
Molecular typing and prognostic
risk models for ovarian cancer: a
study based on cell differentiation
trajectory

Tingfeng Chen1,2†, Tingting Ni1†, Lan Mu1, Zhou Ying3,
Hanqun Zhang1* and Zi Wang1*
1Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China, 2State Key Laboratory of
Biotherapy, West China Hospital, Sichuan University, Chengdu, China, 3Department of Medical Records
and Statistics, Guizhou Provincial People’s Hospital, Guiyang, China

Ovarian cancer is a heterogeneous disease with different molecular phenotypes.
We performed molecular typing of ovarian cancer using cell differentiation
trajectory analysis and proposed a prognostic risk scoring model. Using the
copy number variation provided by inferCNV, we identified malignant tumor
cells. Then, ovarian cancer samples were divided into four subtypes based on
differentiation-related genes (DRGs). There were significant differences in survival
rates, clinical features, tumor microenvironment scores, and the expression levels
of ICGs among the subtypes. Based on nine DRGs, a prognostic risk score model
was generated (AUC at 1 year: 0.749; 3 years: 0.651). Then we obtained a
nomogram of the prognostic variable combination, including risk scores and
clinicopathological characteristics, and predicted the 1-, 3- and 5-year overall
survival. Finally, we explored some issues of immune escape using the established
risk model. Our study demonstrates the significant influence of cell differentiation
on predicting prognosis in OV patients and provides new insights for OV treatment
and potential immunotherapeutic strategies.
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1 Introduction

Globally, ovarian cancer is the seventh most common cancer in women. There are
approximately 225,000 new cases each year, with a survival rate of approximately 30%,
ranking first in the mortality rate of gynecological malignancies. Malignant epithelial
neoplasms are the most common type of ovarian cancer, accounting for nearly 90% of
ovarian cancers (Chen et al., 2016; Fitzmaurice et al., 2017). Recent molecular studies have
shown that epithelial ovarian cancer is a heterogeneous disease, reflected by different
histological types. The heterogeneity of biological behavior is important for patient
prognosis and treatment, especially for future individualized therapies. With the
continuous development of advanced technologies such as genomics and proteomics,
molecular targeted therapy based on molecular typing of malignant tumors has been
successful in chronic myeloid leukemia, breast cancer with ER (+) or Her2 (+), and lung
cancer with EGFR mutation (Roode et al., 2015; Miller et al., 2017a; Dolly et al., 2017; Xu
et al., 2017), which has significantly improved the survival rate of patients.
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To identify heterogeneity, previous studies have made much
effort in the molecular typing of ovarian cancer. For example, in
2008, Tothill et al. (2008) determined six subtypes by K-means
through miRNA gene expression profile chip detection. Tan et al.
(2013) identified five molecular subtypes through functional
genomics. In terms of clinical application, Kommoss et al.
(2017) evaluated the relationship between TCGA molecular
subtypes and the efficacy of randomly assigned beizumab, and
the results showed that the median PFS of the molecular subtypes
with the worst survival (proliferation and mesenchymal) was
improved, but OS was not significantly changed. There is still
room for molecular typing to make a more accurate diagnosis,
treatment and survival prediction.

Compared to bulk RNA sequencing (RNA-seq) techniques,
single-cell RNA-seq (scRNA-seq) can characterize genetic
complexity at the single-cell resolution, including copy
number variation (CNV), gene expression level, and gene
fusion, which paves the way for us to understand the
heterogeneity of cells. In this study, we performed cell typing
and copy number variation analysis on the samples using scRNA-
seq technology. The differentiation trajectory of OV cells was also
studied. Based on this and combined with a large amount of bulk
RNA-seq data, the relationship between OV cells and clinical
results was studied, providing new insights for OV diagnosis and
potential immunotherapeutic strategies.

