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Editorial on the Research Topic
3D architecture of intermediate filaments in tissue mechanics and function

In this special issue there is a collection of articles that highlight the mechano-biological
signalling of and the integration of intermediate filaments within the cytoskeletal machinery.
The individual and collective contribution of the individual cytoskeletal elements have been well
documented (Ge et al., 2020; Serres et al., 2020; Lois-Bermejo et al., 2022; Nunes Vicente et al.,
2022; Ridge et al., 2022; Sivagurunathan et al., 2022; Wu et al., 2022). Indeed the importance of
the cytoskeleton as an integrated unit is accepted fully in the literature (Pegoraro et al., 2017;
Hohmann and Dehghani, 2019). Intermediate filaments interconnect all subcellular
compartments and they are the one cytoskeletal element where cross-β-interactions form
intracellular hydrogels (Kato and McKnight, 2018) by virtue of their N- and C-terminal
intrinsically disordered domains ((IDDs) (Kornreich et al., 2015))—or plainly put—assist their
assembly and their associated phase separation events e.g., (Li et al., 2020). It is no coincidence
that previously noted “zones of exclusion” observed by conventional transmission electron
microscopy (Blose and Chacko, 1976; Borenfreund et al., 1980) should now be interpreted as
evidence of their hydrogel potential e.g., nuclear pores (Fiserova et al., 2014) and cytoplasmic
intermediate filament networks (Kornreich et al., 2015). The importance of these IDDs to cell
behaviour and to their emergent properties (Ridge et al., 2022) is a hot Research Topic in
current debate. This has given rise to exciting hypotheses to explain complex cell behaviours
such as motility (see the contributions by Infante and Etienne-Manneville; Kim et al., in this
research topic issue) cell polarisation (ibid Despin-Guitard et al.,) epithelial-mesenchymal
transitions and inflammatory responses (Ridge et al., 2022).

One such hypothesis is the “wetware” concept (Bray, 2009) as a way to conceptualise cellular and
tissue decision-making at the level of individual components and processes (Kulkarni et al., 2022).
Cell Biology compartmentalises systems and structures, but each function within the context of the
cell and the tissue require integration and localised responses of metabolic, structural and cellular
pathways. The cytoskeleton collectively provides the architecture (Figure 1) that is needed to sense,
communicate and respond to the legion of stimuli received at any one time by each individual cell. It,
and its associated biomolecules, can deliver the processing logic for the cell because it provides the
required connections (Bray, 2009). In this respect, the intermediate filament cytoskeleton is part and
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parcel of the stress response (Welch et al., 1985; Quinlan et al., 2002;
Landsbury et al., 2010; Toivola et al., 2010) and to the transcriptional
(Shimi and Goldman, 2014; Nazer, 2022) and to translational regulation
(Magin et al., 2007; Kim and Coulombe, 2010; Mohanasundaram et al.,
2022), to chaperonemediated autophagy (Bandyopadhyay et al., 2010), to
respiratory efficiency (Diokmetzidou et al., 2016) and to cell division
(Matsuyama et al., 2013). This identifies intermediate filaments as key
interconnectors for subcellular interaction networks (Kulkarni et al.,
2022). Indeed, the intermediate filament provides a surface to facilitate
biomolecular folding, biomolecular complex assembly and complex
organisation. Intermediate filaments as a collective provide a scale-free
network across diverse length scales especially as a result of the inter-
cellular organisation they afford within a tissue via their connection to
cell-cell junctions such as the desmosome (see Green et al., in this research

topic issue). Their integrative role in mechano-signalling (Infante and
Etienne-Manneville; this research topic issue) is well founded and super-
resolution microscopy demonstrates that stretching filaments will reveal
new, and quite possibly novel, functional nanodomains (Massou et al.,
2020; Nunes Vicente et al., 2022) as also shown for lipo-oxidative stress
(Lois-Bermejo et al., 2022). Stress reveals the importance of the C-terminal
IDDs to the biophysical properties of intermediate filaments
(Aufderhorst-Roberts and Koenderink, 2019) as well as to their
assembly and ultimately therefore also to cell morphology (Zhou et al.,
2021).

