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Chromatin immunoprecipitation followed by sequencing (ChIP-seq) has
revolutionized the studies of epigenomes and the massive increase in ChIP-
seq datasets calls for robust and user-friendly computational tools for
quantitative ChIP-seq. Quantitative ChIP-seq comparisons have been
challenging due to noisiness and variations inherent to ChIP-seq and
epigenomes. By employing innovative statistical approaches specially catered
to ChIP-seq data distribution and sophisticated simulations along with
extensive benchmarking studies, we developed and validated CSSQ as a
nimble statistical analysis pipeline capable of differential binding analysis across
ChIP-seq datasets with high confidence and sensitivity and low false discovery rate
with any defined regions. CSSQ models ChIP-seq data as a finite mixture of
Gaussians faithfully that reflects ChIP-seq data distribution. By a combination of
Anscombe transformation, k-means clustering, estimated maximum
normalization, CSSQ minimizes noise and bias from experimental variations.
Further, CSSQ utilizes a non-parametric approach and incorporates
comparisons under the null hypothesis by unaudited column permutation to
perform robust statistical tests to account for fewer replicates of ChIP-seq
datasets. In sum, we present CSSQ as a powerful statistical computational
pipeline tailored for ChIP-seq data quantitation and a timely addition to the
tool kits of differential binding analysis to decipher epigenomes.
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1 Introduction

Epigenetics causes heritable phenotypes without alterations in the DNA sequence.
Histone modifications and chromatin binding proteins are among the most prevalent
epigenetic modifications that define epigenomes (Allis and Jenuwein, 2016). ChIP-seq,
chromatin immunoprecipitation followed by sequencing, has revolutionized the study of
protein-DNA interaction in vivo, enabling genome-wide profiling of histone modifications
and the localization of chromatin binding proteins (Johnson et al., 2007; Park, 2009).
Massive amounts of ChIP-seq data have been generated, illuminating versatile epigenomes
that shed light on the mechanisms of epigenetic gene regulation (Mundade et al., 2014;
Hollbacher et al., 2020). However, the complexity and variability of ChIP-seq experiments
have made quantitative comparisons among ChIP-seq datasets challenging.

In ChIP-seq assay, DNA-protein complexes are immunoprecipitated with antibodies
specific for proteins of interest, followed by deep sequencing of the immunoprecipitated
DNA. Sequencing reads are aligned to the reference genome. Individual ChIP-seq data has
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been primarily used to identify DNA regions enriched for the
occupancy of chromatin binding proteins or histone
modifications within the genome through finding “peaks,”
i.e., DNA regions enriched with sequence reads by
immunoprecipitation. A number of “peak finding” bioinformatics
tools, such as MACS (Zhang et al., 2008) and SICER (Zang et al.,
2009), have been developed and benchmarked (Jeon et al., 2020).
While identification of peak regions has dramatically increased our
understanding of epigenomes, it remains important to capture the
rich quantitative metrics of signal intensities that are critical for
tracking quantitative and comparative changes in epigenomes
among different samples, and the demand for bioinformatics
tools that faithfully capture the full expressivity of ChIP-seq data
are increasingly (Nakato and Sakata, 2021; Zhao and Chen, 2021).
Thus, to harness the full value of ChIP-seq data, it is imperative to
develop statistically robust pipelines to expand the tool kits for
identification and quantification of differential binding (DB) in
epigenomes.

