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Cancer is a devastating disease and the primary cause of morbidity and mortality
worldwide, with cancer metastasis responsible for 90% of cancer-related deaths.
Cancer metastasis is a multistep process characterized by spreading of cancer
cells from the primary tumor and acquiring molecular and phenotypic changes
that enable them to expand and colonize in distant organs. Despite recent
advancements, the underlying molecular mechanism(s) of cancer metastasis is
limited and requires further exploration. In addition to genetic alterations,
epigenetic changes have been demonstrated to play an important role in the
development of cancer metastasis. Long non-coding RNAs (lncRNAs) are
considered one of the most critical epigenetic regulators. By regulating
signaling pathways and acting as decoys, guides, and scaffolds, they modulate
key molecules in every step of cancer metastasis such as dissemination of
carcinoma cells, intravascular transit, and metastatic colonization. Gaining a
good knowledge of the detailed molecular basis underlying lncRNAs regulating
cancer metastasis may provide previously unknown therapeutic and diagnostic
lncRNAs for patients withmetastatic disease. In this review, we concentrate on the
molecular mechanisms underlying lncRNAs in the regulation of cancermetastasis,
the cross-talk with metabolic reprogramming, modulating cancer cell anoikis
resistance, influencing metastatic microenvironment, and the interaction with
pre-metastatic niche formation. In addition, we also discuss the clinical utility and
therapeutic potential of lncRNAs for cancer treatment. Finally, we also represent
areas for future research in this rapidly developing field.
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Introduction

Cancer poses a significant threat to improving life expectancy as
it remains one of the leading causes of global deaths (Bray et al.,
2021). The preliminary data show that it is the leading cause of
mortality in people before the age of 70 years in most countries
worldwide. Since the last decade, cancer incidence and mortality
rates have risen sharply around the globe with 19.3 million new cases
and 10 million cancer deaths worldwide in 2020 (Sung et al., 2021).
It is estimated that more than 1,670 people will die of cancer every
day in the United States by 2023 (Siegel et al., 2023).

Metastasis, the spread of cancer cells from the primary site to
distant organs, is a complex and multi-stage process that is the
leading cause of cancer-related deaths. This process involves several
key stages, which include local invasion, in which cancer cells invade
surrounding tissues, and intravasation, in which cancer cells enter
the bloodstream (Hanahan and Weinberg, 2011). The cancer cells
then travel to distant sites, where they undergo extravasation into
the surrounding tissues and formmicro-metastatic colonies. Finally,
these colonies can proliferate and become clinically identifiable
macro-metastases, referred to as “cancer colonization” (Talmadge
and Fidler, 2010; Lambert et al., 2017; Klein, 2020). The molecular
mechanisms underlying metastasis are intricate and not yet fully
understood, but research into this issue continues to evolve. This
complexity highlights the need for new perspectives and approaches
in the study of metastasis in order to better understand and
ultimately combat this devastating aspect of cancer.

Ribonucleic acids (RNAs) play a critical role in the origin of life
due to their unique properties as both catalysts and genetic materials
(Higgs and Lehman, 2015). The “RNA world hypothesis” posits that
early life on Earth was characterized by self-replicating RNA
molecules before the evolution of proteins and DNA (Mercer
et al., 2009). Despite the fact that only 2% of human RNA
transcripts are translated into proteins, the remaining transcripts
have been shown to play important regulatory functions through
recent advancements in genomic technologies (Djebali et al., 2012).
These transcripts, which do not code for proteins, are known as non-
coding RNAs (ncRNAs) (Jarroux et al., 2017) and are divided into
two main categories: regulatory and structural ncRNAs. Structural
ncRNAs include ribosomal RNA (rRNA) and transfer RNA (tRNA),
while regulatory ncRNAs are further divided into small non-coding
RNAs (sncRNAs) and long non-coding RNAs (lncRNAs) based on
their size (Esteller, 2011; Quinn and Chang, 2016). The most well-
studied classes of sncRNAs are piwi-interacting RNAs (piRNAs),
micro-RNAs (miRNAs), and endogenous small interfering RNAs
(siRNAs) (Naqvi et al., 2009). These small non-coding RNAs play
critical roles in the regulation of gene expression, which includes the
repression of unwanted transcripts and the modulation of mRNA
stability. Further research into the role of ncRNAs, particularly
sncRNAs, in the regulation of gene expression holds the potential to
reveal new insights into the biology of cells and pathogenesis of
diseases.

Long non-coding RNAs (lncRNAs) are RNA transcripts longer
than 200 nucleotides without the potential to code for proteins
(Ming et al., 2021). These lncRNAs are usually located in the nucleus
and are found in different nuclear compartments such as the
chromatin and nucleoplasm. They play important roles in
modulating nuclear organization and function (Yao et al., 2019).

Some lncRNAs can be found in the cytoplasm (Wang and Chang,
2011; Chen, 2016). Based on their relative position to their
proximate protein-coding genes (PCGs), lncRNAs are classified
(Harrow et al., 2012; Hrdlickova et al., 2014) as (a) sense
lncRNAs, which are within the PCG spanning multiple introns
or exons; (b) antisense lncRNAs, which are transcribed from the
opposite strand of a PCG; (c) intronic lncRNAs are found in the
sense strand of an intron of a coding gene; (d) intergenic lncRNAs,
which are transcripts located between two PCGs; and (e)
bidirectional lncRNAs that are located on the opposite strand but
within 1 kb of the promoter on the sense strand and are transcribed
on the sense strand in the opposite direction to that of the promoter
(Bär et al., 2016). The biological functions of lncRNAs can be
classified into several categories, such as guides, scaffolds, decoys,
and platforms (Wong et al., 2018). In addition, the expression of
other genes is usually modulated by signals from lncRNAs (Grossi
et al., 2020). As guides, lncRNAs can direct regulatory proteins such
as transcription factors and epigenetic regulators to specific regions
of the genome. As decoys, lncRNAs can modulate gene expression
by binding with miRNAs, thereby blocking their ability to regulate
target genes (Zhang et al., 2018). As scaffolds, lncRNAs can provide
a platform for the assembly of protein complexes involved in various
cellular processes (Zhang et al., 2019a). Finally, as platforms,
lncRNAs can recruit various molecules through binding with
different structural domains (Düzgün Ş et al., 2017). These
various roles of lncRNAs highlight their importance in regulating
gene expression and cellular processes, particularly in cancer.

For many years, researchers have suspected that lncRNAs could
play a role in cancer but lacked concrete evidence to support this
hypothesis (Rainier et al., 1993). However, with advancements in
cancer transcriptome profiling and accumulating evidence that
support lncRNA function, a number of differentially expressed
lncRNAs have now been associated with cancer (Gibb et al.,
2011). Importantly, several lncRNAs have been identified to be
involved in different stages of the metastatic cascade, which includes
invasion, intravasation, and extravasation. For example, the
metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) lncRNA was first identified as having a potential role
in cancer during a comparative screening of non–small-cell lung
cancer patients with and without metastatic tumors (Ji et al., 2003).
This lncRNA is widely expressed in normal tissues in human (Ji
et al., 2003; Hutchinson et al., 2007) and is found to be upregulated
in a variety of cancers of the breast, prostate, colon, liver, and uterus
in humans (Luo et al., 2006; Yamada et al., 2006; Lin et al., 2007;
Guffanti et al., 2009). MALAT1 has been shown to interact with the
protein SFPQ to promote the invasion and migration of colorectal
cancer cells (Ji et al., 2014). One way in which lncRNAs contribute to
metastasis is by regulating the expression of genes that are involved
in metastatic processes. For example, the lncRNA HOX antisense
intergenic RNA (HOTAIR), a 2.2-kb gene located in the mammalian
HOXC locus on chromosome 12q13.13 (Rinn et al., 2007), has been
shown to promote metastasis in breast cancer (BC) by repressing the
expression of genes involved in cell adhesion and promoting the
expression of genes involved in cell migration and invasion (Abba
et al., 2021). This lncRNA was found to be highly upregulated in
metastatic breast tumors, demonstrating up to 2000 times increased
transcription over normal BC (Gupta et al., 2010). High levels of
HOTAIR expression were found to be correlated with both
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metastasis and poor survival rate, linking this lncRNA with cancer
invasiveness and patient prognosis (Gupta et al., 2010). lncRNAs
also play an important role in regulating the
epithelial–mesenchymal transition (EMT) process, which is
crucial for the migration of cancer cells from the primary site to
other parts of the body (Nieto et al., 2016; Brabletz et al., 2018; Nisar
et al., 2021a). lncRNAs have been found to regulate important
signaling pathways involved in EMT and are therefore
considered key regulators of tumor metastasis (Guo et al., 2014;
Jia et al., 2016; Heery et al., 2017). In particular, lncRNA H19,
upregulated in a number of human cancers, such as in
hepatocellular, bladder, and breast carcinomas (Berteaux et al.,
2005; Barsyte-Lovejoy et al., 2006; Matouk et al., 2007), has been
implicated in inducing EMT and cancer metastasis. This lncRNA
has been shown to promote EMT in hepatocellular carcinoma by
upregulating the expression of the transcription factor Snail (Wen
et al., 2020; Yuan et al., 2021). In addition to these, multiple
cancer–associated lncRNAs has been shown to regulate cancer
invasion and metastasis (Raveh et al., 2015; Luo et al., 2018;
Tang et al., 2018). Overall, many studies have suggested that
lncRNAs are important regulators of cancer metastasis (Hunter
et al., 2018; Slack and Chinnaiyan, 2019; Williams et al., 2019; Li
et al., 2020a; Qin et al., 2020) and therefore serve as important
therapeutic targets and disease biomarkers (Liu et al., 2021).