2 Materials and methods

2.1 Acquisition and processing of single-cell
RNA-seq

Raw scRNA-seq data from four epithelial ovarian cancer
samples (GSM3729170, GSM3729171, GSM3729172 and
GSM3729173) were downloaded from Gene Expression
Omnibus (GEO) (dataset GSE130000) (https://www.ncbi.nlm.
nih.gov/geo). The data were then processed in R version 4.0.2
(R Foundation for Statistical Computing, Vienna, Austria) using
the Seurat package. The proportion of mitochondrial genes was
then calculated, and its relationship with total gene numbers and
sequencing depth was determined by correlation analysis. Cells
in which <100 genes or with a mitochondrial gene proportion
of >10% were excluded from analysis. Genes detected in less than
three cells were also excluded from analysis. Each sample was
normalized to concentrate the expression data with a large degree
of dispersion, and the top 1,500 genes with significant differences
across cells were identified by variance analysis. In the
normalization process, we first calculate the size factor by
dividing the total gene UMI count in the cell by a scale factor
of 10,000. Then the UMI count is divided by the cell size factor to
obtain the normalized UMI count for each gene. Finally, take the
normalized UMI count as the log of 2. Then we selected the
common characteristic genes of different samples and integrated
them. We used a harmony integration algorithm to preserve
biological variation and the continuous state of developmental
cells while reducing experimental and technical batch effects,
rather than erroneously clustering cells into discrete groups
(Korsunsky et al., 2019).

2.2 Dimensionality reduction and cell
annotation

We used the “ScaleData” function in the Seurat R package to
scale the matrix. The Article “FindVariableGenes” and “RunPCA”
functions were used to identify highly variable genes, which could
preserve major biology variation. Then we used principal
component analysis (PCA) for dimensionality reduction. Based
on the PCA results, an appropriate number of principal
components were used. Using the “FindNeighbors” and
“FindClusters” functions, we determine an optimal number of
cell clusters for further unsupervised graph-based clustering.
Uniform Manifold Approximation and Projection (UMAP)
algorithm with a resolution of 0.4 was used to show the main
cell clusters. Under the condition of log2(Fold Change) > 0.25 and
False Discovery Rate (FDR) < 0.01, marker genes were screened out
through the function “FindAllMarkers” in Seurat with default
parameters of the Wilcoxon rank-sum test. Visualize the marker
genes in each cluster using the ggplot2 package in R. Using the
marker genes of each cell type summarized in Kan’s study (Kan et al.,
2022), together with the EnrichR database (Chen et al., 2013;
Kuleshov et al., 2016; Xie et al., 2021), we determine the marker
genes. Based on expression of obtained marker genes and the top
50 most upregulated genes in each cluster, cell clusters were finally
annotated.

2.3 InferCNV analysis

DNA copy number variation (CNV) has been recognized as an
important source of genetic variation. By using the inferCNV
(https://github.com/broadinstitute/infercnv) package in R (Navin
et al., 2011), we calculated somatic large-scale chromosomal CNVs,
such as gains or deletions of entire chromosomes or large segments
of chromosomes, in each single cell to identify malignant epithelial
cells. InferCNV sorted all analyzed genes by their genomic locations
and applied a moving average of 101 genes. We downloaded the
human genome assembly GRCh38 from NCBI and prepared a gene/
chromosome position file.

Endothelial cells and T cells were selected as reference normal
cells. The inferCNV used a Hidden Markov Model (HMM) Model
(i6 HMMmodel) to predict CNV level and implemented a Bayesian
Network Latent Mixture Model to identify the posterior
probabilities of alteration status in each cell and whole CNV
region to correct the results. The i6 HMM model was a six-state
CNV score model to predict the following CNV levels: 0: complete
loss; 0.5: loss of one copy; 1: neutral; 1.5: addition of one copy; 2.0:
addition of two copies; 3.0: >2 copies. Based on the CNV score, we
generated a heatmap. The result showed that epithelial cells were
labeled as malignant tumor cells, while CAFs and macrophages were
labeled as non-tumor cells.

2.4 Single-cell pseudotime and trajectory
analysis

It is known that single-cell trajectories can unveil how gene
regulation governs cell fate decisions. We found Most cell-state
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transitions, whether in development, reprogramming, or disease, are
characterized by cascades of gene expression changes. We used a
technique called “pseudotemporal ordering,”which applies machine
learning to single-cell transcriptome sequencing (scRNA-seq) data
to order cells along a reconstructed “trajectory” of differentiation or
other type of inferred biological transition. By using the Monocle
package in R (Navin et al., 2011), we performed pseudotime and
trajectory analyses of ovarian cancer cells.