The Research Topic highlights aspects of epithelial keratin network
organization. Using a Krt8:YFP reporter mouse Desprin-Guitard and
colleagues (see Despin-Guitard et al., in this research topic issue) study
the keratin intermediate filament network in the developing mouse

FIGURE 1
Intermediate filament architecture is cell type specific to support tissue mechanics and function. (A) The digital reconstructions of intermediate filament
networks that are superimposed on schematic drawings of the corresponding cells are taken from Windoffer et al. (2022). They were derived from 3D
recordings of fluorescently labelled keratins in polarized canine MDCK cells, human immortalized epidermal HaCaT keratinocytes andmurine retinal pigment
epithelial cells in situ. Note the different network distributions ranging from apical enrichment (RPE) to apical and basal enrichment (MDCK) and pan
cytoplasmic (HaCaT). (B) The modified scheme from Quinlan et al. (2017) highlights the circumferential rim and radial spokes arrangement of keratin
intermediate filaments connecting the network to the perinuclear cage and adjacent cells through desmosomes. The resulting transcellular tension-spoke
system provides mechanical resilience. (C) Schematic representation of desmin intermediate filament architecture in cardiomyocytes providing defined
subcellular spaces for the ordered contractile apparatus, mitochondria, the nucleus and attachment sites to neighbouring cardiomyocytes and the
extracellular matrix (adapted from (Behrendt, 1977; Tokuyasu et al. 1983; Wang and Ramirez-Mitchell, 1983)).
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embryo revealing a kaleidoscope of temporally and spatially determined
expression profiles in embryonic and extraembryonic tissues which are
interpreted as plastic adaptations of cell mechanics to growth and
morphological changes. The review by Green and colleagues in this
research topic issue focuses on the epidermal desmosome-keratin
system as an integrator of mechanically-determined signalling. In
concert with other junctions, desmosomes dictate epidermal
polarization and differentiation forming a barrier by stratum-specific
junctional and cytoskeletal arrangements. The authors suggest that these
arrangements counteract inflammation. The paper by Yoon and
colleagues in this research topic issue presents technical
advancements for multidimensional and multimodal monitoring of
keratin filament architecture and function. High resolution
microscopy of fluorescent keratins is enabled on defined matrices
and combined with traction force microscopy. In this way, the
interrelationship between extracellular matrix cues with global 3D
cytoskeletal network properties at the keratin filament/keratin bundle
level and local forces is quantified by refined image analysis. It is further
illustrated that these tools can be used for monitoring the consequences
of local keratin network perturbations and ECM composition on cell
mechanics in the context of transcellular network arrangement.

Infante and Etienne-Manneville in this research topic issue
summarize current knowledge about the spatial arrangement and
integration of cytoplasmic and nuclear intermediate filaments and
their interaction with other cytoplasmic filament systems during cell
migration. They emphasize the different properties of the different
intermediate filament types as a basis of cell type- and function-related
cellular mechanics. They further highlight the cooperativity between
intermediate filaments with the other cytoskeletal systems
determining motile properties of single cells and cell collectives.
Direct experimental assessment of vimentin’s function during
metastatic invasion is finally provided by Kim and colleagues in
this research topic issue. Using a novel vimentin-stabilizing drug
they report on altered vimentin network morphology with
consequences on adhesion and contractility resulting in cell shape
changes, increased tractions forces and perturbed migration.

Figure 1 presents examples of intermediate filament network
organization to illustrate their function both as organizers of the
subcellular space (Schwarz and Leube, 2016) and as transcellular

integrators to facilitate and support coordinated mechanical and
biochemical functions in the context of tissues rather than
individual cells (Hatzfeld et al., 2017). It is this framework upon
which the contributions in this Research Topic have been made.
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