Metabolic reprogramming is a hallmark of cancer (Hanahan and
Weinberg, 2011), which involves alterations in cellular metabolism
to support the energy and biosynthetic demands of rapidly dividing
cancer cells. Recent studies have shown that lncRNAs can modulate
metabolic pathways and contribute to the metabolic reprogramming
that occurs in cancer cells during metastasis. lncRNAs are involved
in regulating the interplay between molecular signaling and
metabolic reprogramming (Sellitto et al., 2021). This regulation is
achieved through changes in cell metabolic processes during
different stages of metastasis and by providing energy and
essential metabolites for the continuous growth and proliferation
of cancer cells (Phan et al., 2014). One example is the lncRNA
MALAT1, which has been shown to promote metabolic
reprogramming in BC cells by regulating the expression of genes
involved in glycolysis and oxidative phosphorylation (Agostini et al.,
2022). MALAT1 also enhances the Warburg effect by increasing
lactate production and decreasing mitochondrial respiration, which
in turn promotes the migration and invasion of multiple myeloma
cells (Liu et al., 2020a). In addition, H19 has been shown to promote
glycolysis in gastric cancer (GC) (Sun et al., 2021) and oral cancer
(Yang et al., 2021) cells, thereby enhancing the Warburg effect and
promoting the metastatic potential.

The tumor microenvironment (TME) regulates important
tumor promotion and survival functions. Through a dynamic
and multistep metastatic cascade, communication between the
structural and cellular components of the TME permits cancer
cells to disseminate from the primary site to distant areas and
become invasive (Neophytou et al., 2021). On arrival at distant
organ sites, metastatic cells form and interact with the TME,
involving numerous processes like angiogenesis (De Palma et al.,
2017), suppression and/or co-option of the innate and adaptive
immune system (Kitamura et al., 2015; Karki and Kanneganti, 2019;
Huntington et al., 2020), and the reprogramming of stromal
populations to enable metastatic outgrowth (Peinado et al., 2017;

Zanconato et al., 2019). The development of metastatic colonies
depends on establishing and maintaining a supportive
microenvironment, which includes innate and adaptive immune
cells and resident stromal cells (Quail and Joyce, 2013; Lambert et al.,
2017). In addition, the cellular and extracellular components of the
metastatic microenvironment are crucial for metastatic colonization
(Lin et al., 2018a; Altorki et al., 2019). Several facts have suggested
that lncRNAs have a major influence on the TME (Fatima and
Nawaz, 2017; Lin et al., 2018a; Sun et al., 2018a). Tumor cells after
detachment from their primary site and traveling via the lymphatic
and circulatory systems possess the potential to resist cell death,
i.e., “anoikis”. The anoikis resistance (AR) is a cornerstone step for
metastasis, promoting secondary tumor formation in distal organs
(Simpson et al., 2008). Extensive studies have shown that lncRNAs
can regulate the AR of cancer cells through modulating pathways,
apoptosis-associated proteins, and other molecules (Lee et al., 2021).
Primary tumors can influence the microenvironment of distant
organs to create a pre-metastatic niche, which can facilitate the
spread and colonization of cancer cells. This is achieved through
changes in various factors such as inflammation, lymph
angiogenesis, immunosuppression, angiogenesis, vascular
permeability, and organotropism. These changes create a
supportive environment for cancer cells to thrive and establish
secondary tumors (Guo et al., 2019), which are important for
metastasis development (Nogués et al., 2018). It is well
established that lncRNAs play a crucial role in the regulation of
tumor progression and can contribute to the development of
metastasis. Imbalances of lncRNAs have been shown to be
involved in the release of exosomes, alteration of remote tumor
cells, creation of a pre-metastatic niche, and survival of disseminated
tumor cells (Kim et al., 2016; Liu et al., 2019a). Many studies have
also demonstrated that lncRNAs can act as mediators of both intra-
and extracellular signaling pathways that drive metastasis, making
the targeting of lncRNAs a potential strategy for treating metastatic
cancer.

In this review article, the functions of lncRNAs in the
development of metastasis will be discussed, such as their
involvement in underlying molecular mechanisms, metabolic
reprogramming, EMT programming, TME influence, AR, and
interaction with pre-metastatic niche formation (Figure 1). The
diagnostic, prognostic, and therapeutic potential of lncRNAs in
cancers will also be examined. Further research in this field is
necessary to gain a comprehensive understanding of the
molecular basis of lncRNA-modulated cancer metastasis and
develop new diagnostic and therapeutic approaches for patients
with metastatic disease. Furthermore, we represented areas for
future research in this rapidly developing field.

Long non-coding RNAs and metabolic
reprogramming during cancer
metastasis

Otto Warburg in the 1920s identified cancer cells favoring
glycolysis over the considerably more effective oxidative
phosphorylation (OXPHOS) to generate energy (Warburg, 1956;
Vander Heiden et al., 2009), resulting in considerably increased
secretion of lactate and glucose uptake in tumor cells (Dang, 2010).
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This process is described as the Warburg effect, also known as
aerobic glycolysis, and represents a new phase in the research of
tumor metabolism. Deletions, gene mutations, and translocations
impact cancer cells in various signaling pathways and mainly
converges at the metabolism level (Cairns et al., 2011; Beloribi-
Djefaflia et al., 2016). Cancer cell metabolites not only provide
materials for metastasis and for their proliferation but also supply
sustaining signals in tumor-specific microenvironments to meet
their survival needs (Hanahan and Weinberg, 2011; Alderton,
2014; Weber, 2016). Moreover, cancer cells also perturb the
metabolism of distant organs in order to disseminate and ease
their growth and implantation (Fong et al., 2015). In turn,
metabolic alterations of invaded tissues and organs also affect the
survival and growth of carcinoma cells (Mashimo et al., 2014; Loo
et al., 2015). Many researchers have recognized that the Warburg
effect facilitates inhibition of anoikis (AR) and spread of tumor cells
(Lu et al., 2015; Lu, 2019). This ability of tumor cells to resist anoikis
(AR) and metastatic spread is provided by aerobic glycolysis, which
accelerates glucose consumption, decreases the production of
reactive oxygen species (ROS), and enhances the anti-oxidant
capacity of tumor cells (Lu et al., 2015). However, despite the
Warburg effect, oxidative metabolism is still a significant source
of ATP in some cancers (Guppy et al., 2002; Marin-Valencia et al.,
2012). Oxidative metabolism in mitochondria can generate reactive
ROS that include hydroxyl radicals (HO−), hydrogen peroxide
(H2O2), and superoxide (O−2) (Katritsis et al., 1991). These ROS
have been shown to play a role in promoting tumor spread by
preventing the death of detached cancer cells (anoikis) (Moloney
and Cotter, 2018). A growing body of evidence has shown a
connection between ncRNAs, particularly miRNA and lncRNA,
and metabolic alterations in cancer (Singh et al., 2012; Sun et al.,
2018b). lncRNAs regulate the signaling pathways in key metabolic
reprogramming and promote cancer progression, tumorigenesis,

and metastasis. Despite reduced glucose levels in solid tumors,
enhanced glycolysis produces metabolic intermediate that serves
as crucial synthetic components for developing tumors
(DeBerardinis et al., 2008) and promotes metastasis (Warburg,
1956; Vander Heiden et al., 2009). More specifically, glycolysis
promotes acidic and hypoxic TME associated with the
protonation of significant pH-sensitive protein residues
(Magalhaes et al., 2011; Choi et al., 2013) and regulates the
function and sub-cellular localization of cytoskeleton proteins
important for invasion and immune escape (Huber et al., 2017;
Rohani et al., 2019). For example, in tumor tissue hexokinases
(HKs), the essential glycolytic enzyme has been shown to keep a
rapid rate of glycolysis and help cancer cell metastasis (Zhang et al.,
2017a). More specifically, HK2 by regulating the matrix
metalloproteinase 9 (MMP-9) expression, non-processed
pseudogene (NANOG), and SRY box transcription factor (SOX)-
9 facilitates the metastasis of ovarian cancer (OVC) cells (Siu et al.,
2019). Interestingly, knocking down (KD) of ncRNA-TUG1 and
suppressing the miR-455-3p expression leads to decreased activity of
adenosine monophosphate–activated protein kinase subunit b2
(AMPKb2), which in turn affects HK2 and reduces the migration
and invasion of hepatocellular carcinoma (HCC) cells (Lin et al.,
2018b). In gallbladder cancer (GBC) tissues, increased expression of
lncRNA PVT1 was negatively correlated with the overall survival
(OS) of patients (Chen et al., 2019). Furthermore, KD of lncRNA
PVT1 in GBC cells decreased HK2 expression, inhibited glycolysis,
and decreased metastases via competitive interaction with
endogenous miR-143 (Chen et al., 2019).

