one end to the other as in (Meinhardt,
2012).

2 Methods

2.1 Why the GRN is hard

In order to have closed-loop negative feedback to create a RD
pattern with the desired number of peaks, we must be able to count

the current number of peaks. That is what our GRN does–but
unfortunately, counting is more difficult than it may seem. To
demonstrate why, we’ll start with a “strawman” solution whose
failings will motivate the actual solution.

A human six-year-old, looking at the patterns in Figure 1, can
easily tell that Figure 1A has one peak and Figure 1B has three. He
would basically scan the picture from left to right, counting each peak
as it occurs. But how can an organism, using only a simple GRN
replicated in every cell, perform this task? Wemight start with a set of
signals S0, S1, S2, etc., denoting the number of peaks to any cell’s left.

Consider a strawman GRN in each cell that implements logic
such as

rising_edge = ([A]left<.2) and([A]me>.2)
if (I am a rising-edge cell)

pump out the next higher signal than I see on

my left

We are assuming that, for any given cell, [A]me is its own
concentration of the RD activator A, and [A]left is the
concentration of A in the cell on its left. And while we have
expressed this logic in terms of Boolean AND gates and IF
statements, it can easily be translated into a GRN (Alon, 2019).
Figure 4A shows which signals should be expressed in which
locations as per this strawman scheme.

However, multiple issues prevent the strawman GRN from
actually producing Figure 4A. The first issue is directionality and
loops. Our six-year-old human knows to count by sweeping his
vision unidirectionally from left to right. Cells have no inherent
concept of left and right; and signaling molecules, traveling by
diffusion, move in all directions equally well. We would thus be
susceptible to improper counting with a scenario like Figure 4B.
How can we implement unidirectional counting when our signalling
molecules diffuse equally well in all directions? Issues like this make
CA algorithms challenging (Gács and Levin, 1978; Fates, 2013).

But the problems with this strawman solution are not over.
We’ve talked about a cell measuring [A]left without explaining how
that communication could happen. And even if it could happen, our

FIGURE 3
Skewing λRD digitally. These graphs are the result of a post-process that uses the “bread-crumb” signals S* created by the cellular automaton. The
blue lines are the evenly-spaced signals before skewing; the orange shows the results after intentional skewing. (A) shows an experiment where all cells
that express S0H (roughly, cells 18–27) increase their λRD, resulting in that area widening and pushing itself away from the area to its right. (B) shows all
cells expressing either S0H or S1L increasing λRD, resulting in the entire first dip (roughly cells 15–65) widening.
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system thus far is not robust to noisy signals. For example, if [A] had
some noise that caused wiggling around the cell where [A] = .2, our
GRNmight miscount the noise as an extra peak (Figure 5). Biology is
noisy (McAdams and Arkin, 1999), and real-life systems must be
robust.

2.2 The effective GRN

We can resolve our second and third issues with a simple trick
that is very common in human-designed noise-filtering schemes,
called a Schmidt trigger (Holdsworth and Woods, 2002). A Schmidt
trigger does not try to detect edges directly, but instead uses
hysteresis. Instead of trying to detect an edge at 0.2, it uses two

thresholds; e.g., .1 and .3.When the signal falls below .1, it is noted as
low; when it rises above .3, it is noted as high; and an edge is counted
when we rise from low to high. Any spurious noise between .1 and
.3 has been made irrelevant.

What governs the choice of, in our case, .1 and .3 as our new
thresholds? The further apart the two thresholds are, the more noise
immunity we have. On the other hand, if we make (e.g.,) the .3 too
high, we risk having some peaks that never reach that threshold and
are not counted.

We have now fixed our robustness-to-noise issue, and in fact
also no longer need a cell to measure any concentration other than
its own. We have incurred the cost of now needing two signals to
count each peak: our new signals S0L, S0H, S1L, S1H, etc., are now
generated as per Figure 6.

We must still deal with the problem of directionality, loops and
double counting (Figure 4B). Our trick is to take advantage of having
a prior process break symmetry and give us a known head and tail,
thus enabling a global unidirectional sweep to simply count. In this
sense, our model is a contribution to the classic problem of
leveraging large-scale morphogenetic order from molecular
symmetry breaking (Brown and Wolpert, 1990; Vandenberg and
Levin, 2009; Vandenberg and Levin, 2010; Naganathan et al., 2016).

We implement unidirectional signaling by tying computation to
a wavefront. Cell #0 (at the left) initiates the wave by generating S0L.
When cell #1 sees the wavefront, it looks at the local [A] and decides
whether to regenerate S0L or to instead generate S0H. Importantly, it
then freezes its decision until the next wavefront (if any) happens. It
finally sources the appropriate signaling molecule (S0L or S0H) that
it wants to travel to cell #2. Of course, these molecules travel to the
left towards cell #0 as well–but it is moot, since all cells on the left
have already seen the wavefront, made their decision, and will not
change it until another wave comes.