Current pipelines for DB detection from ChIP-seq datasets can
be broadly classified into two groups (Steinhauser et al., 2016; Tu
and Shao, 2017; Eder and Grebien, 2022): one group, as exampled in
DiffBind (Ross-Innes et al., 2012), ChIPComp (Chen et al., 2015)
and DBChIP (Liang and Keles, 2012), utilizes peak-calling
algorithms to define peak regions followed by statistical tests to
identifyDB regions among the peak regions; the other group, such as
diffReps (Shen et al., 2013), PePr (Zhang et al., 2014), and CSAW
(Lun and Smyth, 2016), performs genome-wide analysis to identify
all possible DB regions. DiffBind and CSAW have been shown to
have top performance in their respective categories (Stark and
Brown, 2011; Ross-Innes et al., 2012; Lun and Smyth, 2016; Eder
and Grebien, 2022). Both DiffBind and CSAW adopt negative
binomial models that have been successfully used in popular
statistical packages, such as DESeq2 (Love et al., 2014) and edgeR
(Robinson et al., 2010), for differential gene expression analysis of
RNAseq data. However, due to the overall lower signal/noise ratios
of ChIP-seq as compared with RNAseq, compounded by the
significant variations of signal intensities and coverage among
ChIP-seq datasets by using different protocols, antibodies, or
experimental efficiency, extending the statistical methodology
developed for RNAseq analysis to ChIP-seq poses challenges. In
addition, it is critical for the interpretation of ChIP-seq results to
include proper parallel control experiments, such as sequencing of
input or non-specific IgG ChIP-seq, for which data distribution does
not optimally fit negative binomial model. Further, to maximize the
value of ChIP-seq, it is important to detect and quantify differential
binding for any designated regions, regardless of peak or non-peak
regions. Thus, to develop statistical tools that allow robust
comparisons of signal intensities among different ChIP-seq
datasets, we must go back to the data and rebuild our modeling
choices from scratch.

Here, we have developed a statistically robust pipeline, ChIP-seq
Signal Quantifier (CSSQ), uniquely tailored for quantitative analysis
of ChIP-seq datasets, capable of comparisons across different
experiments for any designated genomic regions. In this pipeline,
we adopt a Gaussian mixture model for transformed data instead of
directly modeling raw count or discrete data. This method is robust
because we first transform count data to continuous data whose
distribution can then be approximated arbitrarily well by a finite

mixture of Gaussian distributions (McLachlan and Peel, 2000).
Specifically, we first process ChIP-seq data using the variance-
stabilizing Anscombe transformation (Anscombe, 1948), followed
by fitting a Gaussian mixture model through the use of k-means
clustering, and finally scaling the dataset by estimated maximum
value normalization. This approach effectively mitigates background
noise and biases associated with individual experimental differences.
Such pre-processed ChIP-seq data is implemented for statistical
analysis using a non-parametric method suitable for small sample
sizes to detect and quantify DBs. Benchmarking studies by extensive
computational simulations and experimentally validated real ChIP-
seq datasets demonstrate the robustness and sensitivity of CSSQ in
detection and quantification of DBs. In addition to its distinctive
features in handling varied signal/noise ratios prevalent in ChIP-seq
datasets, CSSQ allows incorporation of input/IgG control datasets
and offers superior performance and statistical power with as little as
two replicates per group.

2 Materials and methods

2.1 ChIP-seq datasets, RNA-seq datasets,
sequence reads alignment and data
preprocessing

Genome aligned BAM files or raw sequence reads FASTQ files of
ChIP-seq and RNA-seq datasets (Supplementary Table S1) were
downloaded from the source and processed (Consortium, 2011;
Shen et al., 2012; Geeven et al., 2015). Raw sequencing reads of
FASTQ files were quality checked using FastQC (Andrews, 2022),
trimmed using TrimGalore (Martin, 2011; Krueger, 2021).

Trimmed sequence reads from ChIP-seq datasets were aligned
to human or mouse genomes (as listed in Supplementary Table S1)
using bowtie v1.1.2 (Langmead et al., 2009) to obtain BAM files as
described previously (Cao et al., 2013). Aligned BAM files were
sorted using SAMtools (Li et al., 2009) and reads within predefined
regions were counted using Bedtools (Quinlan and Hall, 2010). For
ChIP-seq datasets, both Chromatin Immunoprecipitated-seq data
(IP) and its control chromatin Input-seq data (IN) were counted.
The sum of sequence depth normalized counts of each pre-defined
region was obtained as their corresponding IP and IN signals.
Background subtracted ChIP-seq signals, as defined as (IP-IN),
were calculated.

Trimmed sequence reads from RNA-seq were aligned to genomes
using STARaligner (Dobin et al., 2013), quantified usingHTSeq (Anders
et al., 2015), and analyzed for differential gene expression using the
DESeq2 R package (Love et al., 2014). The Ensembl v75 annotation for
human genome and RefSeq annotation for mouse genome were used to
obtain gene locations and promoter regions.

