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Myopia is a significant global health concern and affects human visual function,
resulting in blurred vision at a distance. There are still many unsolved challenges in
this field that require the help of new technologies. Currently, artificial intelligence
(AI) technology is dominating medical image and data analysis and has been
introduced to address challenges in the clinical practice of many ocular diseases.
AI research in myopia is still in its early stages. Understanding the strengths and
limitations of each AI method in specific tasks of myopia could be of great value and
might help us to choose appropriate approaches for different tasks. This article
reviews and elaborates on the technical details of AI methods applied for myopia risk
prediction, screening and diagnosis, pathogenesis, and treatment.
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Introduction

Artificial intelligence (AI), first proposed by John McCarthy in 1956, refers to the science
and engineering of making intelligent computer programs and is considered one of the key
technologies of the fourth industrial revolution. Due to its great potential for automated analysis
of medical information and imaging, AI is rapidly developing in the medical field (Gupta et al.,
2020). This pattern of automated screening, diagnosis, or risk assessment based on clinical and
imaging data has proven to be applicable to a wide range of clinical diseases such as
cardiovascular diseases (Wang et al., 2017), neurological diseases (Sarraf and Tofighi, 2016),
respiratory diseases (Zech et al., 2018), and malignancies (Coudray et al., 2018), and has a
tendency to be translated into real clinical practice. For ocular diseases such as diabetic
retinopathy (DR) (Gulshan et al., 2016), age-related macular degeneration (AMD) (Peng et al.,
2019), and cataracts (Gutierrez et al., 2022), AI has been used for screening, diagnosis, and other
aspects. However, there are relatively few applications of AI in myopia.

Myopia is one of the most common refractive errors. In myopic eyes, the high corneal
curvature and long eye axis cause distant objects to be imaged in front of the retina, resulting in
blurred vision at a distance and affecting human visual function (Morgan et al., 2012). The
current global prevalence of myopia is estimated to be about 28.3%, and this number will grow
to 49.8% by 2050 (Holden et al., 2016). The situation is even worse in East Asia (Edwards and
Lam, 2004; Han et al., 2019; Ueda et al., 2019; Dong et al., 2020). Online remote learning and
working styles have led to a further increase in myopia rates, especially among school-age
adolescents (Liang et al., 2021). If left uncontrolled, myopia can progress to high myopia. This
will increase the likelihood of developing irreversible fundus lesions or pathologic myopia and is
one of the main causes of low vision or even vision loss. In China, myopia prevention and
control has become a national strategy, but there are still many challenges to overcome to
achieve this goal, which needs the help of novel technology.
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Currently, the main challenges faced in myopia are: A) Unclear
pathogenesis. It is difficult to objectively quantify the role of many
impact factors on myopia, such as genetics, environment, and lifestyle.
The morphological changes in eyes are also uncertain; B) Large
screening workload. Myopia can only be prevented but not cured,
and currently the most effective way is mass screening and follow-up.
However, an insufficient number of relevant equipment and
ophthalmologists makes it impossible to achieve large population
coverage; C) Difficulties in risk prediction. The lack of reliable risk
prediction model for high and pathologic myopia, as well as individual
differences in the progression of myopia makes it difficult to provide
timely intervention; and D) Uncertain efficacy. There is a range of
myopia prevention and control methods including outdoor activities,
spectacles, corneal contact lenses, atropine, and surgical treatments.
Emerging methods include low-intensity red light irradiation.
However, it is still a question of how to choose the most
appropriate method for each individual.

Various works have been proposed to review the research of AI in
myopia (Foo et al., 2021; Du and Ohno-Matsui, 2022; Zhang et al.,
2022). To our knowledge, none of the existing work has elaborated
technical details of the discussed work, thus fail to make readers more
aware of strengths and limitations of each AI method in specific tasks
of myopia. This could be of great value to readers with a technical
background who are interested in ophthalmic data analysis and
myopia. Therefore, our review investigates how AI methods can be
applied to address important challenges in the field of myopia and
their technical details, with the hope of informing relevant researchers
including ophthalmologists and computer scientists.

