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Exosomes are tiny vesicles released by cells that carry communications to local
and distant locations. Emerging research has revealed the role played by integrins
found on the surface of exosomes in delivering information once they reach their
destination. But until now, little has been knownon the initial upstream steps of the
migration process. Using biochemical and imaging approaches, we show here
that exosomes isolated from both leukemic and healthy hematopoietic stem/
progenitor cells can navigate their way from the cell of origin due to the presence
of sialyl Lewis Xmodifications surface glycoproteins. This, in turn, allows binding to
E-selectin at distant sites so the exosomes can deliver their messages. We show
that when leukemic exosomes were injected into NSG mice, they traveled to the
spleen and spine, sites typical of leukemic cell engraftment. This process,
however, was inhibited in mice pre-treated with blocking E-selectin antibodies.
Significantly, our proteomic analysis found that among the proteins contained
within exosomes are signaling proteins, suggesting that exosomes are trying to
deliver active cues to recipient cells that potentially alter their physiology.
Intriguingly, the work outlined here also suggests that protein cargo can
dynamically change upon exosome binding to receptors such as E-selectin,
which thereby could alter the impact it has to regulate the physiology of the
recipient cells. Furthermore, as an example of how miRNAs contained in
exosomes can influence RNA expression in recipient cells, our analysis showed
that miRNAs found in KG1a-derived exosomes target tumor suppressing proteins
such as PTEN.
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Introduction

Exosomes are a subclass of membrane extracellular vehicles of
endosomal origin (Ruivo et al., 2017; McAndrews and Kalluri, 2019)
ranging in size from about 40 to 160 nm in diameter (Zhu et al.,
2020) and carrying a diverse set of cargo, including mRNA, micro-
RNA, long non-coding-RNA, soluble and transmembrane proteins,
metabolites, lipids, and DNA (Balaj et al., 2011; Doyle and Wang,
2019; McAndrews and Kalluri, 2019; Patel et al., 2019). Exosomes
have been isolated from many cell types, including stem cells and
cancer cells (Ruivo et al., 2017; McAndrews and Kalluri, 2019;
Nikfarjam et al., 2020; Zhu et al., 2020). It has been suggested
that cancer cells of solid tumors use exosomes as communication
vehicles to send cues to prepare the microenvironments of new
locations where they want to spread (Mathivanan et al., 2010;
Mathieu et al., 2019; McAndrews and Kalluri, 2019).
Interestingly, leukemic cell derived exosomes can also cause
alterations to their microenvironments (Kumar et al., 2016;
Cunnane et al., 2018; Kumar et al., 2018).

Exosomes derived from Acute Myeloid Leukemia (AML) caused
downregulation of the expression of stromal cell factor (SCF) and
CXCL12 in stromal cells, both important for normal hematopoiesis
which leads hematopoietic stem/progenitor cells (HSPCs) to leave
the bone marrow (Huan et al., 2015; Yang et al., 2019). Furthermore,
AML-derived exosomes can inhibit the cytolytic activity of natural
killer cells and slow down their migration rate to subdue their anti-
leukemia effects (Hong et al., 2017). Interestingly, AML-derived
exosomes carry both myeloid-blast (i.e., CD33 and CD34) and
leukemia-related (i.e., CD44 and CD123) markers (Szczepanski
et al., 2011; Hong et al., 2014; Hong et al., 2017; Boyiadzis and
Whiteside, 2018) suggesting that they mimic some of the cell surface
markers present on their parent cells. Additionally, the exosomes
ability to interact with different cell types likely emanates from the
plethora of the ligands present on their surface.

CD34 and CD44 are well characterized E-selectin ligands
(Dimitroff et al., 2001; AbuSamra et al., 2017). E-selectin is an
adhesion molecule, constitutively expressed on the bone marrow
endothelial cells and is responsible for the recruitment of HSPCs to
the bone marrow (Schweitzer et al., 1996; Winkler et al., 2012).
E-selectin interacts with its ligands, in a calcium-dependent
glycosylation specific manner where the ligands present a
posttranslational modification termed sialyl-Lewis X (sLex)
(McEver et al., 1995). We hypothesized that since hematopoietic
(Merzaban et al., 2011; AbuSamra et al., 2017) and leukemic cells
(Krause et al., 2014; Spertini et al., 2019) use E-selectin ligands to
migrate to sites expressing selectins, exosomes derived from such
cells would also bind and migrate to such sites. Indeed, we show that
exosomes derived from a CD34+ progenitor AML cell line (KG-1a),
as well as CD34+ cells isolated from healthy and AML donor bone
marrow, contain E-selectin ligands and are functionally able to bind
E-selectin in a Ca2+-dependent and sLex dependent manner.
Furthermore, exosomes derived from a cell line that does not
bind E-selectin—Namely the chronic myelogenous leukemia cell
line, K562—also failed to bind E-selectin. Yet it could be coerced to
bind through enforced formation of sLex following treatment with
recombinant fucosyltransferase. Data presented here delve into
understanding the mechanisms controlling exosome adhesion
and migration, potentially revealing important aspects of the

cancer metastatic cascade and, ultimately, presenting novel
avenues for therapeutic intervention.

Materials and methods

Cell Culture: The KG-1a cell line and the K562 cell line were
purchased from the American Type Culture Collection (ATCC).
KG-1a cells were cultured in Roswell Park Memorial Institute media
(RPMI 1640, Thermo Fisher), and K562 cells were cultured in
Iscove’s Modified Dulbecco’s Medium (IMDM, Thermo Fisher).
Both culture media contained 10% Fetal Bovine Serum (FBS)
(Corning) and 1% HyClone Penicillin-Streptomycin (Sigma-
Aldrich). Cells were maintained in a humidified incubator at
37°C with a constant CO2 concentration of 5% v/v. The cell
cultures were passaged frequently to maintain the cells at 0.8 ×
106 cells/ml.

Primary human AML CD34+ cells from Mobilized Peripheral
Blood were purchased from AllCells, while Primary Human CD34+

cells from Mobilized Peripheral Blood were purchased from Lonza.
Both cell types were cultured in StemSpan™ SFEM II (StemCell
Technologies), containing 10% StemSpan™ CD34+ Expansion
Supplement (StemCell Technologies). Cells were maintained in a
humidified incubator at 37°C with a constant CO2 concentration of
5% v/v for 5 days.

Exosomes Isolation: Exosomes derived from cell lines were
isolated using a serial centrifugation approach (Supplementary
Figure S1) (Patel et al., 2019). Briefly, 35 million cells were
maintained in media lacking FBS for 48 h prior to exosomes
isolation. The cell culture was initially centrifuged for 10 minutes
at 300 x g. The resulting supernatant was then centrifuged for 30 min
at 2000 x g, and then the newly resulting supernatant was
centrifuged for 30 min at 15,600 x g. Finally, the new supernatant
was centrifuged for 120 min at 100,000 x g resulting in a pellet that
contains the exosomes. Exosomes were then washed with 1x
Phosphate-Buffered Saline (PBS, Sigma-Aldrich) and centrifuged
again for 120 min at 100,000 x g. The resulting pellet was
resuspended in 150 μl of PBS to proceed with downstream
assays. The first two centrifugation steps took place using the
Allegra X-12R Centrifuge (Beckman Coulter) and the remaining
steps using the Optima L-90K Ultracentrifuge (Beckman Coulter).

Exosomes derived from primary AML HSPCs were isolated
using a modified protocol. The cell culture was proceeded as
described above until the end of the first two centrifugation
steps. Due to the small volume of the culture, the resulting
supernatant was spun down using the 5415 R Centrifuge
(Eppendorf) for 30 min at 16,000 x g. The new resulted
supernatant contained the exosomes, free of any larger particles
and used for the downstream assays.