2.2 Anscombe transformation, k-means
clustering and maximum value
normalization

For each pre-defined region, Anscombe transformation, defined
by XA � 2

�������
X + 3/8

√
, where X refers to the pre-processed (IP-IN)

value, was performed to obtain the respective (IP-IN)A values.
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k-means clustering was performed using the function “kmeans ()” in
the free statistical software R, with the tuning parameters of k centers
and nstart = 20, to group (IP-IN)A data points into different k-means
clusters. With selection of k = 4 clusters, the data points are
partitioned into 4 clusters of low (L), medium (M), high (H) and
super (S) signal intensities, respectively. An estimated maximum
valueU, defined asUs � �xAs + 3 Ss, where �xA

s and s2s are the mean and
the variance of the cluster with the largest mean (cluster S), was used
for maximum value normalization to obtain (IP-IN)* values by
formula (IP-IN)* = (IP-IN)A/U.

2.3 Simulated datasets and DB
induction (DBI)

The simulated datasets were generated based on
H3K4me3 ChIP-seq datasets from H1 hESCs (GSM733657 and
GSM733770 of GSE29611 series). The simulated datasets were
generated as follows. The ChIP-seq signals of a real dataset were
processed to obtain (IP-IN)* signals and served as the base dataset.
For each simulation, four statistically similarly simulated datasets
were created to have the same data distribution as the base dataset to
mimic the null hypothesis of no differences between the datasets,
named as Sim1#-Sim4#. Specially, the base (IP-IN)* dataset was split
into two normal distributions with one covering the “L” cluster and
the other covering the “M,” “H,” and “S” clusters. The mean and
variance of each of these two normal distributions of the base dataset
were used to generate simulated (IP-IN)#sim datasets from randomly
created values that fit into the same data distribution using truncated
normal distribution method. The number of data points, the
minimum and maximum values of each cluster were maintained
for each corresponding cluster of all initial simulated datasets
(Sim1#-Sim4#). In addition, randomly picked simulated data
points in “L” cluster were converted to 0 to ensure the level of
zero inflation maintained as the base dataset from real datasets.

For DB induction (DBI), data points of randomly selected
regions from the 3rd and 4th initial simulated datasets were
induced to change values with varying or fixed (2–6) times the
SD of the corresponding cluster of the selected regions. In addition,
(IP-IN)*sim values were constrained between 0 and 1 to avoid outliers.
Each simulated dataset was subsequently multiplied by a Usim, a
value randomly sampled from a Kernel Density Estimate fitted from
the estimated maximum values (U) of 20 real ChIP-seq datasets, to
create corresponding (IP-IN)Asim datasets (Sim1A- Sim4A), followed
by reversed Anscombe transformation to derive corresponding
simulated (IP-IN)sim datasets (Sim1-Sim4). For each simulation
condition, a total of 300 simulation runs were performed on
300 independently generated sets of simulation datasets with
1 run/simulation dataset (of Sim1-4 datasets).

2.4 Differential binding analysis

DB analysis using DiffBind, CSAW, and CSSQ were performed
as follows.

DiffBind v2.8.0 (Ross-Innes et al., 2012): Aligned bam files of
ChIP-seq datasets and the coordinates of the regions of interest in
bed format were fed to DiffBind for analysis. “dba.count,”

“dba.contrast” and “dba.analyze” functions were used to perform
differential binding analysis. For these functions, the “minMembers”
parameter was set to 2 to indicate the number of replicates, and the
method was set to use DESeq2 available within DiffBind. An FDR
cutoff of 0.05 was used to identify significant DB regions. For
simulated datasets, DBA objects were created from (IP-IN)sim

values, followed by DB analysis.
CSAW v1.14.0 (Lun and Smyth, 2014; Lun and Smyth, 2016): Aligned