The basic framework of this review is depicted in Figure 1. In the
second part, we summarize widely used AI technology and evaluation
metrics inmyopia at present; the following four parts focus on the research
progress and technical details of different AI technology in myopia risk

prediction, myopia screening and diagnosis, myopia pathogenesis, and
myopia treatment, respectively; the seventh part provides a comprehensive
discussion of the challenges and future prospects of AI in myopia.

Commonly used AI technology and
evaluation metrics in myopia

In the absence of a universal evaluation benchmark, existing
research in myopia does not start with a single AI method, but
usually tries several models at the same time and selects the best
performing one after parameter tuning and inter-model comparison.
Machine learning (ML) is an important branch of AI that refers to
methods for training computers to automatically learn relationships
between inputs and outputs without explicitly programming them for
each situation, and is suitable for analyzing large-scale medical data
(Deo, 2015). Conventional machine learning (CML) methods
(Chauhan and Singh, 2018) such as linear regression, support
vector machine (SVM), and random forest (RF) have been applied
in myopia. Newly proposed integrated learning methods such as
XGBoost and Gradient Boosting can also been seen (Balyen and
Peto, 2019). On the other hand, with breakthroughs in computing
power and the introduction of convolutional neural networks (CNNs),
deep learning (DL) methods are performing well in the analysis of
medical images (Albawi et al., 2017). Some basic deep learning
network structures including ResNet, DenseNet, Inception V3,
MobileNet, UNet, and VGGNet are widely used in solving
problems in the field of myopia. In addition, due to data privacy
issues, most myopia studies can only train models based on data from
a single center or several centers in the same region, so pre-trained
models or transfer learning methods are often utilized to achieve better
performance on relatively small datasets.

FIGURE 1
Overview diagram of this review.
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When evaluating the performance of a model, AI research in
myopia often uses the following metrics: For classification tasks such
as disease detection and prognosis prediction, metrics calculated from
the confusion matrix such as accuracy, sensitivity, specificity, and
F1 score are usually used for evaluation. Area under the receiver
operating characteristic curve (AUROC) and area under the precision-
recall curve (AUPRC) are also commonly used and give a more general
idea about the classifier performance, for they do not require a cut-off
point; When the task is to derive a prediction region, such as lesion
segmentation of fundus pictures, it is often evaluated by Intersection of
union (IoU) and Dice similarity coefficient (DSC). These two metrics
measure the overlap area between the predicted region and the ground
truth;While for regression tasks such as refraction prediction and axial
length prediction, the evaluation is often performed using mean
absolute error (MAE), mean square error (MSE) and root mean
square error (RMSE). The detailed calculation method of these
evaluation metrics is presented in Figure 2.

AI technology for myopia risk prediction

In clinical work of myopia, it is often necessary to evaluate and
follow up patients with low to moderate myopia, especially to monitor
the visual acuity of the pediatric and adolescent population. This will
generate a series of data and records including (Chen et al., 2021):
myopia-related risk factors (e.g., near work time, outdoor activity time,
genetics, race, gender, etc.), best-corrected visual acuity, refraction,
axial length, and some ocular metrics (e.g., intraocular pressure, ocular
surface conditions). Analyzing and interpreting these data is a
challenge: on the one hand, there is a lack of reliable risk
prediction models to determine the progression of myopia patients
and their prognosis. On the other hand, given the size of the data and

the complexity of a disease like myopia, it is difficult to perform
manual analysis.

Conventional machine learning methods have the ability to
process large amounts of data in a non-linear way and to extract a
large number of potential predictor variables, even though their
number may exceed the number of observed variables. This
characteristics is suitable for analyzing myopic data (Obermeyer
and Emanuel, 2016). Based on the eye and behavioral data from
more than three thousand elementary school students, a study by Yang
et al. (2020) provided a systematic solution that included feature
selection, data cleaning, and model training. A series of protective and
risk factors for myopia were screened, and a risk prediction model
based on SVM was highly accurate in predicting the occurrence of
myopia in the future. Compared to using a single model, Li et al.
(2022a) introduced the idea of ensemble learning and constructed a
strong classifier by integrating a large number of decision trees as the
basic unit. However, there was no significant improvement in the
results, which may be related to the dataset and the selection of
predictor variables. In addition, the number of samples available for
machine learning algorithms has greatly increased in the era of big
data, enabling us to train models with sufficient samples. A study that
included data from more than 600,000 refractive examinations
confirmed the value of large data volume in improving machine
learning performance (Lin et al., 2018). However, clinical data
collected in real-world settings are often biased, and different
studies set up validation sets in different ways. Reasonable
evaluation of the performance of different models and improving
their generality are issues that need to be solved.