Dynamic Light Scattering (DLS): Exosomes’ size was calculated
using the Dynamic Light Scattering (DLS) assay. The Zetasizer Nano
ZS machine by Malvern Panalytical was used. The following
parameters were used: Absorption = 0, Refractive index = 1.37,
PBS viscosity = 0.8882, PBS refractive index = 1.33, Equilibration
time = 10 s, Temperature = 25°C.

Scanning Electronic Microscopy (SEM): 5 μl of exosomes sample
were placed on laser scribed graphene (LSG) coated with
nanostructured gold material. These slides were then attached to
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a staple pin. The samples were dried at room temperature, and
afterward, they were coated with a layer of 1 nm iridium. The
samples were imaged using the Quanta SEM machine (FEI
Company; KAUST Imaging and Characterization Core Lab) at
10 kV.

Nanoparticle Tracking Analysis (NTA): Exosomes were diluted
at 1:10 using PBS and were quantified using the NanoSight LM20 by
Malvern Panalytical. The following parameters were used:
Brightness = 0, Gain = 1.00, Detection Threshold = 69,
Temperature = 22°C, Viscosity = 0.95, Capture for 60 s with
30 frames per second.

Exosome lysis: Triton™ X-100 (Electrophoresis, Fisher
BioReagents™) was added to the exosomes resuspended in PBS,
with final concentration 1% (v/v) (Osteikoetxea et al., 2015). The
mixture was vortexed for 30 s followed by rotation at 4°C for 1 h. In
turn, the sample was placed in the sonicator (2510 Branson) for five
cycles of 30 s on/off. Finally, the samples were centrifuged at
16,000 x g at 4°C for 10 minutes (5415 R, Eppendorf), and the
resulting supernatant—containing the exosomal proteins—was
collected.

Protein immunoprecipitation: Protein G Dynabeads (Thermo
Fisher) were incubated with the respective antibody (Supplementary
Table S1) (or the rE-selectin-IgG (Al-Amoodi et al., 2022)) for
1 hour, rotating at 4°C. After a washing step with PBS, the beads
were incubated with the lysate of 100 million exosomes, overnight,
rotating at 4°C. After three washes with the PBS, the beads were
resuspended in buffer containing 50%NuPAGE® LDS Sample Buffer
(Thermo Fisher) and 50% PBS. The mixture was heated up at 90°C
for 10 minutes and, in turn, was placed in a magnetic rack. The
resulted supernatant was the immunoprecipitated product, and it
was used for western blot.

Regarding the immunoprecipitation using the rE-selectin-IgG,
the sample was split into two equal parts and to each one either
calcium [2 mM] or EDTA [20 mM] was added. The calcium and the
EDTA were also present at the respective concentrations for the
washing steps.

Western blot: Exosomes resuspended in PBS were mixed with
NuPAGE® LDS Sample Buffer (Thermo Fisher) to a final
concentration of 1x. 100 mM dithiothreitol (DTT) was added to
the sample when reducing conditions were required. Samples were
heated up to 90°C for 10 minutes while shaking at 300 rpm. Next,
sonication (2510 Branson Sonicator) for 5 minutes was performed.
Samples were then run on Criterion TGX Precast Protein Gels of
4%–20% polyacrylamide gels (BioRad) followed by transfer to PVDF
membrane of 45 μm pore size (Merck) for western blot analysis as
previously described (Aleisa et al., 2020). The transfer buffer
contained 25 mM Tris-base, 192 mM glycine, and 20% (v/v)
methanol, all dissolved in ddH2O. After the transfer, the
membranes were washed with 1x Tris Buffered Saline with
Tween 20 (TBST) (Cell Signaling) and then blocked for 8 hours
with 5% (w/v) Bovine Serum Albumin (Sigma-Aldrich) dissolved in
1x TBST on a shaker at 4°C. In turn, membranes were washed once
with 1x TBST and then were incubated overnight with shaking at
4°C, with the respective primary antibody (Supplementary Table S2).
The membranes were then washed three times with 1x TBST for
5 minutes each and were incubated with the respective secondary
antibody for 45 min with shaking at room temperature. After three
washes, the membranes were incubated for 1 minute with ECL

Prime western Blotting System (Merck) and were imaged using
the ChemiDoc MP Imaging System (Bio-Rad).

Mass Spectrometry: Sample preparation: In-gel digestion
approach was used for the proteomics analysis (Fischer and
Kessler, 2015). Briefly, 500 million exosomes were prepared (see
western blot method) and run on Criterion TGX Precast Protein
Gels of 4%–20% polyacrylamide gel. The gel was stained with
staining buffer (0.5 M citric acid, 5% (v/v) absolute ethanol and
0.01% (w/v) Coomassie Brilliant Blue G-250 (MP Biomedicals)) and
destained with destaining buffer (ddH2O 50% (v/v), methanol 40%
(v/v) and acetic acid 10% (v/v)). The parts of the gel with protein
sample were cut and segmented into smaller pieces and finally
placed in tubes with destaining solution (200 mM
Triethylammonium Bicarbonate (TEAB) (Thermo Fisher), 40%
acetonitrile (ACN)), incubated at 37°C with shaking until there
was no color observed in the gel pieces. Next, the supernatant was
removed, and the gel pieces were placed in the Concentrator Plus
(Eppendorf) until they were dry. Next, gel pieces were covered with
100 mM TEAB, and 0.4 μg of Sequencing Grade Modified Trypsin
(Promega) was added. The digestion took place overnight at 37°C.
The supernatant with the digested peptides was next transferred to a
new tube to perform the desalting steps using C18 pipette tips
(Agilent). Finally, the peptides were resuspended in 3% (v/v) ACN.

Mass spectrometry analysis: The Mass spectrometry analysis was
performed at the KAUST Bioscience Core Lab as previously
described (Liu et al., 2019). Briefly, the digested peptides were
measured on a Q-Exactive HF mass spectrometer (Thermo
Fisher Scientific) coupled with an UltiMate™ 3000 UHPLC
(Thermo Fisher Scientific). For the healthy HSPCs-derived
exosomes timsTOF Pro (Brucker) was used to increase
sensitivity. The raw data were converted to Mascot generic
format files and aligned to the Uniprot Human database. In silico
analysis was performed using the DAVID online tool (Huang et al.,
2009a; Huang et al., 2009b), and the illustrations were created via the
KEGG Mapper online tool (Kanehisa and Goto, 2000; Kanehisa,
2019; Kanehisa et al., 2021).

E-selectin constructs: The recombinant E-selectin constructs
used in this study were developed in a previous publication in
our group (Aleisa et al., 2020). We used a recombinant E-selectin
construct (“rE-selectin”), which corresponds to the native E-selectin,
consisting of the extracellular part of E-selectin containing: A lectin
domain, an EGF domain, and six Short Consensus Repeat (SCR)
domains. We also used a recombinant soluble E-selectin construct
(“rE-selectin-IgG”), which consists of two rE-selectin constructs
linked together by the human Fc (IgG) region. Both constructs
have at their C-terminal end His-tag and Strep-tag domains to
facilitate downstream applications.

Fucosyltransferase VI treatment: K562-derived exosomes were
isolated and treated with the recombinant human fucosyltransferase
VI (rhFTVI) enzyme that was produced in our laboratory (Al-
Amoodi et al., 2020). The treatment was performed in a 96-well plate
in rhFTVI using 100 μL of 2X reaction buffer [25 mM HEPES
(pH 7.5) (Gibco Invitrogen), 0.1% human serum albumin
(Sigma-Aldrich), 0.5 mM GDP-fucose (Sigma), and 5 mM
MnCl2], 100 μl of PBS containing 50 × 106 exosomes, and
approximately 1 μg of purified rhFTVI enzyme. Exosomes were
incubated at 37°C for 40 min. Buffer-only control, without the
rhFTVI enzyme, was used as a negative control (Mock). After
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the treatment, the exosomes were cleaned using the Exosome Spin
Columns (Thermo Fisher) and then processed for downstream
experiments.