We convert Seurat results to the cell matrix, cell annotation table
and gene annotation table required by monocle. To create a
CellDataSet object with parameter “expressionFamily =
negbinomial.size(),” we used “newCellDataSet” function in the
Monocle package.

Dimensionality reduction was performed using the DDRTree
algorithm. The cell lineage trajectory based on cell cluster and
pseudotime was then inferred with the default parameters of
Monocle after dimensionality reduction and cell ordering, then
visualized with the “plot_cell_trajectory” function. Following cell
trajectory, The cells were split into different subsets. Using the
“FindMarkers” function, Intracellular differentially expressed
genes in cells were identified as differentiation-related genes
(DRGs) with |log2(FC)| >0.25 and FDR < 0.05.

2.5 Acquisition and processing of bulk
RNA-seq

Raw bulk RNA-seq data and survival data from 380 epithelial
ovarian cancer samples were downloaded from Gene Expression
Omnibus (GEO) (dataset GSE140082). Most of them are serous,
accounting for 73% of the total. The rest are referred to as “other”
and we excluded them because the histological type was unclear.
From The Cancer Genome Atlas (TCGA), we downloaded 379 OV
samples with transcriptomic data and clinical data. They’re all
serous epithelial ovarian cancer. These with survival <30 days
or >2,000 days and with unclear survival status or
clinicopathological characteristics were excluded in this study.

2.6 DRGs-based molecular subtypes of OV
patients

To identify molecular subtypes, unsupervised consensus
clustering was performed to cluster ovarian cancer samples
into subtypes based on the expression matrix of DRGs using
R’s ConsensusClusterPlus package (Wilkerson and Hayes,
2010). The following parameters were used for clustering:
number of repetitions = 50 bootstraps; pItem = 0.8
(resampling 80% of any sample); pFeature = 1 (100% of
features to sample) and clustering algorithm = k-means
method. Set random seed “123,456” for reproducible results.
The cumulative distribution function (CDF) method was used to
determine the optimal number of subtypes.

The clustering results were then intersected with the clinical
data. Data with missing survival information were excluded from the
analysis. Using “survdiff” in the survival package, we performed
Kaplan–Meier analysis to obtain survival differential statistics. This
was then visualised using the ggsurvplot function.

2.7 Tumor microenvironment scores,
immune checkpoint genes expression
across clusters

Cells in the tumor microenvironment and the extent of
infiltrating immune and stromal cells in the tumor are important
contributors to prognosis. Immune and stromal cells are two major
types of non-tumor components in the tumor microenvironment,
which have been proposed to be valuable in the diagnosis and
prognostic assessment of tumors (Gajewski et al., 2013).

The immune and stromal scores calculated based on the
ESTIMATE algorithm can facilitate the quantification of immune
and stromal components in tumors. In this algorithm, immune and
stromal scores are calculated by analysing specific gene expression
characteristics of immune and stromal cells to predict the infiltration
of non-tumor cells. We used function “estimateScore” in
ESTIMATE package, for sample interstitial, immune, and tumor
purity scores. When stromal cells and immune cells are high, tumor
purity will be low and conversely, tumor purity will be high.

In addition, 38 ICGs (immune checkpoint genes) were collected
from previous studies (Patel et al., 2017; Garris et al., 2018; Zhang et al.,
2018;Wang et al., 2019a;Wang et al., 2019b;Han et al., 2019; Xiang et al.,
2021). Immune checkpoints are a set of molecules expressed on immune
cells that can regulate the level of immune activation and play an
important role in preventing autoimmune dysfunction. The expression
of these genes in different clusters was evaluated. Kaplan–Meier survival
analysis was used to determine the prognostic value.