With this system, even though our signaling molecules diffuse
equally in all directions, the computation wavefront proceeds only
from left to right. The key is that any path from cell #0 to a cell C via
a loop will be longer than the simple direct path from cell #0 to C,

FIGURE 4
The strawman GRN. The “strawman” GRN does not work, but shows why counting peaks is hard. (A) Shows which cells express which signals in our
original strawman GRN. (B) Shows inadvertent double counting. The y axis is now time, not concentration. The red line shows the signaling of S0. As it
reaches cell 23, that cell notes the threshold crossing and emits S1 (green). S1 not only diffuses correctly to the right, but inadvertently to the left. As it is
regenerated from these leftward cells, they also re-emit it, and it travels to the right. When it then crosses cell 23, the cell now incorrectly emits S2
(purple). Only one inadvertent path is shown–many more are possible.

FIGURE 5
Noisy signals causing double-counting in the strawmanGRN.We
have drawn a small downwards noise blip right about the cell where
[A] = .2. This blip cause two cells–first the correct one and next the
inadvertent one–to notice a transition rising past [A] = .2. The
final result is an extra count (detecting three peaks rather than two).
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and thus will arrive at C after the direct signal has arrived, and thus
cannot affect the action that cell C takes. As the wave hits any cell,
that cell examines the local environment (specifically, [A]) and the
accumulated state arriving in the wave (i.e., whether the wave is
sending S0L, S0H, etc.) to decide what signal to send out in the
exiting wave to the next cell to the right.

Here is the final robust GRN in each cell (where the top-level
controller now seeds cell #0 with S0L):

Pre0L � Pre0L nothing
∣∣∣∣ ∣∣∣∣ S0L& !very high& !done( )

Pre0H � Pre0H S0L& very high& !done( )∣∣∣∣ ∣∣∣∣ S0H& !very low& !done( )
Pre1L � Pre1L S0H&very low& !done( )∣∣∣∣ ∣∣∣∣ S1L& !very high& !done( )
Pre1H � Pre1H S1L& very high& !done( )∣∣∣∣ ∣∣∣∣ S1H& !very low & !done( )

. . .

done � Pre0L |Pre0H Pre1H| |Pre1L Pre2H| | . . .
S0L � Pre0L

S0H � Pre0H

S1L � Pre1L

S1H � Pre1H

The combination of Schmidt triggers with computation
wavefronts counts peaks quite robustly; we will discuss the limits
of robustness shortly. Again, while we have expressed this logic in
terms of simple Boolean AND, OR and NOT gates, it can easily be
translated into a GRN (Alon, 2019), where each signal in the GRN
becomes either a protein or a messenger induced by a protein. Finally,
assume a top-level controller forcing the leftmost cell to express S0_L.

Cells communicate with each other with the S* signals. Any cell
participates in the computation wave by waiting to receive an S*
signal, then deciding (based on the local [A]) which S* signal to relay
onwards. The Pre* and done signals are local (i.e., do not leave the
cell that generates them) and assure that each cell computes only at
the wavefront. Any cell, once it receives an S* signal, makes its
decision by driving one of the Pre* signals. These signals stay within
the cell and are purely for internal calculation. Once a cell drives any
of its Pre* signals high, its done (which also remains in the cell) also

goes high. This then feeds back to the first set of equations and serves
to cut off the Pre* signals from looking at any incoming S* signal any
longer. At this point, the self-loop in each Pre* equation takes over,
so that whichever Pre* signal is asserted will stay asserted.

Finally, the appropriate S* signal gets driven out of the cell, and
stays asserted until new_wave comes in and breaks the Pre* self-
loops. New_wave is a global (i.e., widely-diffusing) signal that
operates by substantially increasing the degradation rate of the
Pre* signals (e.g., by adding a degradation tag). This breaks the
self-loop, and thus turns off the Pre* and then done signals in each
cell. Morphogenesis is a dynamic process; cells respond to cues
throughout morphogenesis, and there will thus be frequent
computation waves. Each is preceded by a new_wave signal,
which is issued by the top-level controller; while new_wave must
reach a high enough level everywhere to act as a global signal, it does
not need to reach a level of full spatial homogeneity.

Given that each S* signal is merely a buffer of its corresponding
Pre* signal, why bother with the extra signals? The self-loop on each
Pre* signal implements our memory of the decision a cell takes; if we
tried to put that self-loop on the S* signal instead, then each cell would
latch the incoming S* signal before making a decision of its own.

In our GRN, the signals Pre*, done, very_high and very_low are
proteins, expressed by genes given the appropriate transcription factors.
However, the S* signals must travel between cells and are thus unlikely to
be proteins and are thus not the direct output of genes; they may, e.g., be
created from the gene products Pre* by chemical reactions.

2.3 The top-level controller

The next piece in our system is the top-level controller. The
controller takes a goal N. It uses the computation wave to count
peaks; then compares the count to N and adjusts λRD as needed; and
iterates this sequence until we have exactly N peaks. It is
conceptually quite simple (Figure 7). The parenthesized numbers
below correspond to the flowchart steps in Figure 7.