Exosomes Pulldown: The rE-selectin-IgG was incubated with
Protein G Dynabeads for 1 h while rotating at 4°C. Following a
washing step, the Dynabeads coupled with rE-selectin-IgG were
resuspended in PBS containing either 2 mM of Ca2+ or 20 mM of
EDTA (Figure 3A). The sample that had Dynabeads without
E-selectin was also resuspended in PBS containing 2 mM Ca2+. In
each sample, about 4.5 × 106 KG1a-exosomes were added and were
incubated overnight, rotating at 4°C. Next, three washes using PBS
with the respective Ca2+ or EDTA concentration took place, and
finally, the E-selectin cargo was eluted. For the elution, 8M urea was
used—Enough to cover all the beads- and a 5 min incubation at
room temperature took place. Afterward, NuPAGE® LDS Sample
Buffer was added in equal volume to the urea, and was allowed to
incubate for another 5 minutes at room temperature. In turn, the
tubes were placed in a magnetic rack where the beads were separated
from the supernatant. Then, the supernatant was removed to
another tube and placed in a sonicator (2510 Branson) for 5 m.
Finally, the samples were heated up for 10 minutes at 85°C and were
run for western blot analysis.

FTVI-treated and buffer-treated K562-derived exosomes were
incubated with Dynabeads coupled with rE-selectin-IgG in the
presence of 2 mM Ca2+. After overnight incubation, the beads
were washed three times with PBS containing 2 mM Ca2+ prior
to elution using 50 mM EDTA for 5 min (incubated at room
temperature). The downstream processing was the same as for
the KG1a-derived exosomes. The methodology that was used for
the pulldown of the exosomes derived from the primary cells, was
the same as the one for the KG1a-derived exosomes.

Exosomes staining: Exosomes were stained with the Vybrant
DiD Cell-Labeling Solution by Thermo Fisher. DiD was added to
exosomes (−107) diluted in PBS, so its final concentration is 2 μΜ.
After incubating for 1 h at 37°C, the exosomes were cleaned using
the Exosome Spin Columns (Thermo Fisher). For the in vivo
experiments, exosomes were stained with the VivoTrack 680 by
PerkinElmer. Vivo Track 680 was added to 2 × 107 exosomes to a
final concentration of 33 mΜ. After incubation for 15 min at 37°C,
exosomes were cleaned using the Exosome Spin Columns (Thermo
Fisher).

Fluorescence imaging of exosomes: To image exosomes, a wide
field illumination fluorescence microscope mounted on with an
inverted IX71 optical microscope platform (Olympus) was used
(Alghamdi et al., 2023). A 638-nm (60 mW; MLD, Cobolt)
continuous wave (CW) laser was introduced through a
focusing lane lens (f = 300 mm; Thorlabs) to focus the laser
beams at a back focal plane of ×100 objective lens [NA = 1.49;
UAPON 100XOTIRF, Olympus]. An illumination excitation
power of 14.60.35 mμW cm-2 was used. Fluorescence from the
sample was detected by an iXon3 897 EMCCD EMCCD camera
(Andor Technology) after passing through a dichroic mirror
(FF660-Di02-25×36, Semrock) and an emission bandpass filter
(F01-676/29LD01-640/8, Semrock) and a dichroic mirror (FF660-
Di02-25 × 36, Semrock). This configuration separates the
illumination excitation light from the sample fluorescence
signal, allowing the sample fluorescence to be captured by the
same objective. Images were recorded A 125 × 125-pixel region of

the EMCCD camera with was used to record the sample
fluorescence at a 30 m exposure time with EM gain of 300.

Commercially available recombinant human E-selectin (rhE-
selectin) (1 μg/ml) (Sino Biological) was deposited into a µ-Slide VI
0.1 uncoated microfluidics chamber (channel width, 1 mm; channel
height, 0.1 mm; ibidi GmbH) overnight at 4°C. The chamber was
washed using PBS. Exosomes stained with DiD were resuspended in
either 2 mM of Ca+2 or 20 mM of EDTA in PBS, introduced in the
chamber via negative pressure (Figure 4A) and then incubated for
30 min at room temperature. The chamber was washed four times
using PBS and then imaged. Exosomes were visualized using an
Olympus IX71 inverted optical microscope outfitted with a UAPON
100XOTIRF high numerical aperture (NA) objective (Olympus).
Transmitted optical microscopy images were captured using an
iXon3 897 EMCCD camera (Andor Technology) through the
Andor iQ3 software.

Live fluorescence capturing of exosomes: For real-time exosome
capturing (Alghamdi et al., 2023), male Luer connectors (ibidi
GmbH) were connected to the inlet and outlet of the chamber to
allow connection with 0.8-mm silicone tubing (ibidi GmbH). The
silicone tubing connected to the inlet was placed in a PBS rolling
buffer made with 2 mMof Ca+2. The silicone tubing connected to the
outlet was joined to a syringe pump (PHD ULTRA, Harvard
Apparatus) by attaching a female Luer Lock connector (ibidi
GmbH). Before perfusion of exosomes, the rolling buffer was
flowed into the chamber to equilibrate the flow in the chamber.
107of DiD-stained exosomes were resuspended in 200 μl of the
rolling buffer then perfused into the rhE-selectin (1 μg/ml)
deposited chamber at a flow rate beginning at 100 μl min−1. Once
the exosomes were captured, the flow rate was maintained at
100 μl min−1 for 20 s and then systematically increased up to
2000 μl min−1 in the following order: 100, 200, 500, 1000,
2000 μl min−1 for 15–20 s at each step. The experimental setup
could capture 14 frames per second.

Microscale Thermophoresis (MST): Molarity calculation- To
perform MST analysis, the molarity of the two interacting parts
is needed. The challenge was that the exosomes do not have any
standard molecular weight, so we devised an alternative to calculate
the molarity of the exosomes. By quantifying the exosomes as
particles per mL using the Nanosight NTA machine, and by
applying the Avogadro’s number, we were able to determine the
molarity. Another challenge to our experiment was that the
exosomes that we could isolate were about 108–109 particles per
mL, equivalent to a molarity of 20–40 nM. Note that in MST, the
non-labeled molecules should have a significantly higher
concentration than the labeled molecules.

Sample preparation- The rE-selectin was labeled using the
Monolith NT His-Tag Labeling Kit RED-tris-NTA (NanoTemper
Technologies). To assess binding detection (Binding Check), the final
concentration of the rE-selectin was 1 nM, and the final
concentration of the exosomes was 11 nM. The mixture
contained 0.05% Tween 20 and 2 mM Ca+2. After mixing, the
samples were centrifuged for 10 min at 10,000 rpm and finally
loaded onto Premium Capillaries (NanoTemper Technologies).
The samples were run on the Monolith NT.115Pico
(NanoTemper Technologies). For the binding affinity assay
(Binding Affinity), the final concentration of the E-selectin was
0.25 nM. The first sample had an exosomes concentration of
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11 nM, and every following sample had 50% of the exosome’s
concentration of the previous one (i.e., the second sample had an
exosomes concertation of 6.5 nM). Similar to the binding detection
assay, samples contained 0.05% Tween 20 and 2 mM Ca2+ and were
processed in a manner resembling the binding detection assay.