bam files of ChIP-seq datasets and the coordinates of the regions of interest
in bed format were fed into CSAW for analysis. The “regionCount,”
“windowCounts,” “filterWindowsGlobal,” and “normOffsets” functions
within CSAW were used to quantify and normalize signal over regions
of interest. To fit the quasi-likelihood model and perform statistical tests,
CSAW uses the “asDGEList,” “estimateDisp,” “glmQLFit,” “glmQLFTest,”
“mergeWindows,” and “combineTests” functions. An FDR of 0.05 was
used to identify significant DB regions. For simulated datasets,
“RangedSummarizedExperiment” objects were created from (IP-IN)sim

values, followed by DB analysis.
CSSQ: Aligned bam files were used to quantify the number of

reads that overlap the regions of interest using Bedtools (Quinlan
and Hall, 2010). Depth normalized IP-IN signals were subsequently
derived by subtraction of normalized read counts of ChIP-seq
sample by that of its input-seq sample for each of the predefined
regions. All negative IP-IN values were converted to 0. This pre-
processed IP-IN data points were fed to CSSQ for Anscombe
transformation, normalization, k-means clustering and DB
analysis using a non-parametric statistical test. Regions that had
IP-IN values above zero in one or more datasets were kept for
subsequent analysis. An FDR cutoff of 0.05 was used to filter for
significant DBs.

2.5 Hierarchical clustering, metagene
analysis and signal distribution plots

Hierarchical clustering of regions was performed using MeV
(Howe et al., 2011) and Metagene analyses were performed using
GenPlay genome analyzer and browser (Lajugie and Bouhassira,
2011; Lajugie et al., 2015). The signal intensity of 100bp sliding
windows covering the entire defined region were plotted. Aligned
bam files were used to quantify the number of reads in each window
for each sequencing dataset. The counts for each dataset were
normalized to 10 million mappable reads. IP-IN signals were
subsequently derived by subtraction of normalized read counts of
ChIP-seq (IP) dataset by that of its corresponding input-seq (IN)
dataset for each window.

3 Results

3.1 The CSSQ analysis pipeline

3.1.1 ChIP-seq data pre-processing,
transformation, k-means clustering and
normalization

CSSQ integrates data pre-processing, transformation, and
parameter estimation in a Gaussian mixture model (clustering,
normalization) and statistical test, enabling vigorous DB
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detection and quantification (Figure 1A). To develop a statistically
robust pipeline, we first evaluated the data distribution of
representative ChIP-seq signals (Figure 1B, Supplementary Figure
S1). For sample ChIP-seq datasets of H3K4me3, an active histone
mark enriched at active gene promoters (Barski et al., 2007;
Heintzman et al., 2007; Jambhekar et al., 2019), the sum of
sequence depth normalized counts covering a 2-kb promoter
region centered around transcription start site (TSS) of each gene
was calculated for H3K4me3 ChIP-seq data (IP) and its control
chromatin Input-seq data (IN) to obtain their corresponding IP and
IN signals. Negative IP-IN values that reflected regions with signals
below background noise were converted to 0 to enhance data
visualization and to facilitate downstream statistical
transformations. The overall data distribution of IP-IN exhibited
similar patterns to IP, with high concentration of values around
0 followed by a wide range of data points with mixed multi-modal
distribution patterns (Figure 1B, Supplementary Figure S1).

To have a better model on the distribution of complex data for
optimal statistical pipeline development, we fit a mixture model
instead of a single distribution. To be more specific, we transformed
the raw, discrete ChIP-seq count data to continuous values so that
statistical analysis using Gaussian mixture distributions is feasible.
Among the various widely used transformation approaches for
transformation of non-Gaussian to Gaussian data or Gaussian
mixture models, based on our extensive numerical experience, we
chose the Anscombe transformation for its variance stabilizing
properties and suitability for both small and large values
(Anscombe, 1948). The Anscombe transformation is defined by
XA � 2

�������
X + 3/8

√
where the constant 3/8 is introduced to stabilize

the variance of the transformed data XA; this constant is negligible if
the X itself is large. Intuitively, the Anscombe transformation of (IP-
IN) signals into (IP-IN)A values effectively increased the data
distribution differences, so that the resulting continuous
distribution data can be approximated arbitrarily well by a finite
mixture of Gaussian distributions (Figure 1B).