2.8 Generation and quality evaluation of
prognostic risk scoring models

In our study, the TCGA cohort andGSE140082 dataset were used as
the training and validation sets of the risk scoring model. We extracted
the expression levels of DRGs in GEO and TCGA cohorts and
normalized the expression matrix using log2 transformation.
Weighted correlation network analysis (WGCNA) was performed in
TCGA queues, and correlations between key modules and OV
differentiation were determined. The function “pickSoftThreshold” is
used to find the soft threshold and to construct the scale-free distribution
network. Then the functions “cutreeDynamic,” “moduleEigengenes,”
“mergeCloseModules” are used to cluster andmerge themodules. A heat
map of the correlation betweenmodules and clinical features was drawn.

Univariate analysis was performed for the genes in the key modules
based on prognostic correlation (p< 0.05).Wemapped the forest plot of
single factor significant genes. The selected genes were then subjected to
multivariate Cox regression analysis to generate a model for DRGs
based on prognostic risk score (RS) characteristics. We used risk scores
to divide the samples into high-risk and low-risk groups. Then we used
Kaplan–Meier for survival analysis and receiver operating characteristic
(ROC) curves to assess model accuracy and predictive efficiency.

2.9 Nomogram construction of TCGA
cohort

A nomogram was constructed for the TCGA cohort,
including RS and clinical variables such as age, grade and
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stage. After univariate and multivariate analysis, we obtained a
nomogram of the prognostic variable combination. The
relationship between these variables and survival is shown
visually. Then using the “cph” function in the rms package,
we predicted the 3-year and 5-year overall survival. The
nomogram was tested using calibration curves which assess
the predictive validity and accuracy of the nomogram.

2.10 GO enrichment analysis and GSVA

By using the “enrichplot,” “ggplot2,” “ClusterGVis,” and
“clusterProfiler” packages in R, which can help the process of
biological-term classification and visualization, GO pathway
enrichment analysis was performed. We converted the gene ID
through the database “org.hs.eg.db.” To investigate differences in

FIGURE 1
Single cell data quality control and principal component analysis. (A) Upon quality control and lognormalize normalization, 6,037 cells from four
ovarian cancer samples remained. (B) A significant positive correlation between sequencing depth and intracellular total sequence. (C) A total of
18,777 genes were included, 1,500 variable genes had high variation. (D) PCA based on integrated samples, cell coordinates fit as well as possible. (E)
Expression analysis of marker genes in each cluster (from 0 to 10).
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FIGURE 2
Celltype annotions, inferCNV and cell trajectory difference analysis. (A) Marker genes used to identify cell types in different clusters. (B) Eleven
clusters were annotated and performed on UMAP. (C) InferCNV analysis showing copy number variation in epithelial cells, copy number variation in
epithelial cells was significantly higher than that in other cells. (D) Pseudotime and cell trajectory analysis. (E)We identified seven states of differentiation in
ovarian cancer epithelial cells. (F) Marker gene heat map and pathway enrichment analysis of seven different cell states.
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biological states and pathways between different cell types, we used
Gene Set Variation Analysis (GSVA), a non-parametric and
unsupervised analysis method used to evaluate the gene set
enrichment results of biological states. The main purpose is to
evaluate whether different metabolic pathways are enriched in
different samples by converting the expression matrix of genes
between different samples into the expression matrix of gene sets
between samples. The “GSVA,” “GSEABase,” and “limma” packages
were used for GSVA analysis (Hänzelmann et al., 2013). The gene set
database was downloaded from the Molecular Signatures Database
(MSigDB) (Mootha et al., 2003; Subramanian et al., 2005). Single-
cell samples were divided into high and low risk groups according to
the risk scoring model. The pathway of enrichment difference
between high and low risk group was found by difference analysis.

3 Results

3.1 Quality control, integration and
normalization of scRNA-seq

From the GSE130000 dataset, four primary ovarian cancer
samples were selected for subsequent analysis, with a total of
13,447 cells involved. Cells with fewer than 100 genes or more
than 10% mitochondria were filtered out (Figure 1A). There was a
significant positive correlation between sequencing depth and
intracellular total sequence was detected (Figure 1B). For each
sample, we selected 1,500 high variation genes. Based on the
characteristic anchor genes, we integrated samples from four
different patients to remove batch effects.