The lncRNA SAMMSON and MALAT1 have been shown to
play roles in the development of melanoma (Leucci et al., 2016) and
HCC (Malakar et al., 2019), respectively. SAMMSON interacts with
protein p32 to increase its pro-oncogenic function and enhance
mitochondrial targeting (Leucci et al., 2016). MALAT1 contributes

FIGURE 1
Mechanism of long non-coding RNAs (lncRNAs) in cancer metastasis. lncRNAs play a role in cancer development and growth by regulating various
processes such as metabolic reprogramming, anoikis resistance, EMT, metastatic niche, immune escape, and oncogenes or tumor suppressors.
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to HCC by modulating glucose metabolism and enhancing
glycolysis while inhibiting gluconeogenesis. It does so by
activating the mTORC1-4EBP1 axis, leading to increased
translation of the transcription factor TCF7L2 (Malakar et al.,
2019). Similarly, lncRNA MACC1-AS1 overexpression is
associated with metastasis of gastric cancer (GC) cells to the
lungs. The underlying mechanisms include the activation of
AMPK/Lin28 pathway–mediated increased glycolysis and anti-
oxidative abilities with strong metabolic plasticity (Zhao et al.,
2018). lncRNA MACC1-AS1 in pancreatic cancer (PC) is also
upregulated and associated with bad prognosis (Qi et al., 2019),
its KD prevents the metastasis of PC cells by promoting the
expression of paired-box gene 8 (PAX8), which is essential in
activating NOTCH 1 signaling and enhancing cell aerobic
glycolysis (Qi et al., 2019). An alternate spliced form of PK is
pyruvate kinase M2 (PKM2), which is overexpressed in different
types of cancerous cells. PKM2 regulates the final rate-limiting step
of glycolysis and determines the efficiency of lactic acid production
and glucose utilization (Chaneton and Gottlieb, 2012). Histone
deacetylase 3 is recruited by direct interaction of transforming
growth factor β (TGF-β)–induced factor homeobox 2 (TGIF2) in
the nucleus with PKM2 and subsequent deacetylation to the
E-cadherin promoter, thus suppressing E-cadherin transcription
in colon cancer cells and promoting EMT (Hamabe et al., 2014).
lncRNA FEZ finger zinc 1 antisense 1 (lncRNA FEZF1-AS1) is
typically overexpressed in colorectal cancers (CRC) that leads to cell
metastasis. Mechanistically, PKM2 is stabilized by the binding of
FEZF1-AS1 to it, increases aerobic glycolysis, and stimulates the
signal transducer and activator of transcription 3 (STAT3) signaling
pathway (Bian et al., 2018). Transmembrane glycoprotein known as
glucose transporter (GLUT) is an essential factor in the uptake of
glucose by cancer cells. A high expression of GLUT1 increases
glucose absorption, promoting glycolysis and cancer cell
metastasis (Nagarajan et al., 2017). The gene expression of
GLUT1 is correlated with the activity of MMP-2 and
invasiveness in PC (Ito et al., 2004). lnc-p23154 regulates
glycolysis by inhibiting the transcription of miR-378a-3p,
resulting in increased expression of GLUT1, which contributes to
the development of oral squamous cell carcinoma (OSCC)
metastasis (Wang et al., 2018a). Lactate dehydrogenase A
(LDHA) is the rate-limiting enzyme in the metabolic pathway
that converts glucose into lactate and pyruvate. LDHA is an
important enzyme that regulates the balance between energy
production and energy utilization in the cell, and its activity has
been shown to be altered in various diseases such as cancer. The
progression of breast cancer (BC) metastasis is positively correlated
with the phosphorylation of enzyme LDHA at Y10 (Jin et al., 2017).
LDHA induces EMT and facilitates the metastasis of lung
adenocarcinoma cells (LADCs) (Hou et al., 2019). In addition,
many other kinases and glycolytic enzymes involved in glycolysis
are also regulated by lncRNAs. For example, LINC00092 suppresses
the enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2
(PFKFB2), which is involved in the synthesis and breakdown of
fructose-2,6-bisphosphate (Zhao et al., 2017). It is important to
mention that chemokine-CXCL14 (C-X-C motif ligand 14) is
overexpressed in cancer-associated fibroblasts (CAFs) in OVC
and induces LINC00092 expression. For cancerous cells, a non-
essential amino acid glutamine has vital biological importance with

enhanced glutamine uptake and catabolism. Glutamate
dehydrogenase (GDH) catalyzes the conversion of glutamine into
glutamate, which is triggered by an enzyme glutaminase (GLS), and
results in the production of α-ketoglutarate, an intermediary for the
TCA cycle and an important source of energy. Glutamine has been
demonstrated to increase hypoxia-inducible factor-1 (HIF1)
expression and also increase the pro-autophagic function of
BNIP3 (Bcl2/adenovirus E1B interacting protein 3), thus
encouraging melanoma cell dissemination (Vara-Perez et al.,
2019). Fumarate, an intermediate product of glutamine
metabolism, induce metastasis by activating glutathione
peroxidase, and reducing the ROS levels (Jin et al., 2015). The
c-Myc protein is a transcription factor that plays a role in the
regulation of gene expression and cell growth. One mechanism by
which c-Myc contributes to cancer is by upregulating the expression
of miR-23b, which in turn suppresses the expression of proline
oxidase and leads to an increase in glutamine catabolism to promote
cell proliferation and contribute to the development of cancer (Liu
et al., 2012). Interestingly, lncRNA GLS-AS has been shown to
regulate glutaminase and c-Myc feedback loop, thus contributing to
the metastasis of PC cells (Deng et al., 2019). In bladder cancer
(BDC), lncRNA UCA1 and GLS2 are positively correlated.
UCA1 has a positive effect on human BDC cells by reducing
ROS production and promoting mitochondrial glutaminolysis, as
well as having sponge effects on miR-16. The binding of miR-16
“seed region” to the 3′-UTR of GLS2 mRNA regulates
GLS2 expression (Li et al., 2015a). Similarly, lncRNA OIP5-AS1
is upregulated in melanoma by sponge miR-217, which leads to
increased GLS expression and promotion of glutamine catabolism
and melanoma growth (Luan et al., 2019). For maintaining cellular
energy homeostasis, 5′ adenosine monophosphate–activated protein
kinase (AMPK) is an essential detector. AMPK phosphorylation of
sterol regulatory element binding protein-1 (SREBP1) and acetyl-
CoA carboxylase (ACC1) restricts the production of cholesterol,
fatty acids, and triglycerides while promoting the uptake of fatty
acids. Moreover, AMPK also induces glycolysis by activating the
phosphorylation of glycogen phosphorylase and PFKFB3 (Hardie
et al., 2012). However, reduced AMPK activity is associated with
increased fatty acid synthesis and cancer cell growth (Kim et al.,
2011). Tumor suppressor liver kinase B1 (LKB1), an upstream
kinase of AMPK, phosphorylates and activates AMPK during
ATP-depleted conditions (Hezel and Bardeesy, 2008). Under the
TME, activation of the LKB1-AMPK signaling pathway inhibits
autophagy via miR-7 upregulation and decreases intracellular
glucose supply, coupled with decreased proliferation and
metastasis of PC cells (Gu et al., 2017). In HCC cells, taurine-
upregulated gene 1 (TUG1) through the miR-455-3p/AMPKb2 axis
upregulates the HK2 expression, promotes glycolysis, and induces
metastasis (Lin et al., 2018b). Similar to AMPK, the hyperactivation
of the PI3K/AKT/mTOR signaling pathway promotes cancer
proliferation, growth, invasion, and metastasis (Jeong et al., 2014;
Hua et al., 2018). LINC00963 promotes metastasis in non–small-cell
lung cancer (NSCLC) by stimulating the AKT/mTOR pathway and
by inhibiting the ubiquitination of phosphoglycerate kinase 1
(PGK1) (Yu et al., 2017). Likewise, the high expression of the
long non-coding RNA MACC1-AS1 has been linked to the
spread of GC cells to the lungs. This is due to the activation of
the AMPK/Lin28 pathway, which enhances glycolysis and anti-
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oxidative capacity, resulting in improved metabolic adaptability
(Zhao et al., 2018). In PC, lncRNA MACC1-AS1 is overexpressed
and associated with poor prognosis (Qi et al., 2019). KD MACC1-

AS1 has been shown to inhibit metastasis of PC cells by increasing
the expression of paired-box gene 8 (PAX8), which is crucial for
activating NOTCH 1 signaling and improving aerobic glycolysis of

FIGURE 2
Long non-coding RNAs (lncRNAs) by modulating metabolic reprogramming participate in tumor metastasis. lncRNAs such as PVT1, FEZF1-AS1,
LINC00092, LINC00963, MACC1-AS1, HULC, GLS-AS, lnc-p23154, lnc-IGFBP4-1, TUG1, UCA1, OP15-AS1, and XLOC-006390 have been shown to
modulate metabolic pathways such as glycolysis, lipid metabolism, and glutamine metabolism, leading to tumor metastasis in different organs.