E-selectin treatment: After isolation, 200 million KG1a-derived
exosomes were resuspended into 200 μl of PBS in the presence of
2 mM calcium. The mixture was spitted into two tubes and in one of
them 2.5 μg of rE-selectin was added. The samples were incubated
for 1 h at 37°C followed by addition of 40 μl of LDS to stop the
reaction. The samples were heated up for lysis at 90°C for 10 minutes
and then proceed for western blot.

miRNA target analysis: The miRNAs that existed in KG1a-
derived exosomes were derived from Xu et al. (2020). The top
50 miRNAs according to their transcripts per million values were
used and analyzed by using the MIENTURNET (Licursi et al., 2019)
and the DIANA mirPath v.3 (Vlachos et al., 2015) online tools. The
data presented here have an adjusted p-value (FDR) < 0.05 for the
target-miRNA interaction.

E-selectin blocker antibody purification: H18/7 cell line was
purchased from American Type Culture Collection (ATCC).
Cells were cultured in Roswell Park Memorial Institute media
(RPMI 1640, Thermo Fisher) contained 10% Fetal Bovine Serum
(FBS) (Corning), 1% HyClone Penicillin-Streptomycin (Sigma-
Aldrich) and 0.05% β-mercaptoethanol (Thermo Fisher). Cells
were maintained in a humidified incubator at 37°C with a
constant CO2 concentration of 5% v/v. Fresh media was added
daily to the cell culture to maintain the cells at 0.5 × 106 cells/mL.
Once the total volume of the culture was 1 L, cells were harvested by
centrifugation at 5,500 x g for 10 minutes twice and filtered to
separate the supernatant from the cell pellet. Supernatant was loaded
onto HiTrap HP protein A 1 ml column (GE Healthcare) using Fast
Protein Liquid Chromatography (FPLC) equilibrated with a buffer
containing: 10 mM Sodium phosphate and 150 mM NaCl (pH 7).
Finally, bound protein was eluted with ten times the column volume
using a buffer of 100 mM Citric acid (pH 3). Eluents were diluted
and neutralized with a neutralization buffer of 1 M Tris (pH 9) and
the protein was dialyzed overnight in PBS buffer.

In vivo: Non-obese diabetic (NOD) SCID Gamma (NSG) mice
were purchased from Charles River company (Lodi, Italy) and
maintained in the KAUST Animal Research Core Lab (ARCL)
facility. NSG mice were randomly assigned to three groups: 1)
Control group, 2) Exosomes group and 3) Exosomes + anti-E-
selectin antibody group. The control group 1) Were injected
intravenously 4) Into the tail vein with PBS buffer containing
33 mM of VivoTrack 680 but no exosomes (n = 3). Group 2)
Were comprised of mice that received 300 × 106 VivoTrack680-
prestained KG1a-derived exosomes (n = 4) IV.While group 3)Were
comprised of mice that were pretreated with 120 μg of E-selectin
blocking antibody (H18/7). Three hours after the treatment, 300 ×
106 VivoTrack680-prestained KG1a-derived exosomes were
intravenously delivered into the pretreated mice (n = 4). All
samples were passed through an Exosome Spin Column (Thermo
Fisher) to remove excess VivoTrack 680 prior to IV injection.

Exosome distribution inmice was imaged at 2, 6, 12, 24, and 48 h
using the IVIS Spectrum (PerkinElmer Inc., MA, United States).
After the last image, mice were euthanized, and organs (spleen, liver,
spine, femur, and tibia) were harvested for ex-vivo imaging using the

IVIS Spectrum. All images were acquired using a CCD camera with
the following parameters: binning = medium; f/stop 2. Filter sets
were fixed at 675 nm (excitation) and 720 nm (emission).
Fluorescence intensity was measured and analyzed by the Living
Image software (Caliper Life Sciences, MA, United States). The
distribution of VivoTrack 680 in the whole body, spleen, kidney,
spine, and hind legs was quantified by average radiant efficiency ([p/
s/cm2/sr]/[μW/cm2]).

Statistical analysis: Results are represented as mean ± Standard
Deviation. Statistical analysis was performed using the GraphPad
Prism 9 software. The differences observed between different groups
were compared, and statistical analysis was analyzed using a
student’s t-test, and values with p < 0.05 were considered
statistically significant.

Results

The proteome of HSPCs-derived exosomes
is enriched with proteins related to cell
adhesion and migration

Exosomes were isolated using serial centrifugation steps
(Supplementary Figure S1). Standard quality control experiments
(Lotvall et al., 2014) including DLS, SEM and western blot
confirmed that the isolated particles were indeed enriched for
exosomes (Supplementary Figure S2). Thereafter, mass
spectrometric analysis was used to uncover the proteome cargo
of the KG1a and healthy primary CD34+ HSPCs-derived exosomes
(Figure 1). In each sample, about 2000 proteins were uncovered,
including proteins typically found in exosomes such as CD63 and
CD81, the programmed cell death 6- interacting protein (e.g., Alix),
and the heat shock proteins 70 and 90 (HSP 70 & HSP 90)
(Supplementary Figure S3) (Borges et al., 2013). In silico analysis
was performed using the DAVID online tool (Huang et al., 2009a;
Huang et al., 2009b), and the illustrations were created via the KEGG
Mapper online tool (Kanehisa and Goto, 2000; Kanehisa, 2019;
Kanehisa et al., 2021). As illustrated in Figure 1A, many of the
proteins found in exosomes were related to vehicle-trafficking
pathways such as endocytosis and phagosomes consistent with
exosome’s biogenesis origin. Surprisingly, a considerable number
of pathways were related to adhesion and migration functions such
as focal adhesion and leukocyte transendothelial migration.
Exosomes also carried proteins involved in signaling pathways
such as Rap1, Ras, and chemokine signaling pathways.
Interestingly, these signaling pathways are major regulators of
cell adhesion and migration processes (van Buul and Hordijk,
2004; Castellano et al., 2016; Zhang et al., 2017). In addition,
gene ontology analysis of the HSPCs-derived exosomal proteome
revealed enrichment in biological processes highly related to the
KEGG pathways mentioned above. As shown in Figure 1B, most of
the biological processes were related to cell adhesion-migration
(i.e., cell migration, regulation of cell shape, leukocyte cell-cell
adhesion) or to signaling (i.e., signal transduction, small GTPase
signaling, MAPK cascade), confirming the findings from the KEGG
analysis. Therefore, the proteomics data analysis indicated a putative
correlation of HSPCs-derived exosomes to adhesion and migration
phenomena. Furthermore, the mass spectrometry data identified an
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abundance of proteins involved in the multistep paradigm of cell
migration, such as selectin ligands, integrins, and chemokines.
Moreover, E-selectin ligands such as CD34 (AbuSamra et al.,
2017), CD44 (Dimitroff et al., 2001; Merzaban et al., 2011;
AbuSamra et al., 2015; Ali et al., 2017; AbuZineh et al., 2018; Al
Alwan et al., 2021), CD43 (Matsumoto et al., 2005) and PSGL-1
(Katayama et al., 2003; AbuSamra and Merzaban, 2015; Ali et al.,
2017) were identified in the exosomes. Since the data suggest that
these ligands are involved in cellular rolling and migration, we chose
to focus on which of the identified exosomal proteins were part of
the two pathways related to the multistep paradigm of cell migration

and adhesion using the KEGGMapper online tools: The “Leukocyte
Transendothelial Migration” pathway (Figure 1C) and the “Cell
Adhesion Molecules” pathway (Supplementary Figure S4).