The system starts with an initial λRD (1) and settles to the resulting
RD pattern. This is done with an initial simulation run (2). At that point,

FIGURE 6
Which signals are expressed by which cells in the updated GRN. As an aid to understanding how the cellular automaton works, we graphically show
which cells express each of the S* signals. (A) is for the original strawman algorithm (a duplicate of Figure 3A). (B) is for the improved algorithm using
Schmidt triggers.
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the controller launches a new computation wave to count the number of
peaks in the RD pattern (3). If, fortuitously, we have exactly the desired
number of peaks, thenwe are done. If not, then the controller implements
negative-feedback control. If there are more peaks than our goal, the
controller will slightly increase λRD (4). If, on the other hand, there are too
few, it decreases λRD (5) and re-seeds (6). In either case, it then re-
simulates (2), and the loop iterates until we have attained our goal.

What does the “re-seed the pattern” step mean? It has been
known since the 1970s (Bard and Lauder, 1974) that the number
of repetitions of a Turing pattern is sensitive to initial
conditions. Werner has noted (Werner et al., 2015) that while
L/λRD is an upper bound for the number pattern replications in a
field of length L, the lower bound can sometimes be 1 (Figure 8).
In other words, while we cannot fit (e.g.,) four RD pattern
repetitions in a space only large enough for three, it is
possible [albeit unlikely (Werner et al., 2015)] for one single
pattern repetition to stretch/scale itself up to an almost
arbitrarily large field.

The top-level code above thus includes a small trick. When we
are increasing λRD, wemerely continue the simulation with the larger
value. But when we decrease λRD, this may not succeed at creating
extra peaks. Instead, it turns out that setting [I] = 0, with [A] rising
linearly from 0 at tail to 1 at the head is reasonably reliable at seeding
the maximum number of peaks in a given field size. As discussed
below, it is not 100% reliable–but our closed-loop controller can
successfully work around the unreliable building block.

The top-level controller must be located where it can see
the result of the computation wave; for a tail-to-head wave it
must live near the head. The controller is small and simple
enough that it could easily be implemented as a GRN. There
must be only one top-level controller; if it is located in a cell,
then there must be a mechanism for it to only be active in one

location. For simplicity, we have merely left it as software in
our simulations.

2.4 GRN details and limits of robustness

Here, again, is the detailed GRN that implements our cellular
automaton:

Pre0L � Pre0L nothing
∣∣∣∣ ∣∣∣∣ S0L& !very high& !done( )

Pre0H � Pre0H S0L& very high& !done( )∣∣∣∣ ∣∣∣∣ S0H& !very low& !done( )
Pre1L � Pre1L S0H&very low& !done( )∣∣∣∣ ∣∣∣∣ S1L& !very high& !done( )
Pre1H � Pre1H S1L& very high& !done( )∣∣∣∣ ∣∣∣∣ S1H& !very low& !done( )

. . .

done � Pre0L |Pre0H Pre1H| | Pre1L Pre2H| | . . .
S0L � Pre0L

S0H � Pre0H

S1L � Pre1L

S1H � Pre1H

We implement the logic equations, as is often done, as Hill
functions. The Pre* gates are the most complex: e.g., for Pre0H (Eq. 1):

Pre0H � kv
Pre0H

.5( )3
1 + Pre0H

.5( )3 +
S0L/.3( )3

1 + S0L/.3( )3 ·
A/.3( )3

1 + A/.3( )3
· 1

1 + done/.5( )3 +
S0H/.3( )3

1 + S0H/.3( )3 ·
A/.1( )3

1 + A/.1( )3
· 1

1 + done/.5( )3 (1)

FIGURE 7
Flowchart of the top-level controller. This figure illustrates how the top-level controller operates.

Frontiers in Cell and Developmental Biology frontiersin.org08

Grodstein et al. 10.3389/fcell.2023.1087650

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1087650


The done gates are implemented as done � kv
(∑Pre*

.5 )3

1+(∑Pre*

.5 )3.

Finally, the S* gates are (e.g., for S0H) S0H � kv
(Pre0H

.5 )3

1+(Pre0H
.5 )3.

Robust operation of the computation wave places some constraints
on system parameters. For example, the S* signals are meant to travel by
diffusion to their nearest neighbors. Amolecule S generated at a constant
rateGSmoles/s at x0 and diffusing freely will have its concentration given
by G(x) � GS

KD,S
e−λS |x−x0 |, where KD,S is the decay rate for S, λS �

���
DS
KD,S

√
andDS is the diffusion rate for S. Clearly λS must be large enough for the
signal to reach its nearest-neighbor cells, which is hopefully easy.
However, it must also be small enough that the S* signals do not
travel further than one half cycle of the pattern. So, e.g., S1H will first be
generated at the cell C0 where S1L is seen and [A]>.3; it will correctly be
generated at cells further to the right until we reach a cell C1 where [A]
<.1. At that point, S2L will correctly be generated, and regenerated at
successive cells until we reach a cell C2 where [A]>.3 again. But what if
S1H (traveling by diffusion from cellC1) reaches cellC2 before S2L (being
regenerated at each cell from C1 to C2) does? In that case, cell C2 will
incorrectly see S1H as the incoming wavefront, and will express Pre1H
immediately, and will be locked into that decision before it sees S2L and
tries to express S2H. As a result, the count will be too low by one.