Besides predicting refractive data, the choice of the target variable
can also vary according to clinical need. For children wearing
orthokeratology lens, changes in corneal curvature make refractive
examinations inaccurate in assessing myopia progression, while axial

FIGURE 2
(A) The confusion matrix. (B) Evaluation metrics for segmentation tasks in the field of myopia. (C) Evaluation metrics for classification tasks in the field of
myopia. (D) Evaluation metrics for regression tasks in the field of myopia. yi is the ground-truth value of sample i and ŷi is the predicted value of sample i.
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length is more reliable. Tang et al. (2020) showed that robust
regression model was able to achieve an accurate prediction of
axial length growth. Also, with the use of electronic medical
records at all levels of medical institutions and the establishment of
standardized information management systems, information and data
interoperability will be realized among institutions. With more
information that can be mined, not only can the model
performance be improved, but also more application scenarios will
emerge. Table 1 summarizes the discussed conventional machine
learning methods for myopia risk prediction.

AI technology for myopia screening and
diagnosis

As myopia progresses further, the axial length (AL) increases, the
optic disc begins to tilt and twist, and irreversible retinal
chorioretinopathy may develop. These are some of the fundus
lesions associated with high myopia. Among these patients, about
3.1% eventually develop different types of myopic maculopathy with a
characteristic set of pathological changes (Chang et al., 2013).
Pathologic myopia and its complications have become the leading
cause of blindness in China (Duan et al., 2021) and there are some
urgent needs in this area. First, early identification of fundus changes is
important. About 14% of myopic patients are highly myopic and at
least one fundus examination is recommended annually to assess the
condition of central and peripheral retina (Gifford et al., 2019).
However, manual interpretation of these images is laborious and
even unfeasible. Second, myopia-related fundus lesions are not
obvious in their early stages and are difficult to describe or
quantify. Doctors with different experience will give different
judgments. This is a matter of concern in those districts with little
medical care and is not suitable for the promotion of large-scale and
standardized screening at the community level.

Deep learning for automatic detection and
classification of myopia-related fundus
changes

The detection of fundus lesions and myopia-related complications
in high myopia is an important need, for which deep learning methods

such as CNNs already have high accuracy (Shao et al., 2021; Sun et al.,
2021). Compared to the manual, deep learning methods take only a
few hours to a few days in the training phase of the model and can
produce instant results when interpreting images. It is even possible to
achieve “offline prediction” based on smartphones (Natarajan et al.,
2019). The structure of CNNs consists of four parts: preprocessing,
feature extraction, classification and special modules representing
various novel ideas. The preprocessing part includes noise
reduction, enhancement of FP, OCT or other pictures, unifying
resolution, focusing on regions of interest (ROIs), etc. The feature
extraction part, also known as backbone network, is the core of CNNs.
Convolutional kernels are selected to extract image features by
convolutional operation on the original input image. The
classification part consists of fully connected layers, which convert
the output feature map of the last convolutional layer into a one-
dimensional vector. The probability of having a certain myopic fundus
lesion is obtained using functions such as Sigmoid or Softmax, and
compared with a threshold to output the result. There is no fixed
definition of special modules, and it is up to the researcher to choose
which modules to use and how to use them. Commonly used modules
in ophthalmic image processing include attention mechanisms,
residual connectivity, and bottleneck structures. In general, the
current CNN models applied to myopia are not novel. The fact
that in fundus image analysis, the number of pixels in target
structures such as lesions, optic cups optic discs and blood vessels
is much less than the background and the curved structure of blood
vessels (especially capillaries) is often complicated. These traits in
ophthalmology imaging result in a difficult sampling problem.
Proposing customized backbone networks or special modules based
on the characteristics of myopia-related tasks could be a way to further
improve the model performance.