Hematopoietic cell-derived exosomes
display E-selectin ligands

Western blot analysis of total lysates from the KG1a-derived
exosomes confirmed the presence of E-selectin ligands: CD34,
CD43, CD44, and PSGL-1 as suggested by the proteomics

FIGURE 1
Mass spectrometry analysis reveals HSPCs-derived exosomes are enriched in proteins involved in adhesion and migration. Proteomics analysis of
the cargowas performed to uncover putative functions of the isolated exosomes. The KEGG pathways and the Biological Processes fromGeneOntology
analysis that were enriched in the KG1a (pink) and healthy HSPCs (blue)-derived exosomes were identified using the DAVID online tool. (A) Top hits of the
KEGG pathways identified included pathways related to vehicle-trafficking and adhesion-migration functions. Furthermore, there was enrichment
in signaling networks, highly related to the regulation of migration. The complete list of the identified KEGG pathways can be found in “HSPCs-derived
exosomes proteome analysis.” Datasheet 2. (B) Top hits of Biological Processes identified included processes related to cell adhesion and signaling
cascades, confirming the KEGG pathways. The complete list of identified Biological Processes can be found in “HSPCs-derive exosomes proteome
analysis.” Datasheet 2. (C) KEGG map revealed proteins in KG1a (pink) and healthy HSPCs (blue frame)-derived exosomes related to Leukocyte
Transendothelial Migration. Among the identified proteins, there were integrins (e.g., integrin-alpha), cytoskeleton-related proteins (e.g., actin, ezrin), and
chemokines (e.g., IL-32).
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analysis (Figure 2A). The expression of these ligands alone does not
dictate E-selectin binding since ligands need to be decorated with
sialyl Lewis X (sLex) glycans to be able to bind E-selectin. In order to
determine if exosomes contained ligands that could bind E-selectin,
a western blot analysis was performed on lysates of KG1a-derived
exosomes blotted with the recombinant E-selectin IgG chimeric
protein (rE-selectin-IgG). As shown in Figure 2B, several bands
corresponding to different E-selectin ligands were detected.

To further investigate the interaction of E-selectin with the
proposed exosomal ligands, immunoprecipitation on the total

exosomal lysate was performed using the rE-selectin-IgG
construct. To confirm the calcium-dependent binding of
E-selectin to its ligands, immunoprecipitation was performed in
the presence of Ca2+ or EDTA. As shown in Figure 2C, the
immunoprecipitation products were blotted against the respective
E-selectin ligands. CD34, CD44, and PSGL-1 blots showed a clear
signal in the sample immunoprecipitated in the presence of Ca2+ but
not in the presence of EDTA. Surprisingly, the blot of CD43 did not
show any signal in neither Ca2+ nor EDTA immunoprecipitated
samples. To further confirm our results, a complementary approach

FIGURE 2
KG1a-derived exosomes express E-selectin ligands. (A)Western blot analysis of lysates of KG1a-derived exosomes revealed the presence of CD34,
CD43, CD44, and PSGL-1 at the expected molecular weights. For PSGL-1, two bands were detected as expected (Snapp et al., 1998), a lower band
corresponding to the monomeric form and a higher band corresponding to the dimeric form. (B)Western blot analysis of KG1a-derived exosome lysates
stained with rE-selectin-IgG revealed several potential E-selectin ligands. (C) rE-selectin-IgG was used to immunoprecipitate (IP) proteins from
lysates of KG1a-derived exosomes either in the presence of Ca2+ (2 mM) or EDTA (20 mM). Western blot analysis revealed the presence of CD34, CD44,
and PSGL-1 (blue arrows) in samples where Ca2+ was added but not in samples containing EDTA confirming the selective, calcium-dependent binding of
E-selectin to its ligands. In western blots for CD43, no band was observed at the expected MW (see red rectangle). (D) CD44, CD34, PSGL-1, and
CD43were immunoprecipitated (IP) from the lysates of KG1a-derived exosomes using antibodies against each potential E-selectin ligand. The IP product
was blotted against the rE-selectin-IgG (upper) and each respective ligand (lower, positive control). A clear band corresponding to CD43 was not
detected (see red rectangle). Note that at in the upper blots, double the amount of sample was loaded compared to the lower blots in order to establish
that although a substantial amount of CD43 protein is present (lower), the lack of E-selectin binding (upper) is likely a result of the lack of proper
glycosylation. (E) CD44 and CD43 were Immunoprecipitated (IP) from lysates of KG1a-derived exosomes using antibodies against each ligand. The IP
product was blotted for sLex/a using the HECA-452 antibody (upper) and each specific ligand (lower). No band corresponding to CD43 was detected with
HECA-452 (see red rectangle) even though CD43was present (see lowerCD43 blot) suggesting that this ligand does not express sLex/a structures. Results
shown are representative of n = 3 independent experiments.
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was used where each E-selectin ligand was immunoprecipitated
(Figure 2D, lower blots) and subsequently blotted with rE-selectin-
IgG (Figure 2D, upper blots). As illustrated in Figure 2D (upper),
CD34, CD44, and PSGL-1 immunoprecipitates showed a well-
defined band at the respective molecular weights. However,
CD43 immunoprecipitates did not show any clear band at the
molecular weight corresponding to CD43, in agreement with the
previous results (Figure 2C).

E-selectin binds specialized carbohydrate determinants,
comprised of sialofucosylations containing an α (McAndrews
and Kalluri, 2019; Zhu et al., 2020)-linked sialic acid substitution
on galactose, and an α(1,3)-linked fucose modification on
N-acetylglucosamine, prototypically displayed as the terminal
tetrasaccharide, sLex. To assess whether or not the
CD43 glycoprotein is decorated with sLex capped glycans
(Nelson et al., 1993; Merzaban et al., 2011; AbuSamra et al.,
2015; AbuSamra et al., 2017), western blots of
CD43 immunoprecipitates were prepared and blotted with the
anti-sLex/a antibody, HECA-452. The successful
immunoprecipitation of CD43 is shown in Figure 2E, (lower).
CD44 immunoprecipitates were run in parallel as a positive
control (Dimitroff et al., 2001; Sackstein et al., 2008;
AbuSamra et al., 2015). As illustrated in Figure 2E (upper),
the sample corresponding to CD44 immunoprecipitates
presented a band at the respective molecular weight of
CD44 while CD43 immunoprecipitates did not. These findings
suggest that although CD43 is present in the KG1a-derived
exosomes, it is not decorated with the sLex glycan epitopes
that are necessary for binding to E-selectin.

To further investigate the impact of sLex formation on the
ability of exosomes to interact with E-selectin, exosomes were
isolated from K562 (Al-Amoodi et al., 2020) cell line

(Supplementary Figure S5A). K562 cells are not able to bind
E-selectin, because their ligands are missing the necessary
glycosylation. Using recombinant fucosyltransferase VI
(FTVI), an enzyme, that is, not expressed in K562 cells but
can aid in the creation of sLex, E-selectin binding can be
achieved (Al-Amoodi et al., 2020). Like the cells they originate
from, the E-selectin ligands, CD44, CD43 and PSGL-1 were
created on K562-derived exosomes (Supplementary Figure
S5B). Following treatment with FTVI, lysates of K562-derived
exosomes (FTVI) bound E-selectin as determined by western
blot while lysates from buffer-treated K562-derived
exosomes (Mock) did not (Supplementary Figure S5C). When
rE-selectin-IgG was used to immunoprecipitated potential
E-selectin ligands from lysates of either FTVI-treated or
buffer-treated K562-dervied exosomes and subsequently
analyzed by western blot for CD43, CD44 and PSGL-1,
ligands were only found in lysates prepared from FTVI-treated
exosomes (Supplementary Figure S5D). These data illustrate that
exosomes can be modified in vitro and thereby provide them with
added functions.