TABLE 1 lncRNAs involved in regulating tumor metabolism.

lncRNA Target Action Tumor type Ref.

Glucose metabolism

TUG1 miR-455-3P Up Hepatocellular carcinoma Lin et al. (2018b)

PVT1 miR-143 Up Gallbladder cancer Chen et al. (2019)

lncRNA FEZF1-AS1 PKM2 Up Colorectal cancer Nagarajan et al. (2017)

lnc-p23154 miR-378a-3p Up Oral squamous cell carcinoma Wang et al. (2018a)

SAMMSON P32 Interact Melanoma Leucci et al. (2016)

MALAT1 TCF7L2 Up Hepatocellular carcinoma Malakar et al. (2019)

lncRNA MACC1-AS1 AMPK/Lin28 Up Gastric cancer Zhao et al. (2018)

lncRNA MACC1-AS1 PAX8 Up Pancreatic cancer Qi et al. (2019)

LINC00092 PFKFB2 Up Ovarian cancer Zhao et al. (2017)

LINC00963 PGK1 Up Non–small-cell lung tumor Yu et al. (2017)

Lipid metabolism

HULC miR-9 Up Hepatocellular carcinoma Cui et al. (2015)

Glutamine metabolism

GLS-AS GLS Down Pancreatic cancer Deng et al. (2019)

OIP5-AS1 miR-217 Up Melanoma Luan et al. (2019)

UCA1 miR-16 Up Bladder cancer Li et al. (2015a)

Up/down indicates lncRNA upregulating or downregulating the expression of target genes. PKM2, pyruvate kinase isozymes M2; GLS, glutaminase; PFKFB, 2,6-phosphofructo-2-kinase/

fructose-2,6-biphosphatase; TCF7L2, transcription factor 7-like 2; LDH, lactate dehydrogenase.
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the cells (Qi et al., 2019). Furthermore, in HCC, lncRNA HULC is
highly overexpressed and acts as an oncogene. It modulates lipid
metabolism by involving miR-9, PPARA, and ACSL1 in a signaling
pathway, strengthened by a feed-forward mechanism involving
cholesterol and RXRA to drive HULC signaling (Cui et al., 2015)
(Figure 2, Table 1).

lncRNAs promote
epithelial–mesenchymal transition
during cancer metastasis

EMT is an essential part in the cell dissemination process that
enables cancer cells to leave the original site and migrate to distant
regions (Nieto et al., 2016; Brabletz et al., 2018). EMT can be
activated by numerous intracellular signaling pathways that are
activated once the ligands that originate from the stroma bind to
the appropriate receptors that are expressed in neoplastic cells (Jiang
et al., 2017a; Dongre and Weinberg, 2019). Recent research have
demonstrated that lncRNAs are significant EMT modulators in
tumor metastasis (Guo et al., 2014; Jia et al., 2016; Heery et al.,
2017). Accumulated evidence has demonstrated that NOTCH, TGF-
β/SMAD, PI3K/AKT, Wnt/β-catenin, JAK/STAT, and MEK/ERK
are responsible for inducing the EMT-activating transcription
factors (EMT-TFs) expression, particularly SNAIL, TWIST, and
ZEB, which simultaneously prevent the epithelial state–related gene
expression and enhance the expression of genes linked to the
mesenchymal state (Xu et al., 2009; Bray, 2016; Nieto et al., 2016;
Yang et al., 2017; Browning et al., 2018; Cevenini et al., 2018;
Tauriello et al., 2018; Dongre and Weinberg, 2019; Su et al.,
2020). lncRNAs have been found to play a significant role in
regulating the TGF-β signaling pathway in cancers (Wang et al.,
2016). LINC00978 (also known as AK001796 and MIR4435-2HG)
promotes EMT in GC (Fu et al., 2018). KD of LINC00978 inactivates
SMAD2 and reduces TGF-β expression, leading to decreased
expression of MMP-9, SNAIL2, and TWIST1 genes (Fu et al.,
2018). Likewise, lncRNA TUG1 induces EMT in PC by
controlling the TGF-β signaling pathway. It decreases
SMAD4 expression and increases TGF-β and TGF-β receptor
expressions, leading to the induction of EMT (Qin and Zhao,
2017). Similarly, lncRNA actin filament–associated protein-1
antisense RNA1 (lncRNA AFAP1-AS1) modulates the expression
of several EMT-related genes (SLUG, SNAIL1, VIM, CADN, ZEB,
and TWIST) in tongue squamous cell carcinoma (TSCC) by
controlling the Wnt/β-catenin signaling pathway (Wang et al.,
2018b). Additionally, the polycomb repressive complex 2 (PRC2)
and lncRNA HOTAIR regulate WIF-1 expression by increasing
H3K27 methylation in the promoter region, activating the Wnt/β-
catenin signaling pathway in esophageal squamous cell carcinoma
(ESCC). This activation is confirmed by the overexpression of
downstream genes such as MMP-13, ZEB1, and SNAIL (Ge
et al., 2013). NOTCH is a well-known oncogene involved in
tumor cell proliferation, AR, and EMT in many cancers (Shao
et al., 2015; Wieland et al., 2017; Jackstadt et al., 2019). lncRNAs
have been shown to directly bind to the NOTCH pathway’s core
components and regulate many EMT-TFs. For example, lncRNA
hepatocyte nuclear factor-1 alpha antisense RNA 1 (lncRNA
HNF1A-AS1) promotes EMT in oral squamous cell carcinoma

(OSCC) by upregulating the NOTCH 1 and Hes-1 expression
(Liu et al., 2019b). In addition, lncRNAs can also act as
competitive endogenous RNAs (ceRNAs), indirectly influencing
NOTCH signaling by working with the TGF-β pathway to
advance EMT. By sponging miR-124, the lncRNA urothelial
cancer–associated 1 (lncRNA UCA1) regulates the TGF-β1
expression to upregulate JAG1 and activate NOTCH signaling in
tongue cancer (TC) cells (Zhang et al., 2019b).

All these studies conclusively establish that lncRNAs enhance
EMT through the upregulation of the canonical Wnt/β-catenin and
the activation of the NOTCH pathways. Multiple intercellular
signaling pathways, such as PI3K/AKT/mTOR, are activated to
induce EMT (Grotegut et al., 2006; Di Domenico and Giordano,
2017), and lncRNAs have been shown to regulate these intercellular
signaling pathways in cancer metastasis. Specifically, lncRNA
UCA1 positively modulates the PI3K/AKT/mTOR signaling
pathway by sponging miR-582 and activating the target protein
CAMP responsive element binding protein 1 (CREB1), inducing
EMT in osteosarcoma cells (Ma et al., 2019). lncRNA TTN-AS1
activates the PI3K/AKT/mTOR signaling pathway by sponging
miR-497 and promoting metastasis of colorectal cancer cells.
lncRNA HOXA-AS3 regulates the MEK/ERK signaling pathway
by targeting miR-29c and controlling BMP1 expression, which
facilitates EMT in HCC (Cui et al., 2019a) (Figure 3). Further
research is required to fully understand the molecular
mechanisms of lncRNA regulation of signaling pathways in
cancer metastasis.