How do we avoid this issue? Diffusion is an order (distance
squared) process and thus slow over long distances. Our trick then is
simply to be sure that the half-pattern-length distance is always more
than just one or two cells. This imposes a minimum size on λRD.

2.5 Simulation algorithm

In most of the RD literature, the reaction and diffusion can occur
anywhere in a homogeneous fixed-length field. Simulating cells that

interact with RD then requires interfacing this continuous RD field
with cells that are at discretized locations. Often (e.g., the sims in
(Kaul et al., 2023) that explain the results from (Tewary et al., 2017;
Chhabra et al., 2019)), this is done by stepwise alternation between
two simulators; first simulate RD, then each cell reads the
concentrations at its discrete location to give to its GRN
simulation. Since it is uncommon for RD systems to allow an
analytic solution, numerical simulation is used for RD, which
discretizes the simulation area in any case. The RD activator A
and inhibitor I might then be small molecules that could diffuse
through a cell membrane and then interact anywhere in the field.

Our simulations are done with BITSEY, a faster but less
powerful version of BETSE (Pietak and Levin, 2016; Pietak and
Levin, 2017). All of the code to reproduce the simulations is
publically available at (repository location to be added after the
blind-review process https://gitlab.com/grodstein/bitsey/-/tree/
master/RD). BITSEY treats the world as a collection of cells
interconnected by gap junctions (GJs). Since the proportion of
cell surface area covered by GJs is typically small, reactions in a
cell tend to happen on a faster scale than inter-cell communication
(Pietak and Levin, 2017): BITSEY thus models molecular
concentrations as being constant within a cell rather than
subdividing a single cell into multiple finite volumes, leading to
fast simulation. While BITSEY models ion channels via the
Goldman-Hodgkins-Katz (Keener and Sneyd, 2009) model, our
current work does not use them. Communication between cells
through GJs is modeled by a simple diffusive flow, discretizing
Ficke’s Law.

It is easy to show that, as long as the RD pattern length is
substantially longer than the diameter of a cell, BITSEY’s model is
mathematically equivalent to a simple discretization of the diffusion
equations in 1D, where BITSEY essentially chooses the
discretization length of numerical integration to be the cell

FIGURE 8
Pattern viability at various L values. This figure illustrates howmost field lengths L can supportmore than one RD pattern. The LHpattern is viable at all
field lengths larger than λRD. At field lengths L in the range (Kondo andMiura, 2010;Marcon et al., 2016), both LH and LHLH are viable. At longer L, still more
shapes are viable.
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diameter. This, of course, may not be numerically optimal; if the RD
pattern size is far larger than a cell, then BITSEY’s model is unduly
compute expensive, and if the RD pattern size is on the order of the
cell diameter then BITSEY’s model is numerically inaccurate.
However, the model does give us one feature–the exact same
simulator core handles both RD simulation and GRN simulation,
and both could happen simultaneously if desired.

Each cell holds one GRN. Rather than modeling the GRN in
each cell by Boolean or multi-level logic [as, e.g., (Kaul et al., 2023)],
BITSEY models the differential equations as per a Hill model (Alon,
2019). Thus, the discretization in space is a single cell; the
discretization in time is determined by the speed of change in
cell-concentration changes, both from the GRNs and from GJs.

There are countless varieties of RD equations in the literature.
Most would work equally well in our system, but we had to choose
one. We used a very simple RD pattern taken from (Werner et al.,
2015), where (Eq. 2)

∂A
∂t

� gAG A, I( ) − kD,AA +DA
∂2A
∂x2

,

∂I
∂t

� gIG A, I( ) − kD,II +DI
∂2I
∂x2

andG A, I( ) � 1

1 + I/A( )h
(2)

There are numerous more-complex RD systems in the
literature, including entire categories of new systems that do
not place stringent requirements on diffusivity ratios (Marcon
and Sharpe, 2012; Landge et al., 2020). The choice of RD system is
immaterial to this work, as long as it can be manipulated by λRD
and it forms an oscillating pattern of some species that the per-cell
GRN can see.

The feedback mechanism in our system operates by
repeatedly adjusting λRD. Since λRD �

���
DA
kD,A

√
(where DA is the

diffusion constant of A in m2/sec and kD,A is the degradation
constant of A in sec−1), this can be done by either adjusting DA or
kD,A. Nature has access to multiple means of controlling both of
these (Lander, 2007): degradation tags, competing reactions to
bind a morphogen, and even lipid modification to affect
diffusivity. We choose to alter DA by changing GJ density.
Altering the density of GJs between cells changes the effective
diffusion rate of molecules passing through those GJs. While
this choice is largely for convenience, there is evidence that such
a mechanism does exist (Kleber and Jin, 2021; Tripathi, 2021).
Furthermore, there is substantial evidence (Iovine et al., 2005;
Watanabe et al., 2006; Watanabe and Kondo, 2012) in fish
models of RD molecules traveling through GJs, so this
seemed to be a reasonable choice. Once more, we choose to
use this mechanism in our simulations for compatibility with an
existing simulator, and it is not central to our results.