Intact exosomes bound E-selectin under
static and flow conditions in a Ca2+-
dependent manner

To determine if intact exosomes bound E-selectin, rE-selectin-
IgG was used to immunoprecipitate whole exosomes derived from
KG1a cells. Following an overnight incubation rotating at 4°C as
illustrated in Figure 3A, the captured particles were eluted and
prepared for western blot analysis. Blots were stained for surface
exosomal proteins, CD81 and CD63, and internal proteins identified

FIGURE 3
E-selectin is able to pull down intact exosomes expressing E-selectin ligands. (A) Cartoon illustrating the experimental workflow. rE-selectin-IgG
was bound tomagnetic beads coated with protein G. The complex was resuspended in PBS containing either 2 mMof Ca2+ or 20 mMof EDTA. Exosomes
were added to that mixture, and after overnight incubation, the particles bound to the E-selectin-beads complex were eluted and lysates were analyzed
by western blot. Refer to Materials and Methods for more details. Figure created with BioRender.com. (B) Western blot analysis of the eluted
products from the E-selectin-bead complex. Control samples either containing EDTA to chelate out Ca+2 or beads (without the E-selectin) were used to
verify the specificity of the interactions. A bead alone control (without exosomes) was also included. Blots were stained for the common markers of
exosomes: CD63 and CD81, but also from proteins revealed from the Mass Spectrometry data such as ezrin and β-actin. This is representative of n =
3 independent experiments.
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by the mass spectrometry analysis, ezrin and actin (“HSPCs-derived
exosomes Mass Spectrometry raw data” in Datasheet 1). As shown
in Figure 3B, the samples where Ca2+ was added to the
immunoprecipitation showed clear signals for external and
internal exosome proteins. As expected, samples where EDTA

was added instead of Ca2+ or where protein G beads alone were
used during immunoprecipitation of the exosomes (i.e., without the
rE-selectin-IgG), no exosome markers were detected. A weak signal
for CD63 was detected in the controls, that is, likely due to binding of
the protein G beads to the immunoglobulin molecules of exosomes

FIGURE 4
KG1a-derived exosomes bind E-selectin with high affinity and avidity even under flow. (A) Cartoon illustrating the experimental flow assay imaging
setup showing labeled KG1a-derived exosomes flowing over rhE-selectin, that is, pre-deposited onto a microfluidics chamber. Figure created with
BioRender.com. (B, C)DiD labeled KG1a-derived exosomes were introduced into a microfluidics chamber coated with rhE-selectin. Following 30 min of
incubation, the chambers were washed and imaged using fluorescence microscopy. (B) In the chambers where Ca+2 was present (upper images), a
plethora of exosomes were observed. However, in chambers where EDTA was present (lower images), exosomes were scarce. (C) The observed
differences were quantified and expressed as number of exosomes observed per area, student’s t-test, p-value (**) < 0.01. (D) DiD labeled KG1a-derived
exosomes were introduced into microfluidics chambers coated with rhE-selectin at a constant flow of 100 μl min−1 and increased up to 2000 μl min−1.
Several frames were recorded to illustrate the binding of exosomes to the deposited E-selectin in real-time. In the 1st frame, one exosome is observed to
be bound to the E-selectin. In the 2nd frame, another exosome entered the recording field (white line indicated by a blue arrow) bound firmly to the
E-selectin by the 3rd frame (indicated by the blue arrow). This exosome remained bound stably to the E-selectin as shown in the 4th frame and even after
1000 frames (1000th frame) when the flow rate reached up to 2000 μl min−1. Furthermore, a new exosome bound at the recoding area (red arrow). Scale
bar = 5 μm. (E, F) Microscale Thermophoresis (MST) assay between KG1a-derived exosomes and rE-selectin. (E) A Binding Check assay was performed
using labeled rE-selectin and unlabeled KG1a-derived exosomes. As illustrated, a clear difference was apparent between the signal detected from the
sample with the labeled E-selectin alone (Target, blue dots) and the samplewith the labeled E-selectin mixedwith the KG1a-derived exosomes (Complex,
green dots), indicating binding detectable by the MST. (F) Binding Affinity assay performed using labeled rE-selectin and unlabeled KG1a-derived
exosomes. The Kd was found to be in the level of pMolar, indicating a strong interaction between exosomes and rE-selectin. Results shown are
representative of n = 3 independent experiments.
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FIGURE 5
In vivo biodistribution of exosomes is influenced by E-selectin. KG1a-derived exosomes were prestained with VivoTrack 680 and delivered to NSG
mice intravenously via the tail vein. NSG recipients were either pretreated with blocking anti-E-selectin antibody 3 h prior to exosome delivery (exosomes
+ anti-E-sel) or left untreated (exosomes). Control group mice that did not receive exosomes. (A) Quantitative analysis of fluorescence intensity,
statistically analyzed by student’s t-test, using IVIS imaging of thewhole body of NSGmice in the dorsal position at 2, 6, 12, 24, and 48 h is shown. The
dorsal position is helpful to detect the fluorescence signal from the spine (p-value (*) <0.05, Exosomes group vs. Exosomes + anti-E-sel group). (B)
Quantitative analysis of fluorescence intensity, statistically analyzed by student’s t-test, using IVIS imaging of the whole body of NSG mice in the left-
lateral position at 2, 6, 12, 24, and 48 h is shown. The left-lateral position is helpful to detect the fluorescence signal from the spleen (p-value (*) <0.05,

(Continued )
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(“HSPCs-derived exosomes Mass Spectrometry raw data” in
Datasheet 1). The same methodology was used to perform
experiments with the K562-derived exosomes. When FTVI-
treated and untreated K562-derived exosomes were incubated
with the beads-E-selectin complex in the presence of calcium,
only the FTVI-treated exosomes were able to bind to E-selectin
(Supplementary Figure S5E). These data strongly suggest that intact
exosomes bind to E-selectin in a Ca2+-dependent and
sLex–dependent manner.

To further support the validity of our findings, exosomes derived
from primary CD34+ cells isolated from mobilized peripheral blood
of healthy or AML donors were used. After examining the purity of

these exosomes (Supplementary Figures S6A, B), total exosome
lysates revealed several bands that bound E-selectin when blotted
with rE-selectin-IgG (Supplementary Figures S6C, D). Moreover,
using the experimental flow described in Figure 3A, the bead-E-
selectin complex bound CD34+ primary cell derived exosomes in the
presence of calcium and not in its absence (Supplementary Figures
S6E, F). These data prove that intact exosomes derived from
cell lines as well as primary cells have the ability to bind E-selectin.

To image the binding of exosomes to E-selectin in a more
direct way, a microfluidics chamber approach was used
(Figure 4A). Exosomes were pre-stained with DiD dye and
introduced to a microfluidics chamber where rhE-selectin was

FIGURE 6
Exosomes may alter their cargo during transport to recipient cells in a non-stochastic manner. (A) Freshly derived KG1a exosomes were treated with
E-selectin in the presence of Ca2+ to mediate binding. Subsequently, lysates were prepared and several signaling proteins were analyzed by western blot
including ezrin, phospho-ezrin, Rac-1/Cdc42 and NHERF-1. Interestingly, there was an overall increase in ubiquitination observed in response to
E-selectin binding but not all proteins analyzed were perturbed. CD81 blot was used as a loading control for the western blots illustrated. Results
shown are representative of n = 3 independent experiments. (B) The proteomics analysis of the KG1a (pink) and healthy HSPCs (blue frame)-derived
exosomes revealed the presence of proteins related to the proteosome indicating that exosomes contain the machinery to enable them towards
controlled degradation of proteins.