3.2 Five cell types were annotated

We selected the top 30 principal components and the top
1,500 variable genes (Figure 1C) to use principal component
analysis (PCA). The cell coordinates of different samples on the
projection map were close, which indicated that the integration
effect was great (Figure 1D). Using the Uniform Manifold
Approximation and Projection (UMAP) algorithm with a
resolution of 0.4, 11 main cell clusters were classified. Based
on preferentially or uniquely expressed marker genes in each
cluster (Figure 1E), the EnrichR datasets and the marker genes of
cell type provided by T. Kan et al. (Korsunsky et al., 2019), we
annotated the clusters. We also show marker genes used to
identify cell types in different clusters (Figure 2A). Clusters 0,
1, 2, 3, and 5 were all epithelial cells, cluster 7 was T cell, clusters
4, 6 and 9 were CAFs (cancer-associated fibroblasts), cluster
8 was macrophage and cluster 10 was endothelial cell
(Figure 2B).

3.3 InferCNV analysis showing copy number
variation in epithelial cells

There are two methods for identifying epithelial tumor cells: one
is based on copy number changes and point mutations, and the
other is based on the expression of epithelial markers (Tirosh et al.,

2016; Puram et al., 2017). Puram et al. (2017) demonstrated
consistency between the two approaches. Kan et al. (2022)
identified epithelial cells as malignant tumor cells by analysing
epithelial markers. Here, we reproduced the results using
InferCNV analysis. The results showed that copy number
variation in epithelial cells was significantly higher than that in
other cells, which verified the conclusion (Figure 2C).

3.4 Cell trajectory analysis identified DRGs

Using pseudotime and trajectory analysis, we identified seven
different states of differentiation in ovarian cancer cells, which
are epithelial cells. We defined their differential genes as
differentiation-related genes (DRGs) for subsequent
experiments (Figures 2D, E). We showed the marker genes for
each state with a heat map and a line map. We also performed GO
pathway enrichment analysis for each state (Figure 2F). State
1 mainly controls chromosome separation and nuclear division,
which means the initial state of differentiation of the cells. State
2 is enriched to integrated stress response signaling and other
response signaling pathways, which usually used by cells to
respond to various adverse stimuli. State 3 is mainly enriched
to negative regulation of protein. State 4 is related to cytoplasmic
translation and rRNA processing, which may be an intermediate
process. State 5 corresponds to some of the pathways involved in
the formation of protein structures. State 6 is characterized by a
slight increase in granulocyte behavior relative to other epithelial
cancer cells. State 7 is associated with protein folding, and cells
may further proliferate.

3.5 Four DRGs-based molecular subtypes

With a clustering threshold of maxK = 9, we completed DRG-
based consensus clustering on the GSE140082 dataset. The OV
samples were grouped into four molecular subtypes (Figures 3A–C).
Then, we performed Kaplan–Meier analysis on the survival rates
associated with the four subtypes. The results showed that subtype I
(C1) had the best OS (overall survival), followed by subtype III (C3)
and subtype IV (C4), and subtype II (C2) had the worst OS
(Figure 3D).

Based on the analysis of clinical data, we found that in different
subtypes, with the decrease in survival probability, the age of patients
tended to increase (Figure 3E), and the FIGO classification also
tended to be later (Figure 3F).

3.6 Analysis of tumor microenvironment
scores and ICGs expression across OV
clusters

According to tumor microenvironment score analysis,
subtype II had the highest stromal scores and immune scores
(Figures 4A, B), while tumor purity decreased in subtype III/IV/I/
II (Figure 4C). Subtype II performed worst in OS analysis
(Figure 4D). We will further explain this result after the risk
model is established.
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FIGURE 3
The four distinct subtypes identified and feature analysis. (A) Unsupervised consensus clustering was performed to cluster ovarian cancer samples
into subtypes. (B) The cumulative distribution function (CDF) method was used to determine the optimal number of subtypes. (C) Relative change in area
under CDF curve. Finally, four OCmolecular subtypes were identified. (D) Kaplan-Meier analysis of the survival rates associated with the four subtypes. (E)
The age of patients associated with the four subtypes. (F) The age of patients associated with the four subtypes.
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Differential expression analysis revealed that 30 ICGs were
differentially expressed in the four subtypes (Figure 4E).
Kaplan–Meier analysis of ICGs showed that upregulation of CD274,
CD40, and CTLA4 was associated with better prognosis (Figures
4F–H). We will explain this result further in “Discussion” section.