Not only the detection, but also the differentiation of diverse
classes of myopia-related fundus lesions is challenging. As the
difficulty of the task increases, it is generally necessary to increase
the depth of the backbone network to ensure that deep features in
fundus pictures can be better extracted. However, traditional
convolutional neural networks such as AlexNet and VGG16 may
suffer from gradient explosion or disappearance when the depth is
increased. New methods represented by ResNet (Tan et al., 2021; Ye
et al., 2021; Park et al., 2022), InceptionNet (Choi et al., 2021; Li et al.,
2022b), and DenseNet (Sogawa et al., 2020) have effectively addressed
this problem. Lu et al. (Lu et al., 2021) used ResNet18 as the backbone

TABLE 1 Summary of CML methods for myopia risk prediction.

Research Tasks AI
technology

Accuracy Sensitivity Specificity AUC MAE R2

Yang et al.
(2020)

Prediction of the onset of
myopia in primary school

students

GBRT, SVM 0.93 0.94 0.94 0.97 — —

Li et al. (2022) Prediction of the progression
of myopia

RF 0.8–0.9 — — — <0.05D —

Lin et al. (2018) Prediction of the onset of
myopia in adolescents

RF — — — 0.802-0.888
(8 years in
advance)

0.678-0.879
(8 years in
advance)

0.743-0.912
(8 years in
advance)

Tang et al.
(2020)

Prediction of axial length
growth

Robust linear
regression

— — — — 0.293 0.86

GBRT, gradient boosting regression tree; SVM, support vector machine; RF, random forest.
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network to classify lesions in patients with high myopia based on color
fundus images. The results showed that the classification accuracy for
each lesion specified in META-PM, a widely accepted classification
standard for pathologic myopia, was comparable to that of experts,
reaching 97.03%–99.41%. On this basis, it is meaningful to engineer
relevant algorithms so that these results can truly contribute to clinical
and healthcare screening of myopic patients.

In addition to training deeper networks to solve more complex
tasks, the application of AI in ophthalmology is mostly carried out
by clinicians, focusing more on clinical application value than on
algorithms themselves. That is to say, a flexible model that can
reduce parameter tuning efforts and match with specific tasks is
needed. Google’s EfficientNet (Tan and Le, 2019), proposed in
2019, is a solution based on which Du et al. (Du et al., 2021) trained
four bicategorical models to detect four fundus lesions in highly
myopic patients, namely diffuse atrophy, patchy atrophy, macular
atrophy, and choroidal neovascularization. With EfficientNet-B0
used as basis, models with different parameters can be easily
constructed by adjusting depth, width and resolution
simultaneously. At the same time, the included MBConv
module introduces an attention mechanism that forces the
network to pay more attention to the “critical regions” of the
image. The results showed that the detection accuracy of this
auxiliary classification system for all lesions except choroidal
neovascularization was more than 84%, and the overall
detection accuracy for myopic macular degeneration was up to
87.53%, whereas the classification accuracy of ophthalmology
specialists on the same task was merely 89%. A study by Li
et al. (2022c) showed similar results, further confirming the
effectiveness of EfficientNet. However, according to Du et al.
(2021) , the detection of choroidal neovascularization was only
37.07%, which might be related to the poor visualization of blood
vessels in color fundus images (Jiang et al., 2020; Laíns et al., 2021).
OCTA can image blood vessels better, but there are currently no
studies using AI methods to analyze OCTA images in myopic eyes.
Table 2 summarizes the above-presented methods for automatic
detection and classification of myopia-related fundus changes.

Deep learning for automatic segmentation of
myopia-related fundus changes

Besides the above-mentioned research with direct outcomes,
completing semantic segmentation tasks on fundus images of
myopic eyes helps us better comprehend the morphological
changes (Read et al., 2019). It can also aid in the training of
physicians to interpret images (Fang et al., 2022). In labeling the
choroid and the layers of the retina in OCT images, Cahyo et al. (2020)
took advantage of the multi-scale feature fusion characteristic of UNet,
thus preserving more information. UNet is one of the most commonly
used models for semantic segmentation of medical images
(Ronneberger et al., 2015; Li et al., 2021). It proposes a novel
structure called “Decoder-Encoder”: the decoder is used for feature
extraction, and the encoder is used for up-sampling and feature fusion,
which is very suitable for medical images with simple semantics and
fixed structure. The results showed that by fusing shallow features with
little semantic information but accurate target location and deep
features with rich semantic information but coarse target location,
the IoU could reach above 0.90. Accurate segmentation results were
obtained even for the thin choroid of highly myopic patients. By using
the upgraded version of UNet, namely UNet++, the segmentation of
optic disc, retinal atrophy lesions, and retinal detachment lesions was
also satisfactory (Hemelings et al., 2021). However, UNet is a
standalone network structure that is difficult to combine with other
networks. In view of this, Feature Pyramid Networks (FPNs), a module
that can be added after many network structures, was proposed in
2017 (Lin et al., 2017). The core idea consists of two: up-sampling deep
features and fusing features from each layer at different depths, and
performing prediction independently at different feature layers. Lu
et al. (2021) applied FPN to the focal segmentation task of myopic
macular lesions and showed that the performance could be
substantially improved without changing the structure of the
original model and with essentially no increase in computational load.