lncRNAs modulate tumor
microenvironment during metastasis

The TME comprises of the extracellular matrix (ECM),
basement membrane (BM), tumor-infiltrating immune cells,
neuroendocrine cells, endothelial cells, adipose cells, cancer-
associated fibroblasts (CAFs), pericytes, cancer stem cells (CSCs),
cytokines, and a plethora of signaling molecules that modulate
tumor progression (Macha et al., 2020; Bhat et al., 2021a; Bhat
et al., 2021b; Nisar et al., 2021b; Mehraj et al., 2021; Neophytou et al.,
2021; Bhat et al., 2022). The interactions between tumor cells and
their microenvironment are very critical for cell survival, and
therefore impact the development and growth of tumors
(Gajewski et al., 2013; Bhat et al., 2021a; Bhat et al., 2021b; Nisar
et al., 2021b; Bhat et al., 2022). It also plays a crucial role in cancer
metastasis by providing the necessary support and signals for tumor
survival, growth, and migration to new sites in the body. lncRNAs
are essential players in the crosstalk between cancer cells and the
TME. Numerous studies have demonstrated that lncRNAs promote
the formation of an immunosuppressive tumor immune
microenvironment (TIME), which contributes to tumor escape
from immune surveillance, promoting metastatic development
and therapeutic resistance (Pei et al., 2018; Wei et al., 2019a).
Neutrophils are immune cells that can exhibit different
polarization states, such as the tumor-promoting N2 type and the
anti-tumor N1 type, which are influenced by the TME. N2-type
neutrophils promote tumors by increasing angiogenesis, facilitating
tumor cell infiltration and ECM reconstruction, inhibiting T-cell
activation, and inducing anti-inflammatory M2 macrophages (Guo
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et al., 2022). KD of LINC01116 in CAFs leads to the generation of
tumor-associated neutrophils (TANs), which promote tumor
growth through the secretion of cytokines (Wang et al., 2020).
The lncRNA Morrbid regulates neutrophil lifespan and apoptosis,
making it a potential therapeutic target in the TIME (Coffelt et al.,
2016; Kotzin et al., 2016). In OVC cells, the lncRNA HOTTIP
enhances immunosuppression by increasing PD-L1 expression in
the neutrophils and upregulating IL-6 expression (Shang et al.,
2019).

Similar to neutrophils, macrophages are immune cells that play a
crucial role in both innate and adaptive immune responses. The two
main phenotypes, M1 and M2, have distinct functions in the body.
The M1-type macrophage prevents pathogen invasion and destroys
tumor cells while M2 macrophages predominantly enhance
metastasis, invasion, and tumor development. These specific
M2 macrophages are known as tumor-associated macrophages
(TAMs) by exerting immunosuppressive and tumor-promoting
effects (Ruffell et al., 2012; DeNardo and Ruffell, 2019).
M2 macrophages have anti-inflammatory characteristics and
facilitate the formation of tumors, by promoting angiogenesis,

tumor cell infiltration, tumor cell proliferation, and metastasis,
and suppressing immune function and chemotherapy resistance
(Murdoch et al., 2008; De Palma and Lewis, 2013; Shu and Cheng,
2020). The expression of lncRNAs in the macrophages also impacts
macrophage recruitment, tumor development, and progression,
affecting factors such as invasion, metastasis, and vascularization.
Calcium (Ca2+)-dependent signaling and Ca2+ flux play significant
roles in the development and progression of tumors. In response to
hypoxia-induced Ca2+ influx, lncRNA calcium-dependent kinase
activation (lncRNA CamK-A) activates NF-κB by degrading IκB to
upregulate the expressions of IL6, IL8, and VEGF in BCs, promoting
angiogenesis and macrophage recruitment in patient-derived BC
xenografts (Sang et al., 2018) (Figure 4). The expression of
FOXO1 can be targeted and inhibited by lncRNA ANCR, which
promotes M2-macrophage polarization, and thus enhances tumor
cell migration and invasion (Xie et al., 2020). TAMs, which have
similar effects to M2-macrophages, can facilitate tumor
development and angiogenesis through lncRNA RP11-361F15.2,
which acts as a ceRNA and sponges miR-30c-5p, activating and
binding CPEB4 and enhancing the progression and metastasis of

FIGURE 3
Schematics showing pathways modulated by lncRNAs to induce EMT. (A) Interaction of TGF-β ligands with T-βR triggers the canonical TGF-
pathway, leading to the formation of trimeric SMAD complexes (SMAD2–SMAD3–SMAD4)which act as transcription factors in the nucleus to regulate the
expression of EMT-associated genes. lncRNAs, such as LINC00978 and TUG1, can modulate the TGF-β/SMAD signaling transduction by affecting the
expression and phosphorylation of SMAD2/3 and SMAD4, respectively. (B) Interaction of Wnt ligands with frizzled receptors triggers the canonical
Wnt pathway, leading to the release of β-catenin which binds with LEF and TCF to promote the expression of EMT-related genes. lncRNAs AFAP1-AS1 and
HOTAIR modulate the Wnt/β-catenin pathway by affecting the phosphorylation of GSK3β and methylation of H3K27, respectively. (C) Interaction of
Jagged/Delta-like ligands with Notch receptors triggers the canonical Notch pathway, leading to the generation of NICD which acts as a transcriptional
co-activator in the nucleus. lncRNAs HNF1A-AS1 and UCA1 modulate the Notch pathway by regulating the expression of essential components and
acting as ceRNA to regulate Notch signaling indirectly. (D) Growth factors activating the MEK-ERK and PI3K-AKT pathways also induce EMT through
simultaneous activation of EMT-TFs. lncRNAs, such as UCA1 and HOXA-AS3, can act as ceRNA to regulate the expression of CREB1 and miR-29c, by
promoting PIK3/AKT/mTOR pathway, and enhance the phosphorylation of MEK and ERK, respectively.
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osteosarcoma (Yang et al., 2020). The endothelial cells play a crucial
role in supporting blood vessel formation and tumor neovasculature.
Tumor-associated endothelial cells display a high expression of
TGF-β1 and CD105, and TGF-β1 acts as a chemoattractant for
CD105-expressing endothelial cells, promoting angiogenesis
(Benetti et al., 2008). In vitro studies have shown that KD of
taurine upregulated gene 1 (TUG1) leads to remarkable
suppression of tumor-induced endothelial cell proliferation,
migration, and angiogenesis (Dong et al., 2016). Cytokines such
as TNF-α, IFN, and IL-17 are major target molecules in various
inflammatory conditions, with targeted therapies already in clinical
use (Budhu andWang, 2006; Rider et al., 2016; Yu et al., 2018). TGF-
β plays a complex role in tumor progression (Fabregat and
Caballero-Díaz, 2018; Marquardt, 2018), and the lncRNA ATB is
induced by TGF-β1 (Yuan et al., 2014). In HCC specimens, lncRNA
ATB was found to be overexpressed, and it enhanced EMT and
metastasis by increasing the colonization of migrating cells via the
IL-11/STAT3 signaling pathway. The ECM is produced by stromal
cells in the microenvironment and its components, which include
laminin, collagens, fibronectin, and proteoglycans, are associated

with altering the phenotype and function of HCC cells. ECM
production and reorganization can promote tumor cell
proliferation and invasion, alter gene expression in different
stromal and cancer cell types, and lead to tumor progression
(Frantz et al., 2010). Extracellular proteinases, such as matrix
metalloproteinases (MMPs), mediate many of the changes in the
TME during tumor progression. In HCC, the amplification of the
lncRNA ZFAS1 gene is positively correlated with hepatic invasion
andmetastasis throughmodulation of themiR-150/ZEB1/MMP-14/
MMP-16 cascade (Li et al., 2015b). Cancer is a heterogeneous
population of cells, and CSCs are responsible for metastasis and
resistance to traditional therapies (Chiba et al., 2016; Xiao et al.,
2017). CSCs or TICs have been identified in multiple cancer types,
such as HCC, and are proposed as critical promotors of tumor
initiation, development, metastasis, and recurrence. The
upregulation of lncRNA UCA1 in liver CSCs plays a critical role
in governing their growth and differentiation through regulation of
multiple pathways (Gui et al., 2015; Pu et al., 2015).