Our simulation methodology imposes limits on the values of N
(the target number of RD pattern repetitions) and L (the field
length). As N gets larger, we are asking for each RD pattern
repetition to occur across a smaller number of cells. At some
point, quantization errors make the RD patterns less stable. This
tends only to be a problem for simulations that (e.g., in order to
improve simulation time) use a biologically unrealistically-small
field length.

The top-level controller, as noted, is implemented as Python
code for convenience. It simply iterates between calling the main
simulation engine to let the RD pattern stabilize, simulating again to
kick off a new computation wave that counts pattern peaks, and
adjusting λRD accordingly. The simulation engine treats the RD
simulation no differently than the GRN simulation and in fact
simulates both concurrently. The simulation run that simulates the
RD pattern to steady state is also simulating the GRN–but since the
top-level controller has not seeded cell #0 with S0L, the GRNs never
see a wave and are inactive.

2.6 Symbols

For convenience, in this section we recap all symbols that
have been used globally throughout the paper. We do not
include symbols that are used only once and defined at their
point of use.

TABLE 1 Summary of simulations #1–3. Each row is one top-level-algorithm
iteration. N_peaks is the current number of peaks found, and N is the target.
Action describes the action of the top-level algorithm: whether it is increasing
vs. decreasing λRD.

Iteration λRD n_peaks N Action

0 7.2 × 10−7 4 2 init

1 7.9 × 10−7 4 2 increase

2 9.6 × 10−7 4 2 increase

3 1.1 × 10−6 4 2 increase

4 1.2 × 10−6 3 2 increase

5 1.3 × 10−6 3 2 increase

6 1.4 × 10−6 3 2 increase

7 1.5 × 10−6 2 2 increase

TABLE 2 Summary of simulation #2.

Iteration λRD n_peaks N Action

0 7.2 × 10−7 4 5 init

1 6.5 × 10−7 4 5 decrease

2 5.9 × 10−7 4 5 decrease

3 5.4 × 10−6 5 5 decrease

TABLE 3 Summary of simulation #3.

Iteration λRD n_peaks N Action

0 4.9 × 10−7 6 5 init

1 5.4 × 10−7 6 5 increase

2 5.9 × 10−7 6 5 increase

3 6.5 × 10−7 4 5 increase

4 5.9 × 10−7 4 5 decrease

5 5.4 × 10−7 5 5 decrease
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• λRD: the “intrinsic wavelength” of a RD pattern. When the
pattern repeats itself, each repetition tends to have length λRD
(and cannot be longer than that).

• L: the length of the 1D field that patterning occurs in.
• N: the target number of repetitions of an RD pattern. E.g., for
the fingers of a human hand, N = 5.

• A, I: the RD activator and inhibitor
• DA: the diffusion constant (in meters2/second) of the activator
• kD,A: the degradation constant (in 1/second) of the activator
• [A]me: the concentration of A in a cell (i.e., “its own”
concentration).

• [A]left: ditto, but in the cell to the left of the “me” cell. This is
only used in the purposely-incorrect “strawman” GRN

3 Results

3.1 Simulation results for algorithm
correctness and robustness

We show multiple simulations of the system with different
field length L and goal RD peaks N. With a constant cell radius
and cell-to-cell spacing, the field length is proportional to the
number of cells in the simulation.

We picked our parameters to show a sampling of the system’s
capabilities. The first three simulations use a field 200 cells long. In
the first simulation, our goal is two peaks: i.e., a morphogen profile
of LHLH. We start out (Table 1) with λRD = 7.2 × 10−7, which yields
four peaks rather than the desired two. The top-level controller
then directs seven iterations of counting, noting that there are too
many peaks, and increasing λRD by 10% on each iteration,
eventually giving the desired two peaks. The second simulation
(Table 2) starts with the same initial conditions but has a goal of
N = 5 rather than N = 2. This time, the controller goes through four
iterations of decreasing λRD, eventually creating the desired
extra peak.

The third simulation (Table 3) shows an interesting quirk of
some RD patterns. With the same 200-cell field, we started with a
different initial λRD. As noted above, a single field length L can
often support various numbers of peaks at the same λRD; it is a

dynamic system with multiple stable points, and it is often
difficult to know which stable point the system will travel to.
We thus see iteration #1 setting λRD = 5.4 × 10−7, which could
have given us five peaks but instead gave six. Iteration #3 hopped
over five peaks directly to four. Eventually, though, the
controller keeps adjusting λRD until it successfully reaches the
goal. This ability to compensate for the unpredictability of RD
patterns highlights a strength of our closed-loop feedback
approach.

The fourth simulation (Table 4) uses a small 100-cell-long
field. Unsurprisingly, the initial pattern had only two peaks
rather than the four in Tables 1, 2. However, multiple iterations
of decreasing λRD succeeded in reaching the target of four
peaks.