FIGURE 5 (Continued)
Exosomes group vs. Exosomes + anti-E-sel group). (C) Representative IVIS images of organs after 48 h of whole body IVIS imaging (at 12 and 24 h)
following injection of VivoTrack 680-labeled KG1a-derived exosomes. Live IVIS imaging of mice from the dorsal (to show spine) and the lateral left (to
show spleen) positions are shown at 12 and 24 h post-delivery of KG1a-derived exosomes or control group. Mice pretreatedwith anti-E-selectin blocking
antibody 3 h prior to KG1a-derived exosome delivery are also shown. After imaging at 48 h, mice were sacrificed and organs were imaged ex vivo
(spleen, liver, leg bones and spine). Representative images of these organs are shown. (D) Quantitative analysis of the fluorescence intensity of the leg
bones, spine, spleen and liver are shown the exosomes accumulation in different organs and were statistically analyzed by student’s t -test (p-value
(*) <0.05, Exosomes group vs. Exosomes + anti-E-sel group).
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deposited on its surface. Exosomes were left to incubate with the
surface of the coated chamber for 30 min without any shear force
being introduced. After washing, the samples were observed
under a fluorescence microscope to determine binding.
Numerous fluorescently labeled exosomes were detected in the
microfluidics chamber where Ca2+ was present (Figure 4B, upper
panels), while in control samples where EDTA was present in the
buffer instead of Ca2+, it was challenging to find a field where any
exosomes bound to the E-selectin coated surface (Figure 4B,
lower panels). Quantification of the bound exosomes (Figure 4C)
confirms the Ca2+-dependent binding of the exosomes to
E-selectin.

To observe the binding of exosomes to rhE-selectin coated
microfluidics channels in real-time under physiological flow
conditions, DiD-labeled KG1a-derived exosomes were introduced
into the microfluidics chamber as in Figure 4A at flow rates ranging
from 100–2000 μl min−1. Starting with a flow of 100 μl min−1, we
observed exosomes “sticking” to the deposited E-selectin while
passing throw the chamber (Figure 4D). This binding happened
instantaneously and was firm. Even if the flow rate was increased up
to 2000 μl min−1, the exosomes were not released from the surface of
the chamber until the end of the experiment, indicating a very strong
binding.

To further elaborate on the strength of binding of the
exosomes to E-selectin, a Microscale Thermophoresis (MST)
assay was developed to measure the binding affinity between
E-selectin and the KG1a-derived exosomes. In preparation for
the assay, the rE-selectin construct was labeled using the
Monolith NT His-Tag Labeling Kit. After calculating the
molarity of the exosomes (see Methods for details), we used
the appropriate combinations of labelled E-selectin and
exosomes, as recommended by the MO. Control
v1.6.1 software (NanoTemper) for both “Binding Check” and
“Binding Affinity” assay. As shown in Figure 4E, binding of
labeled E-selectin was detected with KG1a-exosomes at
concentrations of exosomes as low as 11 nM, indicating that
the binding between exosomes and E-selectin is considerably
strong. In fact, Kd measurements were found to be at the pMolar
level, suggesting a strong interaction (Figure 4F), which is
consistent with the flow data above.

In vivo bio-distribution of exosomes is
E-selectin dependent

We next sought to determine the distribution of pre-stained
KG1a-derived exosomes in a NSG mice that were either
pretreated with blocking anti-E-selectin antibody or not. As
shown in Figure 5A (dorsal view) and Figure 5B (lateral left
view), IVIS imaging of the total body showed higher signals in the
mice receiving KG1a-derived exosomes, which is significantly
higher than in mice from the control group. Interestingly, when
mice were pretreated with anti-E-selectin blocking antibody, the
signal was significantly reduced. Moreover, images of the mice
indicated that the majority of the accumulation of the signal
centered around the spine (dorsal view) and the spleen and liver
(lateral-left view) (Figure 5C, whole body images). Following the
whole body IVIS imaging, mice were sacrificed, and the organs

were further analyzed at 48 h after the delivery of exosomes.
Indeed, as illustrated in Figure 5D, there was an accumulation of
signal from exosomes in the spine, spleen, liver and leg bones.
This signal was significantly reduced when E-selectin was blocked
in the spleen and the spine. These data indicate that E-selectin is
critical for the accumulation of the stained exosomes in the spine
and spleen.

Exosomes have the mechanisms to mediate
changes in their cargo after their release

A more in-depth analysis of the Mass Spectrometry data of the
KG1a-derived exosomes revealed a plethora of signaling molecules
whichmight be functional in exosomes as they are inside the cytoplasm
of cells. Therefore, using E-selectin, we tried to trigger putative pathways
that are related to E-selectin- ligand(s) interaction. A very good
candidate to examine putative signaling-related alternations was
ezrin due it is abundance in exosomes as well as its essential role in
adhesion and migration processes, linking the cytoskeleton to the cell
membrane (Gautreau et al., 1999). Ezrin has a distinct phosphorylation
site at Thr567 which plays a crucial role in its interactions (Parnell et al.,
2015). To test if signaling changes in ezrin occur within exosomes upon
interacting with E-selectin, KG1a-derived exosomes were placed in PBS
containing 2 mM Ca2+ and then treated with the rE-selectin for 1 h. As
illustrated in Figure 6A, the amount of phosphorylated ezrin at
Thr567 was drastically reduced when the exosomes were treated
with E-selectin compared to exosomes treated with Ca2+ alone.
However, the amount of the total ezrin was also reduced, suggesting
that the reduction in phosphorylation was likely due to degradation of
ezrin and not due to dephosphorylation. Examination of two other
proteins, Rac-1 and NHERF1, that were identified at the proteomics
data did not follow the reduction of total ezrin. In contrast, the total
amount of Rac-1 and NHERF1 proteins were equal after E-selectin
treatment in KG1a-derived exosomes (Figure 6A). Therefore, a
mechanism which targets specific protein(s) for degradation seemed
to be activated and not just a general mechanism aiming to
stochastically degrade proteins (i.e., caspases). Indeed, it may involve
a process of ubiquitination as the total polyubiquitination was increased
after E-selectin treatment. Furthermore, based on the proteomics data,
the HSPCs-derived exosomes do possess proteins involved in
ubiquitination (see file in Datasheet 3: “Ubiquitin protein ligase
binding protein list identified in HSPCs-derived exosomes”), but
also contain the proteosome proteins (Figure 6B), as illustrated from
the analysis of the proteomics data.

Discussion

Since their discovery, exosomes have been linked tomany biological
functions such as cell-to-cell communication and cell reprogramming
among others (Balaj et al., 2011; Hong et al., 2017; Ringuette Goulet
et al., 2018). For the exosomes to cause alterations in the recipient cell,
they need to interact with it, either releasing their cargo inside the cells
by merging with the cell membrane or activating the cell’s ligands via
adhesion (Mathieu et al., 2019). Studying the proteome of the exosomes
can give indications of their potential functions. The proteomics
analysis of exosomes derived from different blood cells (Diaz-Varela
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et al., 2018) as well as our analysis of AML derived exosomes show that
exosomes contain adhesion-related proteins that can possibly interact
with other adhesion molecules. In particular, we uncovered several
proteins involved in the migration of numerous cell types such as
selectin ligands, chemokines and integrins (Supplementary Table S3)
suggesting that similar adhesion and migration functions could take
place in exosomes as in their parental cells (Figure 1C). Here using as a
model, the CD34+ AML cell line KG1a, a cell line previously described
to possess optimum cell migration characteristics both in vitro and in
vivo (Dimitroff et al., 2001;Merzaban et al., 2011; AbuSamra et al., 2015;
AbuSamra et al., 2017; Ali et al., 2017; AbuZineh et al., 2018; AbuElela
et al., 2020; Aleisa et al., 2020; Al Alwan et al., 2021), we investigated the
dynamic potential of KG1a-derived exosomes to interact with
E-selectin. Our data were further confirmed using exosomes derived
from healthy andAMLprimary CD34+HSPCs cells. To our knowledge,
this is the first study illustrating the functional interaction and
characterization of exosomes with E-selectin, a key adhesion
molecule constitutively expressed by the endothelial cells of the
hematopoietic tissues (Schweitzer et al., 1996).