Next, we estimated the parameters of the Gaussian mixture
model through k-means clustering (McLachlan and Peel, 2000) with
the goal of normalizing disparate datasets to an equal scale via an
estimated maximum normalization approach. This is crucial for DB
identification and quantification across datasets because individual
ChIP-seq datasets often differ substantially in their data distribution
and range of signal intensities, even for replicate datasets from the
same biological sample (Figure 1B, Figure 2, Supplementary Figure
S1). To robustly compute the estimated maximum value (designated
as “U” factor), we first utilized the k-means clustering algorithm to
partition data points into k = 4 clusters representing categories of
low (L), medium (M), high (H) and super (S) signal intensities
(Figure 1B, Figure 2). Data points within each k cluster haveminimal
in-cluster variances and thus are considered as within the same
Gaussian distribution. The mean and variance of each cluster were
calculated to estimate the parameters of the corresponding
components in the Gaussian mixture model. The cluster with the
largest mean (S cluster) was used to derive the value of U, defined as
U � �xA

S + 3sS, where �xA
S and ss are mean and standard deviation

(SD) of the S cluster. Calculated U values from real ChIP-seq
datasets indicate a wide range and variations among different
datasets (Supplementary Figure S2). All (IP-IN)A values were
subsequently normalized to obtain corresponding (IP-IN)* values,

FIGURE 1
Overview of CSSQ pipeline. (A) Flow chart of CSSQ pipeline. (B) Representative histograms of H3K4me3 ChIP-seq datasets throughout CSSQ
pipeline. Zoomed out histograms are shown as insets. (IP-IN)A: Anscombe transformed data. (IP-IN)*: CSSQ normalized values. L, M, H, S clusters are
derived from k-means clustering and color coded as pink, green, blue, and purple, respectively. (C) Representative matrix table of datasets for DB
detection using CSSQ.
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defined as (IP-IN)* =(IP-IN)A/U for each data point. This step
effectively mitigates the disparity of signal levels between datasets
and minimizes experimental bias between replicates (Figure 2, and
Supplementary Figure S3). We should highlight that k = 4 is optimal
for balancing the goodness-of-fit and model complexity of all
datasets we tested.

3.1.2 CSSQ DB analysis
To detect and quantify DBs, CSSQ uses a statistical test based on

the Welch’s two-sample t-statistic for data points of each row/
region. The difference between the comparisons was calculated as
follows:

T obs( )
i � �Xij

* − �Xic
*������

σ2ij
nj
+ σ2ic

nc

√
where j and c are the two samples being compared and �Xij

* and
�Xic
* are the means of the i-th row for sample J and C, respectively

(Figure 1C). When nj and nc, which represent the number of
replicates in each sample, are moderately large, one may use the
sample variances to estimate the variances σ2ic and σ2ij for the i-th
region in the two samples. However, most ChIP-seq datasets have
few replicates, e.g., nc � 2, nj � 2, and such small numbers prevent
making good estimates of σ2ic and σ2ij. To circumvent this issue, we

used a novel approach by taking advantage of information from
column-wise k-means clustering of each dataset and estimating the
i-th rows σ2ic and σ2ij using the average variances of their
corresponding clusters from their respective dataset. For instance, for
a given i-th row, say we have an observationXij1 that belongs to the “M”

cluster of the J1 column/dataset, and the observationXij2 that belongs to
the “H” cluster of the J2 column/dataset (Figure 1C). We estimate σ2ij �
(s2mj1 + S2hj2)/2, where S2mj1 and S2hj2 denote the variances ofM cluster of
J1 column/dataset and H cluster of J2 column/dataset, respectively.