The fifth simulation (Table 5) uses a long 300-cell field. It
now starts with five peaks (rather than the four peaks of a 200-
cell field). This time, multiple steps of increasing λRD enable it to
reach the goal of three peaks.

3.2 Simulation results from varying segment
lengths

We have shown that varying λRD allows us to control the number of
RD peaks we create. Once we have achieved the desired peak count, we
can then vary λRD locally to further control pattern shape. Figure 3A
shows a pattern with 100 cells that was targeted to a three-peak pattern.
The peaks are originally at cells 20, 60 and 100 (blue graph). A subsequent
simulation then slightlymodifies theGRN so that any cell expressing S0H
increases its λRD by 60% (Figure 3A, orange graph). Figure 3B is quite
similar, except in this case we have modified the GRN so that any cell
expressing either S0H or S1L increases its λRD by 60%. In each case, the
appropriate segment(s) of the RD pattern increase in length at the
expense of their immediate neighbors.

This capability is our digital equivalent of what Green (Green
and Sharpe, 2015) calls “RD acting downstream of PI.” In his
version, PI first lays down a coordinate system and then RD uses
it to affect λRD. In ours, our computation wave first lays down one or
more coordinate systems and we can then stretch or shrink any
subset of them almost arbitrarily.

TABLE 4 Summary of simulation #4. The field length is now only 100 cells,
yielding an initial pattern of only two peaks. However, the algorithm reduces
XRD enough to reach the goal of four peaks.

Iteration λRD n_peaks N Action

0 7.2 × 10−7 2 4 init

1 7.9 × 10−7 2 4 increase

2 9.6 × 10−7 2 4 increase

3 1.1 × 10−6 3 4 increase

4 1.2 × 10−6 3 4 increase

5 1.3 × 10−6 3 4 increase

6 1.4 × 10−6 3 4 increase

7 1.5 × 10−6 4 4 increase

TABLE 5 Summary of simulation #5; 300 cells. The longer field length results in
more initial pattern repetitions, which is then countered by increasing λRD.

Iteration λRD n_peaks N Action

0 7.2 × 10−7 5 3 init

1 6.5 × 10−7 5 3 decrease

2 5.9 × 10−7 5 3 decrease

3 5.4 × 10−6 5 3 decrease

4 4.9 × 10−6 5 3 decrease

5 4.1 × 10−6 4 3 decrease

6 3.7 × 10−6 4 3 decrease

7 3.3 × 10−6 4 3 decrease

8 3.0 × 10−6 3 3 decrease
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4 Discussion

4.1 Choosing a feedback measure

Robustness is one of the great challenges in morphogenesis (Lander,
2007), and many strategies have evolved to achieve it. Many of them use
negative feedback, which is an extremely commonmotif in nature (Alon,
2019). For example, mice use RD to reliably pattern fingers and toes
(Raspopovic et al., 2014). To then prevent large embryos from having
extra toes, mice use fibroblast growth factor (FGF), which affects embryo
growth, to also increase λRD. If FGFwere the only factor affecting embryo
growth, this strategywould be completely robust. However, in addition to
the inherent unreliability in RD, any variations in embryo size from
sources other than FGF are not controlled for, thus occasionally resulting
in four- or six-toed mice.

In error-correcting control systems, you get what you measure. FGF
concentration is serving as a proxy (albeit an imperfect one) for the field
length L, and being used to control for the fact that increasing L would
normally increase the number of RDpattern replications. In other words,
the proxy forL is being fed forward to control λRD.However, arguably the
most appropriate goal is to preserve the number of toes–and the most
reliable way to do that is not to measure L at all, but to directly measure
the number of toes as a feedback mechanism.

Expansion-repression basically generates A at one end of the
field at some rate GA, measures [A] at the other end, and
increases (decreases) λRD when the distal [A] is too
small(large). It is thus using the distal [A] as a proxy for L. If
L doubles, then expansion-repression will double λRD (e.g., by
quadrupling DA). The combination of doubling L and
quadrupling DA can easily be shown to exactly restore the
original [A] profile. Since [A] affects λRD, which then affects
[A], this is indeed negative feedback.

If, instead of doubling L, we double GA, then the distal [A] will
originally double. It is also easy to show that if we then double both
DA and KD,A, then the profile of [A] will be restored. However, in
both these cases, if we restore the distal [A] by any other
combination of changing DA and KD,A, then [A] at the source
will change, as well as the exact profile. The issue is that we are
attempting to preserve an exact profile shape but using [A] at a single
point to serve as a proxy for that profile.

Our top-level loop, measuring the number of peaks and altering
λRD accordingly, is clearly a negative-feedback system. Specifically,
our feedback variable is the number of pattern peaks, which is
exactly the final variable most important to control. Thus, as long as
our feedback system itself is operational, we will be immune from
changes in other, non-feedback variables.