3.7 Generation and quality evaluation of a
prognostic risk scoring model

We took the intersection of the genes in TCGA and
GSE140082 cohorts. A total of 1,089 DRGs were subjected to

FIGURE 4
Tumor microenvironment scores and ICGs expression across three HCC subtypes. (A,B) Subtype II had the highest stroma scores and immune
scores. (C) Tumor purity decreased in subtype III/IV/I/II. (D) Subtype II performedworst in OS analysis. (E)Differential expression analysis of 35 ICGs. Their
expression was significantly different among different clusters. (F–H) Kaplan-Meier analysis of CD274, CD40, and CTLA4. Their upregulation is associated
with a better prognosis.
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weighted correlation network analysis (WGCNA). With a soft
threshold = 5 (Supplementary Figures S2A–C), DRGs were
divided into six modules, and the brown module was highly
correlated with the OV stage, which contained 250 genes
(Figure 5A). Univariate analysis was performed for the DRGs in
the module Brown based on prognostic correlation (p < 0.05).
Eleven genes were screened out and incorporated into
multivariate Cox regression analysis (Figure 5B). Finally, we
established a prognostic risk scoring model that included nine
genes and their relative risk coefficients. Using gene expression
and risk factors, we obtained risk score = (−0.23018 × expression of
MIF) + (0.38532 × expression of PABPC3) + (−0.25897 × expression
of TOMM20) + (−0.18893 × expression of CACYBP) + (−0.35784 ×
expression of MEIS1) + (0.13692 × expression of STON2) +
(0.42101 × expression of KIF20B) + (0.39011 × expression of
NIN) + (−0.33416 × expression of VEGFA).

To verify the reliability of our model, we calculate the OS of the
training and test sets through the model. The results showed that OS
was significantly better in the low-risk group than in the high-risk
group (Figures 6A, B). Additionally, the areas under the ROC curves
for predicting 1-year, 3-year and 5-year OS were 0.606, 0.750 and
0.816 in the training set and 0.749 and 0.651 in the test set,
respectively (Figures 6C, D) (due to the lack of the clinical data
of test set samples, the 5-year OS could not be verified).

3.8 Establishment and quality evaluation of a
nomogram

We performed univariate and multivariate analyses of TCGA
cohorts (Figures 6E, F). The results showed that age, stage, and risk
score significantly influenced patient outcomes. The older the
patient is, the later the clinicopathological stage and the higher
the RS, leading to a worse prognosis. Based on these factors, we
constructed a nomogram to predict OS at 1, 3 and 5 years

(Figure 6G). To assess the goodness of fit for the nomogram, we
generated calibration curves predicting 1-, 3- and 5-year OS. The
results showed that it fit well with the reference line (Figures 6H–J).

3.9 Hypoxia-driven immune escape in
ovarian cancer

After the risk scoring model was established, we performed
GSVA analysis on T cells in the high-risk and low-risk groups
(Supplementary Figure S3). The results showed that the hypoxia
pathway was significantly enriched in the high-risk group, while
hypoxia-driven immune escape was significant in ovarian cancer
(Johnson et al., 2021). Hypoxia promotes tumor production of
interleukin (IL-10) to recruit regulatory T cells (Tregs) to the
TME, thereby blocking the antitumor immune response. This
result provided a possible explanation for the phenomenon that
subtype II had the highest stromal scores and immune scores
(lowest tumor purity) and a richest immune environment, but
had the worst performance in OS analysis. (In section “Analysis
of tumor microenvironment scores and ICGs expression across
OV clusters”).