Given the q observed test statistics T(obs)
i ’s where i = 1,2. . .q and

q = number of regions, it is intuitive to declare DBs if the
corresponding p-value is statistically significant. To obtain the
p-values, CSSQ uses a non-parametric approach which is suitable
for analyzing datasets with fewer replicates to identifyDB regions with
high confidence.We adopt the random combinationmethod to derive
the null distributions of test statistics T(obs)

i ’s and to find the
corresponding p-values (Figure 1C). The main idea is to re-group
among the total number of n datasets (n = nj + nc) by random
combination function into comparisons of two samples (C or J), and
subsequently calculate another set of r test statistics after re-grouping.
The rationale of regrouping of datasets by combination to generate
comparisons under the null (Figure 1C) is that the t statistics of DBs
between J and C should outweigh that from the replicates of the same
sample, and thus randomly switching replicates from different samples

FIGURE 2
Characterization of CSSQ clusters. (A) Cluster allocations of datapoints of two representative datasets of H3K4me3 ChIP-seq of hESCs. (B)
Metagene analysis of H3K4me3 ChIP-seq signals centered around transcription start sites (TSS). (C) Bar charts of mean ChIP-seq signal values pre- (left)
and post- (right) CSSQ normalization. Error bars: standard deviation.
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should yield the null distributions of the t statistics.We repeat this process
z times, where z refers to the number of comparisons under the null
hypothesis. Here we want to emphasize that we work on the unaudited
column permutation, because the t statistics are not affected by the
sequence of samples (e.g., J vs. C or C vs. J) or the sequences of replicates
of the sample (e.g., J1, J2 or J2, J1 in the matrix table). Specifically, we
calculate z to be half the number of different dataset combinations, which
is equal to the number of all possible arrangements of datasets among J
and C, keeping nj and nc unchanged but excluding two original
configurations (J vs. C and C vs. J). Thus

z � C n, nj( ) − 2

2
� C n, nj( )

2
− 1 �

n!
nj ! p nc !

2
− 1

For example, of representative datasets shown in Figure 1C,
whereas nc = 2, nj = 2, n = nc + nj = 4, z will be 2 as calculated:
z � (C(4, 2) − 1)/2 � (4!/(2 p 2! p 2!)) − 1 � 2. These correspond
to two comparisons under the hypothetical null (Figure 1C). For
calculation of each region from a comparison under the null
hypothesis, the new test statistics are denoted by T(k)

l ’s for
l � 1, .., q, and k = 1, ... , z. The new q p z test statistics is used
to approximate the null distribution.

The p-value for each row/region is subsequently defined using
the following formula:

pi �
∑z

k�1∑q
l�1f T k( )

l , T obs( )
i( )

q p z

f T k( )
l , T obs( )

i( ) � 1 if T k( )
l

∣∣∣∣ ∣∣∣∣> T obs( )
i

∣∣∣∣ ∣∣∣∣
0 if T k( )

l

∣∣∣∣ ∣∣∣∣≤ T obs( )
i

∣∣∣∣ ∣∣∣∣{
Next, we applied the Benjamini–Hochberg correction to pi

(Benjamini and Hochberg, 1995) to compute adjusted p-values for
the i-th row (pi-adj) to select statistically significant DB regions
(Figure 1). Finally, a fold-change (FC) is calculated for DBs by using
the average of the different groups following the equation below.

FC � ⎧⎨⎩ IP − IN( )*c/ IP − IN( )*j if IP − IN( )*c ≥ IP − IN( )*j
−1 p IP − IN( )*j/ IP − IN( )*c if IP − IN( )*c < IP − IN( )*j

3.2 CSSQ performs robust statistical analysis
to identify and quantify DBs

3.2.1 Benchmarking CSSQ performance by
computational simulations

Due to the absence of a gold standard for quantitative analysis of
differential binding, we employed computational simulations to test
CSSQ performance. Simulation studies enable induction of true positive
(TP) DBs with varying magnitude and scope, allowing comparisons of
CSSQ with parallel pipelines, CSAW and DiffBind, for benchmarking
performance. We devised a scheme to create simulated datasets that
resemble real datasets with true DB induction (DBI) (Figure 3,
Supplementary Figure S4, Methods). For each simulated experiment,
an q p n matrix where q is the number of regions and n is the total
number of datasets (n = 4 represented in Figure 1C) was generated,
including two hypothetical replicates of the two samples (designated as
C, J) for comparisons.