This is particularly important since RD patterns are not fully
predictable. As shown by our simulation #3 and also noted in
(Werner et al., 2015), while a pattern with characteristic length
λRD will be stable on a field of length L, it may also be stable on
any field of length longer than L. Similarly, increasing λRD such
that (as noted above) a six-peak pattern is no longer viable may
lead instead to a four-peak pattern, even though five peaks would
be feasible. A field can thus often stably sustain a choice of
multiple RD peak counts. Each choice has its own stability region
around it, where unstable initializations will flow to that
particular stable point. The stability regions are often difficult
to predict.

The basic building blocks of biology are almost always noisy and
difficult to predict (McAdams and Arkin, 1999). Building systems
that nonetheless work reliably is thus often difficult, and our case is
no exception. While our basic RD patterns can be difficult to use, the
most effective feedback system–one where we close the loop by
directly monitoring the variable we care most about–is quite
effective. This is exactly the system we have built.

4.2 Using our digital breadcrumbs

While it is clear that morphogen gradients exist in nearly all
complex organisms, it is less clear exactly how they are used. The
gradients may be quite small (Warmflash et al., 2014; Tewary
et al., 2017; Kaul et al., 2023). Furthermore, it is not known
whether organisms read the morphogen concentration, its
concentration gradient, a fold-change between neighboring
cells, or something else (Simsek and Ozbudak, 2022). Since it
is impractical to read a morphogen gradient with more than
perhaps 10 levels (Simsek and Ozbudak, 2022), a simple gradient
is clearly not enough to drive differentiation of a human body,
which has over 3 × 1013 cells (Bianconi et al., 2013). A more
plausible strategy is to divide and conquer, where the body first
divides into (e.g.,) organs, which then form and differentiate
independently from each other, each using its own smaller
coordinate system. More complex organisms might create
their form using even more levels of hierarchy. The task of
forming a foot might involve subdivision into five smaller
pieces, each with its own coordinate system, and then using a
common “toe routine” to further develop each identical piece.

Our closed-loop RD system can do this easily, partitioning the
partially-grown field of cells into smaller pieces, each with its own
coordinate system that can be used by PI. We may further want
different toes to take up different amounts of space, with a big toe
typically being wider than the others, which would use our capability
for unequal subdivision.

Our system of leaving digital breadcrumbs, via the Pre* signals,
is a powerful means of letting each cell know which segment it is part
of. It is somewhat reminiscent of Drosophila embryos, where
maternal genes cause expression of the gap genes Kni, Hb, Kr
and Gt; the embryo cells decode their position by decoding the
combination of these four morphogens. It is believed (Petkova et al.,
2019) that the embryo decodes these signals near optimally, though
it is not exactly clear how. Since our Pre* signals are digital, it is quite
easy to decode them; but it takes more morphogens than the
Drosophila scheme (which uses analog values and thus requires
fewer signals, but is less noise resistant).

4.3 Connecting our results to other work

Our work is complementary to Chhabra (Chhabra et al., 2019)
in several ways. While we both use wavefronts as part of
morphogenesis, the usage is somewhat different. Their wavefront
is proposed as controlling differentiation; it is part and parcel of the
cells’ fate decision. Ours, however, is more of a pure analysis wave,
used simply to characterize an existing morphogen pattern as part of
overall negative feedback.
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Chhabra experimentally shows the occurrence of wavefronts, and
that they are linked to cells’ fate decisions. They note that these decisions
seem tied to the time between the WNT and NODAL wavefronts.
However, they did not know the exact mechanism for this, nor how
cellular fate decisions were remembered after the wave had passed. Our
work could suggest a specific implementation mechanism for both of
these unknowns; we detect and initiate computation upon detecting the
WNTwavefront, and could easilymeasure the time between that and the
subsequent NODAL wavefront.

Our work assumes that cells communicate by diffusion, with the
diffused signals being potentially regenerated at each cell. However,
Chhabra (Chhabra et al., 2019) shows that their signals are not
regenerated, and are instead presumably traveling solely by
diffusion. Unaided diffusion is an order-N2 process, while their
results show the waves traveling at constant speed. They thus
suggest that some form of active transport may be involved.
Others (Reddien, 2018; Bischof et al., 2020) have also seen a role
for active transport of morphagens. If indeed this is the case, it would
greatly simplify the GRN in our work–since the majority of our
complexity is to implement effectively-unidirectional signaling, while
active transport is often naturally unidirectional.

Another way to reduce the complexity of our GRN might be the
imposition of an electric field. This would cause charged signaling
ions to travel mostly unidirectionally, though diffusion still occurs–it
would be interesting to see if this could simplify ourmodel. Electrical
waves have been observed in conjunction with potassium
concentration in bacterial colonies (Prindle et al., 2015) and in
Xenopus embryos (Vandenberg et al., 2011); our hypothesis may
turn out to be a reason for those waves.

Tewary et al. (2017) describes a system where an RD system lays
down one repetition of a pattern, which is then interpreted by PI to
create the layers of the human gastrula. They show experimentally
that increasing the size of the system can result in inadvertent
repetitions of the RD pattern. Since larger human embryos do not
have multiple gastrulas, they conclude that a higher-level system is
probably preventing that. Our work fits nicely with this view; we
have proposed a candidate high-level system.