In this study, the interaction of E-selectin with exosomal ligands
appeared to mimic that of the interaction between E-selectin and its
cellular ligands. E-selectin bound to its exosomal E-selectin ligands
in a Ca2+-dependent manner that relied on sLex glycosylation of the
ligands. However, in contrast to CD34, CD44, and PSGL-1,
exosomal CD43 did not bind to E-selectin although its parent
cell, KG1a (Merzaban et al., 2011), does. This is interesting and
is likely due to the fact that the exosomal CD43 does not contain the
sLex decorated form, that is, recognized by E-selectin. This study
further reports the specific Ca2+-dependent and sLex-dependent
binding of whole, intact exosomes to E-selectin molecules
(Figure 3). This approach can be also used as a method to
separate exosomes that express E-selectin ligands from a mixture
of exosomes. Moreover, real-time imaging of KG1a-derived
exosomes flowing over immobilized E-selectin confirmed the
Ca2+-dependent nature of this interaction under various flow
rates. Fluorescently stained exosomes were initially brought into
the E-selectin coated microfluidics chamber at a flow rate of 100 μL
min-1 and were able to bind strongly and firmly to E-selectin under
constant flow (Figure 4D). The interactions that were achieved
between the exosomes and the E-selectin were maintained even
at flow rates upwards to 2000 μl min−1 and did not detach. These
data illustrate strong binding of exosomes to E-selectin. Using an
MST approach, quantification revealed that the Kd of this
interaction was indeed found to be in the pMolar range
(Figure 4F). Previously published work using the SPR technique,
quantified the binding of E-selectin to different E-selectin ligands
isolated from KG1a cell lysates, and reported Kd values in the
hundreds of nMolar (AbuSamra et al., 2017; Aleisa et al., 2020).
However, as recently shown, when proteins are on the surface of a
lipid vesicle, they bind stronger to their ligands (Zhou et al., 2021),
which may explain why the Kd of the exosomes-E-selectin
interaction is significantly lower compared to the previously
mentioned work.

Exosomes derived from blood malignancies can alter the profile of
endothelial cells (Wang et al., 2019). Guided delivery of exosomes to
endothelial cells could be achieved through their in vitro modification.
For example, in vitro modification of exosomes using the
fucosyltrasferase VI enzyme (Al-Amoodi et al., 2020), created many

epitopes onmembrane proteins that could function as E-selectin ligands.
Indeed, exosomes derived from K562 cells, a cell line that does not bind
to E-selectin, could be manipulated to bind E-selectin following in vitro
treatment with the FTVI enzyme. Therefore, exosomes can undergo
dynamic changes and be given new properties. Given that exosomes can
be used as a drug delivery system (Tang et al., 2012; Tian et al., 2014),
these findings can assist in increasing the specificity of drug delivery to
particular cells or tissues, i.e., where E-selectin is expressed such as under
inflammatory conditions.

As indicated by the in vivo study documented here, E-selectin
has a crucial role in the targeting of AML exosomes to specific
organs such as the spleen (Figures 5B–D). Many studies have
described AML cell engraftment to the spleen as well as the bone
marrow in xenotransplantation studies (Her et al., 2017). In patients
with acute myeloid leukemia and other leukemias, enlarged spleens
are associated with poor survival after treatments involving
allogeneic stem cell transplantation (Shimomura et al., 2018;
Yuasa et al., 2020). Interestingly, leukemic cells have been
described to migrate to as well as proliferate more in the spleen
more than the bone marrow (Ma et al., 2014). Moreover, the spleen
has been described as a “sanctuary” where leukemic cells can thrive
outside of the bone marrow in order to escape from drug therapies
(Di Grande et al., 2021) suggesting the importance of developing
drug delivery systems targeting this organ. Better understanding of
the splenic tumormicroenvironment and the role of exosomes in the
recruitment and maintenance of leukemic cells is invaluable
knowledge needed in the treatment of leukemia and other diseases.

Another position that showed E-selectin dependent exosome
accumulation was the spine. Patients with AML can present with
central nervous system involvement in rare cases (~3% of patients)
(Landis and Aboulafia, 2003; Shihadeh et al., 2012) likely due to
leukemic cell invasion (Asano et al., 2016). Here we show that
exosomes may be important players in mediating this cell invasion
due to their accumulation in the spinal bone marrow. These data
suggest organotropic distribution of exosomes based on their ability
to bind to E-selectin. Previous studies focused on integrins, adhesion
molecules involved in cell-cell and cell-matrix interactions,
illustrated that specific integrin expression guided exosomes to
particular organs that became the site of future metastases
(Hoshino et al., 2015). Therefore, disrupting such organ-specific
infiltration of exosomes could alter the migration and metastasis of
cancer cells.

Trying to understand the biological need underlying the ability
of AML CD34+cells-derived exosomes to bind to E-selectin- ergo
targeting endothelial cells-the answer can be found in the cargo of
these exosomes that will be delivered to their target cells. Apart
from the protein cargo, which was mentioned before, by analyzing
the miRNAs found in KG1a-derived exosomes (Xu et al., 2020),
several crucial targets were identified (Supplementary Figure S7).
The PI3K-AKT pathway was found to have the most targets among
the other KEGG pathways (see “KG1a-derived exosomes-miRNA
target analysis” in Datasheet 4). Indeed, PTEN, the main negative
regulator of this pathway was a target of at least 15 exosomal
miRNAs. Experimental data have demonstrated that miR-26a, one
of the higher in abundance in KG1a-derived exosomes, has been
found to directly down-regulate PTEN (Coronel-Hernandez et al.,
2019), and has also been shown to provide anti-apoptotic
properties (Zhang et al., 2015). Additionally, activation of the
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PI3K-AKT pathway can lead to angiogenesis of endothelial cells
(Karar and Maity, 2011). Moreover, another pathway controlling
angiogenesis, Wnt (Dejana, 2010), was also a top target of these
exosomal miRNAs. Interestingly, the Extracellular Matrix (ECM)
receptor interaction category was a major target of KG1a exosomal
miRNAs suggesting that they could facilitate the remodeling of the
microenvironment at a particular location, such as the bone
marrow. For instance, exosomal miRNAs target five members
of the laminin family, a main component of ECM (Siler et al.,
2000). One of them, laminin 4, was found to be targeted by at least
four exosomal miRNAs, including miR148a, the third most
abundant miRNA in KG1a-derived exosomes. In addition to
this, recent studies have shown that depletion of laminin
4 from the bone marrow can lead to loss of normal
hematopoiesis but acceleration of AML (Cai et al., 2022).

Although exosomes are mainly considered as cargo
transporters of active biomolecules, these transporters could
ultimately undergo dynamic changes during the transportation
process. For instance, the reported binding of the exosomes to
E-selectin could merely deliver the exosome cargo but binding
could also lead to further functional changes to the exosomes
themselves. The proteomics data presented here, illustrates that
exosomes contain a plethora of signaling molecules, which could
be functional in both exosomal and cellular environments they
interact with. Indeed, by treating the KG1a-derived exosomes
with E-selectin, we observed changes inside the exosomes
themselves. This observation is intriguing as it indicates that
the exosomal cargo could undergo alterations
(i.e., phosphorylation/dephosphorylation, ubiquitination) after
its release from the parental cell until its final uptake by the
recipient cell. One could envision that depending on the receptor
ligand interaction, different sets of signaling pathways could be
set off resulting into modification of the exosomal cargo on its
way to the recipient cell. These data also imply that exosomes
should be considered as part of a system and not only
independently, as exosomes seem to modify their cargo
according to the recipient cells that they interact with.
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