T cells play a crucial role in both cancer development and
immune responses. lncRNAs play a role in T-cell activation,

FIGURE 4
Long non-coding RNAs modulate tumor microenvironment. (A) lncRNA NKILA inactivates the nuclear factor-kappa beta (NF-kB) pathway in breast
cancer cells. (B)Downregulation of lncRNANKILA in tumor-infiltrating T lymphocytes leads to decreasedmetastatic potential. (C) In BC cells, in response
tomicro environmental hypoxia, activation of CamK-A triggers the activation of the NF-kB pathway, leading to increased expression of IL6, IL8, and VEGF,
and enhances angiogenesis. (D) In bladder cancer metastasis, the lncRNA LNMAT1 recruits hnRNPL to the CCL2 promoter, resulting in increased
expression of CCL2 through CCL2-dependent macrophage recruitment.
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differentiation, development, function, and cancer immunology.
T-cell activation by foreign antigens triggers immune responses
that are controlled by activation-induced cell death (AICD) of T
lymphocytes. Cancer cells use AICD to evade the immune system.
lncRNA has been shown to be involved in AICD of T lymphocytes,
and NF-KappaB Interacting LncRNA (lncRNA NKILA) has been
found to modulate T-cell sensitivity to AICD by inhibiting NF-kB
activity (Huang et al., 2018). KD of NKILA has been shown to
suppress BC progression and enhance the infiltration of cytotoxic T
lymphocytes (CTLs) (Huang et al., 2018). A previous study found
that in BC cells, cytoplasmic lncRNA that directly inhibits the NF-kB
complex leads to increasedmetastatic potential when downregulated
(Liu et al., 2021) (Figure 4). In the TME, T cells have the ability to
activate and differentiate into regulatory T cells (Tregs). Tregs play a
crucial role in the regulation of tumor immunity by inhibiting the
anti-tumor immunity of immune cells such as NK cells, CD8+

T cells, and DCs (Wang et al., 2011). lncRNAs have been found
to influence the function of Tregs in the TME and inhibit immune
surveillance (Jiang et al., 2017b). Some lncRNAs, such as SNHG1,
lnc-epidermal growth factor receptor (lnc-EGFR), Flicr, and Flatr,
have been documented to modulate Tregs (Jiang et al., 2017b;
Zemmour et al., 2017; Brajic et al., 2018). lncRNA LNMAT1 has
also been shown to induce metastasis of the lymphatic system in
BDC patients by recruiting macrophages and enhancing H3K4 tri-
methylation and CCL2 expression by recruiting hnRNPL
(heterogeneous nuclear ribonucleoprotein L) to its promoter
(Chen et al., 2018) (Figure 4).

CAFs are one of the core components of the TME, which have a
significant role in reshaping the ECM structure. This can lead to
collagen tracking and promote the migration of cancer cells (Guo
et al., 2022). lncRNAs have also been found to be key drivers of CAF-
mediated metastatic progression. For example, LINC00092 interacts
with a glycolytic enzyme, 6-phosphofructo-2-kinase/fructose-2,6-
biphosphatase 2 (PFKFB2), to regulate the level of glycolysis and
support CAF activity, thereby promoting OVC metastasis (Zhao
et al., 2017). Additionally, exosomal LINC00659 transferred from
CAFs can increase the expression of ANXA2 by binding with miR-
342-3p, thereby enhancing EMT(, and migration and proliferation
of CRC cells (Zhou et al., 2021).

The TME also plays a crucial role in immune escape, as tumor-
related immunosuppressive factors can contribute to the ability of
cancerous cells to resist the body’s immune surveillance (Ott et al.,
2013; Postow et al., 2015). Immune checkpoint inhibitors (ICIs),
such as monoclonal antibodies, are designed to block the
communication between immune cells and tumor cells and are
used to enhance the function of the immune system in the fight
against cancer. Tumor-associated immune checkpoint molecules
include LAG3, TIM-3, PD-1, and CTLA4, among others (Tumeh
et al., 2014). PD-L1 on tumor cells can interact with PD-1 on the
surface of relevant lymphocytes, leading to the production of
cytokines and lymphocyte apoptosis, thereby allowing tumor cells
to evade immune surveillance (Tumeh et al., 2014). lncRNAs have
been found to play a crucial role in the regulation of tumor
immunity and the development of drug resistance. Some
lncRNAs have been shown to promote an immunosuppressive
microenvironment that allows tumors to escape the immune
system and become resistant to drugs. For example, lncRNA
MALAT1 indirectly increases the expression of the immune

checkpoint protein PD-L1 through miR-200a-3 and miR-195
binding (Wei et al., 2019b; Wang et al., 2019), while the lncRNA
NKX2-1-AS1 has been shown to decrease the PD-L1 expression
(Kathuria et al., 2018). Immunotherapy, particularly using PD-1/
PD-L1 inhibitors, has made significant advancements in the
treatment of solid tumors (Kato et al., 2019; Motzer et al., 2019).
However, the modulation of lncRNAs can play a key role in
determining the resistance to these ICI therapies. Therefore, it is
essential to understand the regulatory functions of lncRNAs in the
TME in order to improve the effectiveness of immunotherapy and
overcome resistance to these treatments. In conclusion, lncRNAs
play a crucial role in regulating various aspects of tumorigenesis,
angiogenesis, immunosuppression, and tumor cell progression. A
deeper understanding of the regulation of lncRNAs in the TME is
necessary for advancing the treatment of metastatic tumors.

lncRNA regulates anoikis resistance
during metastasis

AR is a cellular function that plays a critical role in the spread
of cancer by allowing cancer cells to resist death when they detach
from the ECM (Sakamoto and Kyprianou, 2010; Tajbakhsh et al.,
2019; Lee et al., 2021), mainly during metastasis (Paoli et al.,
2013). This capability enables cancer cells to dissociate from the
primary tumor site and invade distant areas, establishing a
metastatic lesion (Simpson et al., 2008; Sakamoto and
Kyprianou, 2010). Therefore, AR is considered a crucial
process for tumor cell metastasis and has been the target of
research for developing new cancer therapies (Coates et al.,
2010; Sakamoto and Kyprianou, 2010). Multiple factors and
mechanisms have been linked to AR in cancer cells, such as
changes in integrin expression, growth factors, oxidative stress,
autophagy, EMT, metabolic alterations, and signaling pathways
(Paoli et al., 2013; Adeshakin et al., 2021). Additionally, various
ncRNAs, particularly lncRNAs, have been associated with AR in
several types of cancer (Lee et al., 2021). One specific lncRNA,
HOX transcript antisense intergenic RNA (HOTAIR), has been
shown to be upregulated in many cancers and linked to metastasis,
aggressiveness, and poor patient prognosis (Liu et al., 2013; Tan
et al., 2018). While lncRNA HOTAIR increased the AR of OVC
cells by recruiting EZH2 and prompting H3K27 methylation (Dai
et al., 2021), its KD decreased the ability of AR, migration,
invasion, and spheroid formation (Dai et al., 2021). HOTAIR
also facilitates AR in GC (Okugawa et al., 2014) and HCC cells
through c-Met signaling (Topel et al., 2020). ANRIL, for example,
is positively correlated with glioma and modulates caspase-3/8/
9 and AKT signaling pathways by sponging miR-203a (Dai et al.,
2018). APOC1P1-3 suppresses early apoptosis and promotes AR
by reducing activated caspase 3, 8, 9, and PARP through the
specific sponge of target miRNA-188-3p (Lu et al., 2021). lncRNA
H19 imprints maternally expressed transcripts and promotes
EMT and metastasis in various cancers (Yoshimura et al.,
2018), and the downregulation of lncRNA H19 decreases liver
and lung metastases in PC cells (Yoshimura et al., 2018). lncRNA
H19 also activates the Wnt signaling pathway by sponging miR-
29-3b and stimulates the onset of EMT in CRC (Ding et al., 2018).
Telomerase reverse transcriptase (TERT), in addition to
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potentiating cancer stemness, metastasis, and telomere length
maintenance (Hannen and Bartsch, 2018), also promotes
anchorage-independent growth of cancer cells. lncRNA
FOXD2-AS1, by sponging miR-7, promotes anchorage-
independent growth of thyroid cancer (THC) cells by targeting
TERT (Fleisig and Wong, 2012). lncRNA FOXD2 adjacent
opposite strand RNA 1 (lncRNA FOXD2-AS1) has been shown
to promote the anchorage-independent growth of THC cells by
sponging miR-7 and targeting TERT (Cui et al., 2019b). The
inactivation of the Hippo signaling pathway is associated with
tumor progression and metastasis in many cancers (Calses et al.,
2019; Dey et al., 2020). lncRNA MAPK8IP1P2, by sponging miR-
146b-3p, activates the Hippo pathway and inhibits anchorage-
independent growth and lymphatic metastasis of thyroid cancer
in vitro and in vivo (Calses et al., 2019; Liu et al., 2020b; Dey et al.,
2020). Analysis of the Cancer Genome Atlas (TCGA) database has
revealed that lncRNA NEAT1 is dysregulated in several cancers
(Li et al., 2018a) and correlated with lymph node metastasis in
cervical cancer (CC) (Shen et al., 2020). Increased lncRNA
MALAT1 expression has also been associated with advanced
tumor stage, recurrence, and reduced survival in OVC (Gordon
et al., 2019). In addition, KD of lncRNA MALAT1 expression in
anoikis-resistant OVC cells induced apoptosis by modulating
RBFOX2-mediated alternative splicing of KIF1B (pro-apoptotic
isoform) (Gordon et al., 2019). Furthermore, lncRNA
NEAT1 promotes the metastatic potential of endometrial
cancer (EndC) by sponging anti-metastatic miR-361 (Dong
et al., 2019). lncRNA VAL induces AR by directly abrogating
Trim16-dependent vimentin poly-ubiquitination and
degradation (Tian et al., 2020). LINC00958 is upregulated in
bladder tumor samples (BDC) compared with normal samples,
and KD attenuated an AR of BDC cells (Seitz et al., 2017). miR-7
regulates p65 subunit of NF-kB (known as RELA proto-oncogene,
NF-kB subunit (RELA), and KLF4 expression to control invasion,
angiogenesis, progression, and metastasis (Okuda et al., 2013; Cui
et al., 2017; Li et al., 2020b). These functions of miR-7 in breast

cancer (BC) can be diminished by the expression of lncRNA
TINCR, which is enhanced by the Sp1 transcription factor.
Silencing of lncRNA TINCR leads to a reduction in the
anchorage-independent growth, migration, invasion, cell
survival, and in vivo growth of BC cells (Liu et al., 2018)
(Table 2). Further research into the mechanisms of AR and its
association with lncRNAs may lead to the development of new
treatments for cancer.