Completing classification or other tasks on the basis of semantic
segmentation is a new direction of current research (Shao et al., 2021).
Based on the segmentation results of the choroid and retina, Chen

TABLE 2 Summary of DL methods for classification tasks in myopia.

Research Tasks AI technology Accuracy Sensitivity Specificity AUC

Lu et al. (2021) Detection of PM and classification
of MM

ResNet18; FPN-based Faster R-CNN 0.970–0.994 0.684–0.978 0.970–0.995 0.979–0.995

Du et al. (2021) Classification of MM EfficientNet 0.875–0.975 0.370–0.872 0.945–0.983 0.881–0.982

Tan et al. (2021) Detection of highmyopia andMM ResNet101 — — — 0.913–0.978

Li et al. (2022) Detection of tessellated fundus
and PM

Dual-stream DCNNs — 0.811–0.988 0.959–0.996 0.970–0.998

Sogawa et al.
(2020)

Detection of MM VGG16/19; ResNet50; Inception V3;
InceptionResNetV2; Xception; DenseNet121/169/210

0.676–0.965 0.906–1.000 0.942–1.000 0.970–1.000

Li et al. (2022) Detection of four myopic vision-
threatening conditions

InceptionResNetV2 — — — 0.961–0.999

Choi et al. (2021) Detection of high myopia ResNet50; InceptionV3; VGG-16 — — — 0.860–0.900

Ye et al. (2021) Detection of MM ResNet101 — — — 0.927–0.974

Park et al. (2022) Detection of PM ResNet18/50; EfficientNet 0.860–0.950 0.850–0.930 0.880–0.960 0.950–0.980

PM, pathologic myopia; MM, myopic maculopathy.
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(Chen et al., 2022) quantified the thickness of each layer by adding an
additional fully connected layer. The retina is histologically divided
into ten layers that are only 400–500 microns thick at their thickest
point and may be even thinner in myopic eyes. Therefore, their results
can help physician improve the accuracy of interpretation. Notably,
while not common currently in AI research in myopia, this type of
application is widespread in diabetic retinopathy and can change the
“end-to-end” workflow (i.e., prediction directly based on entire
images). Table 3 summarizes the above-mentioned studies for
automatic segmentation of myopia-related fundus changes.

AI technology in the study of myopia
pathogenesis

Deep learning for investigating myopia-
related morphological changes

Artificial intelligence can provide new ideas for morphological
changes in myopic eyes. On tasks that ophthalmologists cannot
perform (e.g., predicting refraction based on fundus images), deep
learning methods can be done with low mean square error based on
FP, UWF FP, or OCT images (Varadarajan et al., 2018; Shi et al., 2021;
Yoo et al., 2022). One explanation is that the model automatically
learns fundus changes that are not visible in the early stages of myopia
and uses them for prediction. Considering this, Shi et al. (2021)
introduced the gradient-weighted class activation mapping (Grad-
CAM) method to find the region most essential for model prediction.
The core idea is to calculate the gradient of the previous layer of the
fully connected layer (i.e.: the last convolutional layer) with respect to
each pixel in the input image, and to draw a heatmap from it. The
pixels that have a higher impact on the model prediction are closer to
the red color in the heatmap, and the pixels with less impact are closer
to the blue color. The results showed that the area of interest was
concentrated around the optic disc as well as the macula, suggesting a
potential relationship between early morphological changes in this
region and myopia.