4.4 Limitations

A limitation of our approach is that we have posed our problem as
starting with an existing field of cells and subdividing it. However,
most embryos are growing at the same time as cells are differentiating,
and cells are migrating as well. Our simpler case is not uncommon,
though. Mammalian and avian blastoderms can divide in two to
create identical twins; each of the two new embryos then reforms itself,
differentiating anew to alter each of the existing embryos. Planarian
morphallaxis is another interesting case; when an adult planarian is
cut into fragments, each fragment can regrow into a full new worm.
However, since a fragment may be missing a mouth or indeed an
entire digestive system, the fragment cannot increase its mass until it
has the capability of eating. It thus undergoes morphallaxis (Reddien,
2018; Reddien, 2021), where the fragment reforms itself into a fully
formed but small-scale planarian, and then eats and grows.

We have similarly discussed the problem as occurring in discrete
steps; the top-level controller measures a morphological property via
a computation wave, then alters parameters, waits for them to take

effect, and repeats until it converges to the target. Others (Friston
et al., 2015; Friston, 2019) have suggested that the process is more
asynchronous and continuous; that each cell continuously monitors
if its expectations for the cells in its neighborhood match what it
currently senses, and migrates or differentiates so as to bring the two
into accord. The large collection of independent agents would march
towards convergence by a free-energy-minimization process. We do
not know which hypothesis is correct; it could be that a combination
of both happens, and computation waves are used to calculate their
form of free energy. In the case of RD patterns, however, they tend to
have to converge to a fixed pattern before their shape makes any
sense at all, which would seem to fit our approach.

The use of discrete signals in negative-feedback controllers in
nature is not uncommon. Bacterial chemotaxis uses an integral-
based feedback system (Alon, 2019) to decide how often to tumble
(i.e., to try a new direction in a search for food). A receptor can be
methylated in any of five locations; more methylation implies a
larger frequency of tumbles. The controller, like ours, uses a discrete
variable with a small number of legal values to serve its purpose.

This work is purely in silico; we have yet no evidence that this
particular negative-feedback system exists in nature. However, it
seems fairly clear that some sort of negative-feedback system must
exist in morphogenesis. The ability of a mammalian embryo to
successfully recover from disturbances as varied as being split in
two (e.g., for identical twins) and transient mRNA interference to the
early embryo (Vandenberg et al., 2012) would be difficult to explain
otherwise. Regardless of whether evolution found exactly this scheme,
it can now be used in synthetic biology approaches to engineer novel
patterning systems (Tiwary et al., 2015; Velazquez et al., 2018;
Santorelli et al., 2019; Silva-Dias and Lopez-Castillo, 2022).

As noted in the introduction, measuring waves is technically
challenging. While waves have been observed the lab, confirming
our hypothesis would be much easier if future work creates
transgenics with fluorescent reporters that allow readouts of the
morphological computation in the living state.

5 Conclusion and future work

We have demonstrated a closed-loop negative-feedback
machine to control morphogenesis, as a contribution to the
efforts to understand morphogenesis as a target-directed process
(Levin et al., 2023). Its goal is to lay down N copies (for a reasonably
arbitrary N) of a simple RD pattern; e.g., to be used as repeats of a
coordinate system. It achieves this goal with a closed-loop negative-
feedback controller that

• employs waves to count morphogen peaks, and thus count the
current number of pattern repetitions. The waves work by
taking advantage of existing asymmetry.

• compares the current number of peaks to its goal N.
• adjusts the RD pattern-length parameter λRD so as to move the
pattern towards the goal.

By combining these concepts, we have

• created multiple-peak RD patterns more reliably than
previous work
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• as such, laid down multiple gradients for PI acting
downstream of RD

• controllably made a subset of the pattern segments larger or
smaller than the others, so as to subdivide a field into unequal
subfields in a repeatable manner.

The circuit described here enables flexible actions under a
range of circumstances to reach a specific large-scale goal state
which belongs to the collective and not the individuals (Levin,
2019; Levin, 2022). Such capacity has been proposed as a definition
of intelligence (Fields and Levin, 2022), for the field of basal
cognition (Lyon, 2006; Lyon, 2015; Sole et al., 2016; Urrios
et al., 2016; Macia et al., 2017). Thus, the above circuit and
analysis not only supports a way of viewing morphogenetic
processes as a set of specific computational tasks, but also
suggests a synthetic biology architecture for incorporating a
simple kind of intelligence into novel biological constructs
(Doursat et al., 2013; Doursat and Sanchez, 2014; Kamm and
Bashir, 2014; Kamm et al., 2018; Davies and Glykofrydis, 2020;
Glykofrydis et al., 2021; Davies and Levin, 2022). Future work will
investigate the presence of these dynamics in vivo, as well as use the
insights revealed by this modeling process to create novel
patterning systems for synthetic biorobotics, regenerative
medicine, and tissue bioengineering.
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