lncRNAs promote pre-metastatic niche
formation

The concept of stem cell niche was first postulated by Schofield
(1978) as a distinctive microenvironment that modulates stem cell
activity during hematopoiesis. Different stem cell models have well-
characterized specialized cellular niches, which play an important
role in balancing stem cell activity and quiescence (Scadden, 2014).
In the stromal microenvironment of stem cells, it is a distinct local
region that combines signals reflecting tissue and organismal state
(Schofield, 1978) and modulates epithelial cell plasticity and stem
cell fate commitment during tissue regeneration and homeostasis
(Blanpain and Fuchs, 2014). In the context of tumor development,
tumor cells subvert and shape the niche to create a compatible
metastatic niche (Barcellos-Hoff et al., 2013) that supports the
growth and survival of disseminated tumor cells (DTCs) and
result in the development and progression of disease (Psaila and
Lyden, 2009; Sleeman, 2012). Metastatic niches can be formed either
on arrival of DTCs in the recipient tissue (Sleeman, 2012) or under
the regulation of secreted factors and/or exosomes released by the
primary tumor cells before the seeding of DTCs (also termed the
pre-metastatic niche) (Kaplan et al., 2006; Hoshino et al., 2015;
Peinado et al., 2017). Tumor-derived molecular components
(TDMCs), often referred to as non-vesicle factors, and
extracellular vesicles are adaptable intercellular communication
vehicles that can modulate signaling in the TME while

TABLE 2 List of lncRNAs regulating anoikis resistance in various cancers.

LncRNA Type of cancer Target/axis Ref

lncRNA HOTAIR Ovarian cancer EZH2/H3K27 Dai et al. (2021)

lncRNA HOTAIR Hepatocellular carcinoma c-Met Topel et al. (2020)

lncRNA ANRIL Glioma miR-203 Dai et al. (2018)

lncRNA APOC1P1-3 Breast cancer miR-188-3P/Bcl-2 Lu et al. (2021)

lncRNA H19 Colorectal cancer miR-29-3b Ding et al. (2018)

lncRNA FOXD2-AS1 Thyroid carcinoma miR-7-5p/TERT Liu et al. (2019c)

lncRNA MAPK8IP1P2 Thyroid cancer miR-146b-3p Liu et al. (2020b)

lncRNA NEAT1 Cervical cancer miR-124/NF-kB Shen et al. (2020)

lncRNA MALAT1 Ovarian cancer RBFOX2/KIF1B Gordon et al. (2019)

lncRNA VAL Lung adenocarcinoma Trim 16/vimentin Tian et al. (2020)

LINC00958 Bladder tumor Metadherin Seitz et al. (2017)

lncRNA TINCR Breast cancer miR-7 Liu et al. (2018)
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developing the pre-metastatic niche. TDMCs are subdivided into
non-vesicle tumor-derived secreted factors (TDSFs) and tumor-
derived secreted extracellular vehicles (EVs) which carry a variety
of molecular components, such as RNA, DNA proteins, and lipid
molecules (Liu and Cao, 2016). In recent years, ncRNAs, such as
lncRNAs and sncRNAs, have been identified as an essential part of
pre-metastatic niche formation and a new intercellular
communication mechanism (Xie et al., 2019). These ncRNAs, as
part of TDMCs, are mostly found in EVs with only a small
percentage being free (Das et al., 2019). EVs have a unique
repertoire of lncRNAs and sncRNAs, highlighting the importance
of ncRNAs in the formation of the pre-metastatic niche (Ma et al.,
2017; Pardini and Calin, 2019).

Previously, primary tumor–derived vesicles have been linked
to the development of the pre-metastatic niche (Kaiser, 2016). In
addition, exosomes secreted by primary tumor cells have been
shown to enter the bloodstream and alter the metastatic
microenvironment for invasion (Szatanek et al., 2017).
Recently, lncRNAs, for example, lincROR, DREH, MALAT,
CCAT2, HOTAIR, BCAR4, and H19, have been shown to
contribute to metastasis in vitro and in vivo (Weidle et al.,
2017). In addition to modulating the release of exosomes,
lncRNAs modify the cell physiology of distant non-tumor cells
and, at the pre-metastatic niche, allow the early survival of
disseminate tumor cells (Liu et al., 2019a). Endothelial cells
transfer and internalize lncRNA H19 in CD90+ HCC cells and
promote angiogenesis and intracellular adhesion by enhancing
the release and production of VEGF (Conigliaro et al., 2015;
Zhang et al., 2019c). In Hepatocellular cancer (HCC)/liver cancer
(LiC) cells, the integrin β1/α5/JNK/c-JUN signaling pathway
participates in higher matrix stiffness, which is induced by
LOXL2 (lysyl oxidase homolog 2). LOXL2 stimulates the
expression of CXCL12 and MMP-9, the production of fibrin,
and the recruitment of bone marrow–derived dendritic cells
(BMDCs), supporting the development of the pre-metastatic
niche (Wu et al., 2018). In pancreatic ductal adenocarcinoma
(PDAC), exosome-derived protein macrophage migration
inhibitory factor (MIF) enhances metastasis of the liver by
promoting the development of the hepatic pre-metastatic
niche. Additionally, the lncRNA SOX2OT has been found to
regulate the expression of Sox2 via competitively binding with
the miR-200 family, leading to the EMT process and stem
cell–like characteristics, which are hallmarks of cancer
metastasis (Li et al., 2018b), thereby leading to metastasis and
invasion of PDAC. Researchers from the School of Public Health
and Medicine University of Wisconsin, USA have proposed that
cancer stem-like cells (CSCs) and anaplastic TC (ATC) release
lncRNAs (HOTAIR, lincROR, MALAT1, and PVT1) transferred
by the exosome and therefore help to induct EMT, modulate host
immunity to escape immune response, and inculcate the TME to
form a metastatic niche (Hardin et al., 2018).

Targeting lncRNAs for the treatment of
metastatic tumors

Current treatments for metastasis are similar to those for
primary tumors and include immunotherapy, chemotherapy,

targeted therapy, and a combination of these (Massagué and
Obenauf, 2016). However, patients with metastatic cancer
frequently exhibit increased therapeutic resistance in multiple
carcinomas (Jolly et al., 2019), indicating that exploring new
strategies for diagnosis and therapeutics is an urgent priority. The
expression of certain lncRNAs is modified during transformation
from primary to metastatic cancer cells, and these changes can
serve as potential diagnostic biomarkers for cancer. In addition to
identifying the molecular mechanisms of lncRNAs in cancer
metastasis, considerable efforts should be acquired to
investigate the promising strategies for clinical implications.
The expression of certain lncRNAs can be detected not only
in the cells themselves but also in exosomes found in the serum.
One example is the lncRNA HOTAIR which has shown promise
as a diagnostic marker for thyroid cancer and can differentiate
benign thyroid nodules from migratory. Clinical trials are
ongoing to further explore its potential use as a diagnostic
tool for THC (NCT03469544) (Zhang et al., 2017b; Lai and
Cheng, 2018). Early detection of lncRNA expression changes
in patients can lead to personalized and precision medicine by
allowing for early treatment at a time when the disease is more
responsive to medication. Although direct targeting of lncRNAs
as a therapeutic intervention is still in its early stages, various
methods are being developed to modulate lncRNA expression,
such as transcription blocking, degradation, and gene-editing
technology. DNA binding elements can modulate lncRNA
transcription, while techniques such as ribozymes, antisense
oligonucleotides (ASOs), and siRNAs via activating an RNA-
induced silencing complex (RISC) can downregulate lncRNAs by
inducing their degradation. For instance, lncRNA MALAT1 can
be efficiently silenced by zinc finger nucleases (ZFNs)–based
genomic manipulation (Gutschner et al., 2011). Depletion of
oncogenic lncRNAs in cancer cells has shown anti-cancer
properties, such as inhibiting the proliferation and cloning of
lung cancer cells. For instance, siRNA-induced KD of the
lncRNA LL22NC03-N64E9.1 inhibited the proliferation of
lung cancer (LC) cells (Jing et al., 2018). Likewise, intra-tumor
administration of siRNA targeting lncRNA MALAT1 in a
prostate cancer (PCa) xenograft model decreased metastasis
and improved mice survival (Ren et al., 2013). Similarly,
siRNAs targeting lncRNA OIP5-AS1 reduced migration,
invasion, and proliferation of glioma U87 cells (Sun et al.,
2019). siRNA mediated KD of lncRNA PCGEM1 (PCa gene
expression marker 1) has been shown to increase G2- and
S-phase cells, inhibit colony formation, and enhance
sensitivity to baicalein in PCa LNCaP cells (Han et al., 2020).
ASOs are chemically synthesized RNA-targeting molecules that
range from 12 to 30 nucleotides in length. They bind to specific
RNA targets through Watson–Crick base pairing (Bennett, 2019)
and modulate gene expression by initiating target degradation,
blocking translation, steric hindrance, altering splicing (Arun
et al., 2018), and premature transcriptional termination (Lai
et al., 2020; Lee and Mendell, 2020). ASOs have shown
promising results as a therapeutic approach for lncRNA
targeting and have been shown to slowdown tumor growth
and reduce metastasis in mouse mammary cancer models
(Zhou et al., 2016). In the mouse mammary tumor virus
(MMTV)-PyMT cancer model, the KD of lncRNA