In many mammalian models, choroidal thickness (ChT) can
rapidly change in both directions when images are focused
anteriorly (myopia) or posteriorly (hyperopia) to the retina
before axial changes (Read et al., 2019). Studies have confirmed
that the choroid undergoes histological changes before the retina in
highly myopic eyes (Jonas and Xu, 2014; Zhou et al., 2017). The
choroid can also influence choroidal neovascularization and scleral
growth through the secretion of growth factors (Nickla and
Wallman, 2010; Scherm et al., 2019) which in turn affects the
progression of myopia. However, the choroid is the middle layer of
the eye wall and cannot be viewed with the naked eye through
fundus images. To investigate the choroidal changes, Sun et al.
(2021) applied radiomics methods to the optic disc region. Features
were automatically extracted from fundus images using
PyRadiomics program, followed by LASSO regression to filter
the most predictive features and eventually, a novel optic disc
imaging metrics was constructed. The results showed that AI
methods can effectively predict ChT based on fundus images
rather than OCT images, which facilitates the assessment of
early pathological changes in highly myopic eyes and guides
early diagnosis and treatment.

Conventional machine learning for exploring
myopia-related genes

Through the use of molecular techniques such as linkage analysis,
candidate gene analysis, genome-wide association studies (GWAS)
and next-generation sequencing (NGS), many new genes and
chromosomal loci associated with myopia have now been
identified. Representative studies include CREAM (Verhoeven
et al., 2013) and 23andME (Tedja et al., 2018). However, these
genes can currently explain less than 10% of the genetic variation
in myopia (Han et al., 2022). Considering the size and high
dimensional characteristics of this data type, conventional machine
learning methods are suitable to transform it into valuable knowledge.
Ghorbani Mojarrad et al., 2018 used data from CREAM and 23andME

TABLE 3 Summary of DL methods for segmentation tasks in myopia.

Research Tasks AI
technology

Accuracy Sensitivity Specificity IoU Dice score F1 score

Cahyo et al.
(2020)

Segmentation of choroid
in myopic eyes

U-Net 0.99 — — 0.92 — —

Lu et al. (2021) Segmentation of myopic
“Plus” lesions

ResNet50; FPN 0.656–0.789 — — — — 0.688–0.889

Chen et al.
(2022)

Segmentation and
quantification of the

choroid in myopic eyes

Mask R-CNN — — — — 0.938 —

Li et al. (2021) Segmentation of choroidal
sublayers and vessels

U-Net 0.980–0.987 0.699–0.962 0.990–0.999 — 0.699–0.959 —

Shao et al.
(2021)

Segmentation of
tessellated fundus and

calculating FTD

ResNet18; FCN 0.965 0.725 0.961 — — —

Hemelings et al.
(2020)

Segmentation of myopia-
related fundus changes

U-Net++ — — — — 0.93 (optic disc), 0.80
(retinal atrophy), 0.80
(retinal detachment)

0.98 (optic disc), 0.91
(retinal atrophy), 0.70
(retinal detachment)

FTD, fundus tessellated density.
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to screen for differential genes and calculate a genetic risk score (GRS),
which was used as a variable to construct linear models. The results
showed that the inclusion of the GRS significantly improved the
performance of models in determining the occurrence of myopia
compared with using the number of myopic relatives (NMP) alone
(p < 0.0001). The model incorporating GRS better estimated refractive
error at 7 (R2 = 3.0% vs. 3.7%) and 15 (R2 = 2.6% vs. 7.0%) years old
compared to using only age, sex, and NMP, but the improvement was
still unsatisfactory, as supported by the results of Chen et al. (2019) .
One possible reason is that the current understanding of myopia-
related single nucleotide polymorphisms (SNPs) and gene-
environment interactions is still limited. As for deep learning
methods, deep neural networks (DNNs) and recurrent neural
networks (RNNs) can be used for tasks such as variant calling,
genome annotation, mutation classification, and “phenotype-
genotype” correspondence (Dias and Torkamani, 2019) but have
not yet been applied in myopia.