4 Discussion

4.1 Main findings

In this study, based on the analysis of scRNA-seq data, OV
heterogeneity was further explored from the perspective of cell
differentiation trajectory. We identified six ovarian cancer
clusters and identified differentiation-related genes (DRGs).
Then, ovarian cancer samples were divided into 4 DRG-based
subtypes. There were significant differences in survival rates,
clinical traits, tumor microenvironment scores, and the

FIGURE 5
WGCNA and analyze significant genes by uniCox. (A) The brown module closely correlated OC stage (p = 0.001). They were therefore included in
subsequent studies. (B) Ten prognosis-related DRGs were identified by univariate analysis (p < 0.05).
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expression levels of ICGs among the subtypes. The DRGs were
subjected to multivariate Cox regression analysis to generate a
prognostic risk score (RS) model. Finally, we obtained a

nomogram of the prognostic variable combination, including RS
and clinicopathological characteristics, and predicted the 3-year and
5-year overall survival.

FIGURE 6
Generation and evaluation of a prognostic risk scoring model and a nomogram. (A) Survival analysis between high-risk group and low-risk group in
the training sets. (B) Survival analysis between high-risk group and low-risk group in the validation sets. (C) Areas under ROC curve of the training sets to
predict 1-, 3-, and 5-year OS. (D) Areas under ROC curve of the validation sets to predict 1-year and 3-year OS. (E) Univariate analysis of risk score and
clinicopathological features. (F) Multivariate analysis of risk score and clinicopathological features. (G) A nomogram for predicting 1-year, 3-year,
and 5-year OS. (H–J) The calibration curves for predicting 1-year, 3-year, and 5-year OS.
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4.2 Strengths and limitations

The main strength of this study is to further explore the
molecular typing for ovarian cancer from the perspective of cell
differentiation trajectory. To the best of our knowledge, this idea has
not been investigated in previous studies. In addition, we used
multiple omics data for analysis. ScRNA-seq technology paves a
new way to explore intratumoral heterogeneity within tumors. Based
on the analysis of scRNA-seq data, genes related to cell
differentiation trajectory were identified, and bulk RNA data
were used for molecular typing. Finally, a risk scoring model is
generated based on TCGA clinical data, and a visualization method
is provided by using the nomogram.

However, limited by the scRNA-seq samples available on GEO,
our study did not explore applicability in different histological types
of ovarian cancer. Besides, due to the small size of the data sets from
TCGA and GEO databases, the reliability and practicability of our
risk scoring model should be further validated by large-scale clinical
studies. What’s more, because the TCGA and GEO are repositories
for pre-defined variables, some potentially relevant clinical variables
are not accessible to us. The variables contained in our nomogram
may not be comprehensive enough, even if it has exhibited a high
degree of accuracy.

4.3 Interpretation

Ovarian cancer is highly heterogeneous, presenting with diverse
morphology, natural history, and treatment responses. In recent
years, the molecular characteristics of ovarian tumors have been
studied extensively, and the biological and clinical subtypes of
related diseases have been identified accordingly.

Classification is helpful in the diagnosis and treatment of
tumors. The WHO divides epithelial ovarian cancer into five
histological subtypes [including high-grade serous
adenocarcinoma (70%), endometrioid adenocarcinoma (10%),
clear cell adenocarcinoma (10%), mucinous adenocarcinoma
(3%), and low-grade serous adenocarcinoma (<5%) (Pearce et al.,
2012; Sung et al., 2014; Miller et al., 2017b)]. However, this single
traditional classification is not a good predictor of prognosis. Singer,
Shih et al. established a dualistic model to classify ovarian epithelial
carcinoma as slow-growing type I tumor and fast-growing and
highly invasive type II tumor (Singer et al., 2002; Singer et al.,
2005). Type I tumors are characterized by mutations in many
different genes, including KRAS, BRAF, PTEN and β-catenin
(Rojas et al., 2016). Type II tumors grow rapidly and are highly
aggressive but lack well-defined precursor lesions. Most of them are
in the late stages at the beginning or soon after. However, this
dualistic model is not perfect: the molecular genetic characteristics
of each subtype within type I and type II are similar but not identical,
so this classification method cannot be used as an independent
factor to predict the prognosis of patients. In addition, high-grade
serous carcinoma in type II is highly heterogeneous, and it is not
clear whether there are other subsets of type II.