Frontiers in Cell and Developmental Biology frontiersin.org12

Baba et al. 10.3389/fcell.2023.1164301

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1164301


MALAT1 by ASOs results in slower tumor growth and a
reduction in metastasis (Arun et al., 2016). However,
optimizing the delivery of ASOs is a crucial issue to improve
their efficacy for targeting lncRNAs or protein-coding genes
(Yamamoto et al., 2015; Lai et al., 2020). Recently developed
miR-CLIP-seq technology is used to identify the miRNA-mRNA
(Ahadi et al., 2017) and miRNA-lncRNA interactions (Cao et al.,
2019). For instance, the interactions between miR-106a and
lncRNA H19 and their effect on the upregulation of
downstream-associated mRNAs have been studied (Imig et al.,
2015).

Another method of targeting lncRNAs is through
competitive binding using specific small molecules or
aptamers. Aptamers are short RNA or DNA oligonucleotides
that can bind to specific regions of lncRNA and block its
interactions with binding partners. Small molecule inhibitors
target the RNA binding pockets of lncRNAs, preventing the
interactions between lncRNAs and proteins (Parasramka et al.,
2016). However, the potential for off-target effects and high
costs in targeting the interaction between lncRNAs and their
targets require further research before these methods can be
used in therapeutic applications. CRISPR/Cas9 or CRISPR/
Cas13–based targeting technology is becoming increasingly
important due to recent advancements in genome editing
techniques, making it a promising alternative for lncRNA
regulation (Cox et al., 2017; Zhen and Li, 2019). In animal
models, lncRNA GMAN was successfully targeted using
CRISPR/Cas9, resulting in a significant decrease in GC
metastasis (Zhuo et al., 2019). Despite the fact that lncRNAs
are promising therapeutic targets for metastatic diseases, their
in vivo inhibition still remains a challenge because of their
quick degradation in biological fluids by nucleases, and the
difficulty of delivering them to specific target cells and the
activation of innate immunity. A variety of materials are being
researched to overcome these challenges, which include lipid
nanoparticles (Pirollo et al., 2007), polymers (Shu et al., 2014),
cell-penetrating peptides (CPPs) (Yang et al., 2015),
monoclonal antibodies (Yao et al., 2012), and small-
molecule inhibitors (Thomas et al., 2009). However, further
research is required before these findings can be translated into
clinical applications.

Conclusion and future perspective

Metastasis is the leading cause of cancer-related deaths and a
major barrier to successful cancer treatment. The complex process of
metastasis is influenced by interrelated signaling pathways caused by
genetic heterogeneity or epigenetic modification changes and the
metastatic microenvironment. lncRNAs have gained attention in
recent years due to their important role in promoting and
maintaining tumor initiation and progression (Schmitt and
Chang, 2016). This article focuses on the role of lncRNAs in the
regulation of key processes in metastasis, which includes metabolic
reprogramming (glucose metabolism and OXPHOS), EMT,
metastatic microenvironment, development of pre-metastatic
niches, drug resistance, and AR.

Due to their unique and diverse functions, lncRNAs have
been identified as potential targets for cancer therapy. For
example, lncRNAs have been found to be involved in
regulating gene expression and chromatin structure, both of
which are critical processes in cancer progression and
metastasis. However, the majority of research on lncRNAs and
metastasis to date has been concentrated on metastasis specific to
organs. However, many patients suffer from metastasis in
multiple organs, making it difficult to understand the
molecular mechanisms mediated by lncRNAs. Because of this
intricacy, it is difficult to understand scientific molecular
mechanisms mediated by lncRNAs, and therefore it has been
challenging to generalize the functions of lncRNAs in metastasis
across different types of cancers due to the cell type–specific
nature of most lncRNAs. Generalizing the functions of lncRNAs
in metastasis across different types of cancers has also been
elusive, and perhaps this should be expected based on the cell
type–specific function of most lncRNAs. The contribution of
lncRNAs to the steps in the invasion–metastasis cascade that
includes intravasation, extravasation, distant colonization, and
formation of micrometastases is not well established. Therefore,
more patient-matched molecular profile data from granular
stages of metastasis are necessary to overcome these
limitations (for example, CTCs, micrometastases, primary tumor,
and well-defined metastases).

lncRNAs appear to be an underappreciated cache of novel
therapeutic targets. They play a variety of roles in the
progression of cancer and ensure new opportunities for
undermining metastases in the clinical setting. Thus, future
research may focus on identifying lncRNA mediators of
metastasis as potential targeted therapies common in various
types of tumors. The development of lncRNA-based
therapeutics requires the identification and validation of
specific lncRNA targets involved in metastasis. To achieve
this, researchers have to develop reliable technologies that
are capable of targeting lncRNAs in vivo (Bassett et al., 2014;
Liu and Lim, 2018), such as antisense oligonucleotides (Wurster
and Ludolph, 2018) that can specifically bind to lncRNAs and
modulate their expression. The availability of these technologies
will significantly facilitate the development of lncRNA-based
therapeutics for the treatment of metastatic cancer. However, there
are still many challenges in lncRNA research, such as the lack of
conservation of lncRNAs across species, which can hinder the study
of their function in animal models, complexity and heterogeneity in
function, and tissue specificity. Furthermore, there is a requirement for
more sensitive and specific technologies to effectively target lncRNAs in
vivo. Despite these challenges, the potential of lncRNAs as therapeutic
targets in cancer is evident, and future research in this area has the
potential to impact the successful treatment of metastatic cancer.
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Glossary

ATP adenosine triphosphate

ASOs antisense oligonucleotides

AMPK adenosine monophosphate–activated protein kinase

BNIP3 BCL2/adenovirus E1B 19 kDa interacting protein 3

ceRNA competing endogenous RNA

CSC cancer stem-like cells

DTCs disseminated tumor cells

EVs extracellular vesicles

EMT epithelial–mesenchymal transition

EGFR epidermal growth factor receptor

GDH glutamate dehydrogenase

GBC gallbladder cancer

GLUT glucose transporter

HKs hexokinases

HIF hypoxia-inducible factor

hnRNPL heterogeneous nuclear ribonucleoprotein L

LncRNAs long non-coding RNAs

LDHA lactate dehydrogenase A

LKB1 tumor suppressor liver kinase B1

mTOR mammalian target of rapamycin

MMP matrix metalloproteinase

MIF macrophage migration inhibitory factor

ncRNAs non-coding RNAs

NANOG non-processed pseudogene

NF-κB nuclear factor-kappa B

piRNAs piwi-interacting RNAs

PKM2 pyruvate kinase M2

PCGs protein-coding genes

PFKFB2 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2

PI3K phosphoinositide 3-kinase

PAX8 paired-box gene 8

PDAC pancreatic ductal adenocarcinoma

rRNA ribosomal RNA

ROS reactive oxygen species

siRNAs small interfering RNAs

SOX SRY box transcription factor

STAT3 signal transducer and activator of transcription 3

tRNA transfer RNA

TME tumor microenvironment

TGIF2 TGF (transforming growth factor) β–induced factor homeobox 2

TNF-α tumor necrosis factor-α

TDMCs tumor-derived molecular components

TERT telomerase reverse transcriptase

TGF-β tumor growth factor beta

VEGF vascular endothelial growth factor

WBC white blood cells
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