AI technology in myopia treatment

As mentioned above, the mechanisms of myopia onset and
progression are still unclear, thus the methods of myopia
prevention and treatment are constantly being updated. For
non-progressive myopia (i.e., people with slow progression of
myopia and progression≤0.50D/year), available correction
methods include spectacles, corneal contact lenses, and surgery
(e.g., laser keratomileusis, implantable collamer lens (ICL),
posterior scleral reinforcement). For progressive myopia
(i.e., those with rapid myopic progression and
progression≥0.75 D/year), available control measures include
orthokeratology lens, spectacles with multi-point myopic
defocus technique or point diffusion technique, medications
(e.g., atropine, pirenzepine, 7-methylxanthine), low-energy red
light irradiation, and a combination of above methods.

When choosing orthokeratology lens, less trials can help reduce
the chance of ocular infections (Kam et al., 2017). The use of
conventional machine learning methods can provide an accurate
estimate of the proper alignment curve (AC) curvature of the lens.
The results of Fan et al. (2022) showed that models such as SVM and
Gaussian process had a better fitness with R-squared (R2) up to
0.73–0.91. By using different kernel functions, SVM can also assist
in the prediction of two important parameters of orthokeratology
lens: return zone depth (RZD) and landing zone angle (LZA). The R2

can reach above 0.80 and 0.90, respectively (Fan et al., 2022).
AI technology also have applications in refractive surgery.
Methods like random forest, gradient boosting, XGBoost, and SVM
regression (SVR) can assist in implant size selection and arch
height prediction in ICL surgery (Kamiya et al., 2021; Kang et al.,
2021; Shen et al., 2021). Proper sizing ensures a safe postoperative
ICL dome and reduces complications such as angle-closure glaucoma
and anterior subcapsular cataract. Using an artificial neural network
(ANN) containing dual hidden layers and boosting strategy, Cui et al.
(2020) developed an assistance system for the design of SMILE
surgical parameters. The postoperative corrected distance visual
acuity (CDVA) is similar to the preoperative CDVA, but the
postoperative uncorrected distance visual acuity (UDVA) is greater
than the preoperative one. This result demonstrated that while AI did
not significantly differ from experts in terms of safety, they did

increase in terms of effectiveness. However, these studies have
made simplifications to clinical need, such as considering only two
ICL sizes and converting the regression problem into a classification
problem. This may improve model performance but also results in
some limitations.

In addition, Wu et al. (2020) retrospectively analyzed a cohort of
patients with topically applied atropine for myopia control. They used
multiple conventional machine learning methods to predict IOP at the
endpoint based on 19 variables, and the best performing XGBoost
algorithm had an RMSE of up to 2.2604 mmHg, showing potential in
predicting efficacy as well as potential side effects of atropine. Fewer
studies have used AI in this area, possibly because cohort data for
myopia are more difficult to collect compared to cross-sectional
studies. Table 4 summarizes the aforementioned AI-related studies
for myopia treatment.

Discussion

Artificial intelligence-enabled intelligent ophthalmic devices are
an important solution to the lack of ophthalmic medical resources
(especially in primary hospitals), but the area of healthcare has its
unique concerns. To apply AI methods in the process of real myopia
clinical practice, we believe that the following aspects should be
focused on.

Firstly, physician and patient acceptance is a challenge. Scheetz
et al. (2021) showed a high rate of patient satisfaction with AI
technology for ophthalmic screening, but Lin et al. (2022) found that
residents were “algorithm aversion” and expected more physician
involvement in eye screening services. Explainable artificial
intelligence (XAI) is a potential solution to open the “black box”
and gain the trust of patients. When detecting myopic macular
lesions using OCT images, deep learning models can be trained using
soft labels and output the probability of belonging to each lesion
category rather than predicting a particular category, which has been
shown to yield satisfying results (Du et al., 2022). Other visualization
methods, such as the occlusion test (Zeiler and Fergus, 2014),
saliency maps (Simonyan et al., 2013) and gradient-weighted class
activation maps (Grad-CAMs) (Selvaraju et al., 2017) can also
retrospectively analyze the prediction process of neural networks
and highlight important regions relevant to decision making, thus
improving interpretability. AI studies on other ocular diseases often
choose to publish their heatmap results (Brown et al., 2018; Keel
et al., 2019) and many current studies in myopia are gradually
starting to take this on board.