To generate each simulated dataset of Sim1-4, a base (IP-IN)*
dataset derived from a real dataset was partitioned into two normal
distributions from which parameters were extracted to re-build a
simulated base dataset of Sim1-4# with randomized numbers. DBs
were induced in Sim3-4# on randomly selected data points by
changing values with varying or fixed (2–6) times the standard
deviation (SD) of the corresponding cluster of the selected regions.
The obtained 4 datasets, named as Sim1-4*, were then each amplified
by a Usim factor randomly sampled from the Kernel Density
Estimate (KDE) curve fitted and based on U factors calculated
from real ChIP-seq datasets (Supplementary Figure S2). The
resulting datasets, designated as Sim1-4A, were reverse Anscombe
transformed to produce corresponding Sim1-4 datasets (Figure 3).
Using this approach, we produced simulated datasets with data
distributionmimicking real datasets (Supplementary Figures S1, S4).

We next scanned the performance of CSSQ, CSAW and
DiffBind using Sensitivity (defined as true DBs detected/induced
DBs), False Discovery Rate (FDR) (defined as falseDBs detected/total
DBs detected), and the receiver operating characteristic (ROC)
curves as metrics. We utilized two base datasets, hESC-1 and
hESC-2 H3K4me3 ChIP-seq datasets, to create two series of
simulation datasets and performed simulation runs in parallel to
gauge the robustness of each pipeline with datasets of different data
distribution patterns (Supplementary Table S1, Supplementary
Figure S1A). A total of 7,800 simulations were performed to test
the effects of varying the percentages of the data points asDBI and of
varying the magnitudes of changes of DBI (Figure 4, Methods).
Among the three pipelines, CSSQ displayed the highest sensitivity in
DB detection in all simulation conditions of both SimhESC-1 and
SimhESC-2 series (Figure 4). CSSQ and CSAW had consistently low
FDR, and CSSQ also exhibited superior performance in ROC curves
with Area Under the Curve (AUC) higher than 0.95 in all
simulations, consistently ranked the highest among three tools in
all scenarios, indicating that CSSQ outperforms CSAW and
DiffBind in differentiating true (induced) and false (non-induced)
DBs (Figure 4, Supplementary Figure S5).

On our benchmarks, CSSQ also outperformed CSAW and
DiffBind by in depth analysis of detected DBs against induced
DBs (TP). We scrutinized the DBs detected by the three pipelines
from two representative sets of 4 simulated datasets, each of simhESC-1

and simhESC-2 (Figure 5, Supplementary Figure S6). CSSQ DBs had
the closest clustering pattern as that of the true DBs, and CSSQ
consistently detected the highest number and percentage of trueDBs
with very low % of false positive calls (Figure 5A, 5B, Supplementary
Figure S6). In the simhESC-1 sample analysis, 1,420 DBs were induced
with 81% being up DBs. CSSQ detected 1,035 of TP DBs, whereas
CSAW and DiffBind only detected 408 and 329 TP DBs, supporting
the superior sensitivity of CSSQ in DB detection (Figure 5B).
Further, CSSQ detected 82% of DBs upregulated, closely
mimicking DBI; whereas CSAW and DiffBind had fewer, 58%
and 32%, of DBs as upregulated (Figure 5). DB partition into
clusters indicated that CSSQ DBs had cluster distribution
closely matching DBI while CSAW and DiffBind DBs
deviated significantly from TP DBs (Figure 5). Pairwise
comparisons found the majority of CSAW and DiffBind DBs
also detected by CSSQ, having 399 and 291 common DBs in
CSSQ vs CSAW and CSSQ vs DiffBind respectively. On the
other hand, a majority of CSSQ DBs were unique, with 706 and
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FIGURE 3
The scheme for generating simulated datasets.