With the development of molecular biology and molecular
diagnosis, more molecular typing methods for ovarian cancer
have been proposed. In 2008, Tothill et al. determined the
miRNA gene expression profile by chip and identified six

subtypes by the k-means method (Tan et al., 2013). Tan et al.
identified five molecular subtypes through functional genomics in
2013 (Kommoss et al., 2017). However, these methods have not been
widely used in clinical practice. Here, ovarian cancer cells with
different cell differentiation states were divided into 4 subtypes, and
multiple omics data were used. Therefore, our study can effectively
supplement the current molecular typing strategies for ovarian
cancer.

It is worth mentioning that, for the strength and validity of our
conclusions, we only selected serous ovarian cancer to study. Serous
ovarian cancer is the most common type of ovarian cancer and the
most malignant. After validation of clinical samples, we will
gradually apply molecular typing methods to other histological
types of ovarian cancer in subsequent studies. For the study of
other small subtypes, the experimental analysis should be redesigned
after excluding high-grade serous phenotype.

Further, in our study, DRGs are produced by malignant cells
(epithelial cells). They may not reflect the specific differences and
distinctions of malignant cells, because the presence of other cell
types may affect the risk scoring (e.g., CAFs, T cells, etc.). However,
it does not affect the positive role of DRGs in prognosis prediction in
clinical practice. Just like the subset C2’s example, its population seems
to have reduced survival but it also has higher stromal content. It
showed that even if themalignant cells are low-abundance, it still has an
effect on poor prognosis (the status of malignant cells matter more).
This is similar to the TCGA “Mesenchymal” subtype. However, for
patients with ovarian cancer, we think it is better to describe the status of
malignant cells and not as indirectly as mesenchyme.

In the relevant studies of immune checkpoint genes, it is
generally believed that the upregulation of immune checkpoint
genes will lead to the suppression of immune function, the
increase of tumor infiltration and poor prognosis. In our study,
survival analysis of CD274, CD40, and CTLA4 showed that their
upregulated expression all led to better prognosis. To verify this
result, we used GEPIA2 (Tang et al., 2019) to analyze the OV
samples in TCGA database (Supplementary Figure S1). The results
showed that their upregulation also led to a better prognosis. Similar
conclusions in other cancers were reached by Hu et al. (2021). We
think this is due to the different expression patterns of ICGs, which
may affect immune checkpoint blockade (ICB) response patterns
and lead to different prognosis. We also hope that these genes will
help to understand the mechanisms of ICGs in ICB signal pathways
and other anticancer treatments in future studies.

Our study found that the survival curves of different molecular
types were significantly different, indicating that this method can be
used to predict patient OS. A risk scoring model was established by
multivariate Cox regression analysis. Most of the genes in the model
have been identified to play important roles in the progression and
prognosis of ovarian carcinoma. For example, macrophage
migration inhibitory factor (MIF) can inhibit the activation of
EGFR, while EGFR can promote the growth of various tumors
and has been identified as a key therapeutic target of epithelial
ovarian cancer (Sheng and Liu, 2011; Zheng et al., 2015). PABPC3 is
a mutated driver gene of many cancers (Erinjeri et al., 2018; Chen
et al., 2021). STON2 modulates stem-like properties in ovarian
cancer cells, which are highly associated with poor prognosis and
invasion (Sun et al., 2017; Xu et al., 2018). MEIS1 triggers chemokine
expression and involvement in CD8+ T-lymphocyte infiltration in
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early-stage ovarian cancer (Karapetsas et al., 2018). These genes are
considered important molecular markers.

5 Conclusion

In our study, single-cell datawere classified andpresented.OV samples
were divided into four molecular types based on cell differentiation
trajectories, which differed significantly in expression profile, clinical
features and prognosis. Based on nine DRGs, a prognostic risk score
model was generated, which can be a good predictor of patientOS. Further,
we used the model to classify the samples, and hypoxia-driven immune
escape pathways were found to be enriched in the high-risk group. In
conclusion, this study highlights the importance of cell differentiation for
molecular typing of OV, and provides new ideas for predicting prognosis
and potential immunotherapy of OV patients.
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