Secondly, it is important to accurately evaluate the performance of
AI methods from a technical point of view. Existing AI studies in
myopia do not have directly comparable results due to the difference
in datasets and the way training set/test set were selected. In this
regard, some studies have thought beyond the perspective of clinical
applications to the perspective of computer science and have done
some “benchmark work” in diabetic retinopathy (Li et al., 2019): by
establishing a multicenter, well-labeled dataset and conducting
repetitive tests using several state-of-the-art algorithms on same
tasks, a benchmark of algorithm performance could be established
and serves as a reference for further development of relevant
evaluation systems. This can be borrowed to myopic AI research to
help address the critical question of how to evaluate whether the
performance of an AI method is good enough.
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TABLE 4 Summary of AI technology for myopia treatment.

Research Tasks AI technology Accuracy AUC MAE RMSE R2

Fan et al.
(2022)

Estimation of the AC
curvature in

orthokeratology lens
fitting

Robust linear regression;
SVM; Bagging decision
trees; Gaussian process

— — 0.263–0.507 0.373–0.680 0.73–0.91

Fan et al.
(2021)

Prescribing CRT lens
parameters in adolescents

with myopia

Gaussian process; Robust
linear regression; SVM

— — 0.386-0.979 (for
LZA); 5.326-8.644

(for RZD)

0.556-1.214 (for
LZA); 6.883-10.998

(for RZD)

0.693-0.866 (for
LZA); 0.964-

0.975 (for RZD)

Shen et al.
(2021)

Prediction of the
postoperative ICL vault

RF; Gradient Boosting;
XGBoost

0.802-0.828 (vault
prediction); 0.815-
0.822 (ICL size
prediction)

0.718–0.765 — 159.03–162.53 0.285–0.315

Kang et al.
(2021)

Prediction of the
postoperative ICL vault

XGBoost; Light GBM;
RF; SVM

0.759 (internal
validation); 0.674

(external validation)

— 106.88 (internal
validation); 143.69

(external
validation)

140.14 (internal
validation); 186.29
(external validation)

—

Kamiya et al.
(2021)

Prediction of
postoperative ICL vault

SVR; Gradient
Boosting; RF

— — 99.6–131.4 — —

Cui et al.
(2020)

Prediction of SMILE
nomogram

ANN — — 0.066–0.114 — 0.9645

Wu et al.
(2020)

Prediction of IOP in
children with myopia
treated with topical

atropine

MARS; CART; RF;
XGBoost

— — 0.778–0.867 2.260–2.432 —

AC, alignment curve; CRT, corneal refractive therapy; LZA, landing zone angle; RZD, return zone depth; SVR, support vector regressor; SMILE, small incision lenticule extraction; ANN, artificial

neural network; MARS, multivariate adaptive regression splines; CART, classification and regression tree.

FIGURE 3
Three ways to integrate AI technology into existing clinical practices.
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Lastly, AI should not only continue to improve its performance
on evaluation metrics, but also be organically integrated with
clinical practice in myopia to achieve a better visual health
system. Regarding how to integrate a new technology into
existing clinical practice, Bossuyt et al. (2006) summarized three
possible ways (Figure 3): replacement, triage, and add-on. For the
application of AI in myopia, we believe that the “Triage” and “Add-
on”ways are viable and valuable: the former uses AI as the most basic
diagnostic classification tool that can serve as a referral for large-
scale primary ophthalmology screening or as an “opportunistic
screening” in non-ophthalmology clinical work; The latter uses AI
in parallel with or after the clinician’s diagnosis to serve as an
assistant in tasks like segmenting the layers of the retina or
measuring thickness on OCT images for classifying pathologic
myopia, as mentioned earlier. As for the “Replacement”, AI
algorithms are used to replace clinicians in clinical diagnostic
tasks, which is generally only applicable to tasks that are simple
enough or where the AI performs absolutely better than the
physician. This requires rigorous validation and is not common
in the field of myopia.

Conclusion

The application of AI in the field of myopia is impressive, and
its performance holds promise to replace traditional computer-
aided diagnostic systems (CADs). The results of this review
suggest that AI has been applied to tackle some of the key
challenges in myopia clinical practice. However, AI research
should not simply be about applying models to various tasks
and more attention needs to be paid to those technical
problems that have yet to be solved. In the future, more
technical approaches need to be proposed according to the
characteristics of each task. It is promising that more AI
approaches will be deployed as stable and efficient diagnostic
systems for practical clinical diagnosis.
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