FIGURE 4
DB detection and quantitation on simulated datasets using CSSQ and parallel methods. Sensitivity, FDR, ROC curves and AUC values ofDB detection
are shown. Each spot averaged results from 300 simulation analyses with each simulation generated a set of four datasets based on real H3K4me3 ChIP-
seq datasets of hESC-1 or hESC-2. DBs were induced by either alteration of variable (2–6)* SD on randomly selected data points on indicated % of data
points or with fixed multiplier of SD on 2.5% data points of the data points. ROC curves and the values of Area Under the Curve (AUC) for DB
detection of induced DBs by addition or reduction of values using variable SD method on randomly selected 2.5%, 5%, 10% and 20% of datapoints are
shown. IDB: induced DBs. Error bars: SD.
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894 CSSQ unique DBs identified from CSSQ vs CSAW and
CSSQ vs. DiffBind, respectively. CSSQ unique DBs exhibited
average “absolute fold changes” (|FC|) of 4.7 and 5.2, whereas
unique DBs from CSAW (9 DBs) and DiffBind (123 DBs) only
had average |FC| of 1.8 and 1.5 (Figure 5C). Similar trends were
present in DBs detected from simhESC-2 sample datasets using
the three pipelines, suggesting an overall robustness of CSSQ in
DB analysis (Supplementary Figure S6).

3.2.2 Analysis of real ChIP-seq datasets

We next tested CSSQ performance on real ChIP-seq datasets of
H3K4me3 and H3K27me3, two characteristic histone marks with
typical sharp and broad peaks, respectively (Benayoun et al., 2014;
Cai et al., 2021). Toward this end, we analyzed four well-

characterized cell lines, including two human cell lines of
different cell types, the H1 hESC cell line and the K562 myeloid
leukemia cell line, as well as two highly similar mouse ESC cell lines,
the wild-type (WT) and H1c/H1d/H1e triple knockout (TKO) ESCs
(Fan et al., 2005; Consortium, 2011; Geeven et al., 2015).
H3K4me3 signals were analyzed for gene promoter regions
flanking TSS, whereas H3K27me3 signals were compared for
H3K27me3-rich regions [designated as “MRRs” or “super
silencers” (Cai et al., 2021)]. The signals of H3K4me3 at gene
promoters positively correlate with gene expression levels, thus
transcriptome profiles of differentially expressed genes (DEGs)
were included as measurement controls for DB detection of
H3K4me3 at promoters. For H3K27me3 analysis, DB detection
was performed for K562 MRRs, including “all K562 MRRs,”
“K562 only MRRs” (K562 MRRs excluding overlapping hESC
MRRs) and “K562-hESC overlapping MRRs”.

FIGURE 5
DB analysis on representative simulated simhESC-1 datasets. 2.5% of data points were induced asDBs. Randomly sampledUsim factors from KDEwere
59.2 (J1), 56.0 (J2), 53.0 (C1) and 56.0 (C2). (A) hierarchical clustering ofDBs. (B)DB distributions. TP: True Positive; FP: False Positive. (C)DB comparisons
by CSSQ vs. CSAW and CSSQ vs. DiffBind.
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CSSQ identified 9,423 and 447 H3K4me3 DBs with in K562/
hESC and TKO/WT comparisons. Such dramatic differences in the
number of DBs detected in K562/hESC and TKO/WT comparisons
mimicking the differences of DEGs in corresponding transcriptome
analyses (Figure 6). hESCs and K562 cells exhibited distinctively
gene expression profiles with 11,197 DEGs, whereas WT and
H1 TKO ESCs had minimal gene expression changes, with only
27 DEGs of 2-fold changes from RNAseq analysis (Figure 6),
consistent with previous findings (Fan et al., 2005; Geeven et al.,
2015; Pan and Fan, 2016). CSSQ identified DBs were also in similar
up/down trend to DEGs for both K562/hESC and TKO/WT
comparisons, with upregulated DBs accounting for a minority,
22% in K562/hESC, and a majority, 82% in TKO/WT
comparisons (Figure 6). CSAW detected comparable numbers of
Up/Down DBs for K562/hESC, and DiffBind found 2,262 DBs for
TKO/WT with only <3% being upregulated, in striking contrast to
the characteristic profiles of TKO/WT DEGs of limited number and
a majority (67%) as upregulated (Figure 6).

Metagene profiling of IP-IN signals of H3K4me3 CSSQ DBs
partitioned in clusters revealed a clear difference in the signal levels
of increasing signal intensity in L, M, H, and S clusters across regions
flanking TSS (Supplementary Figure S7). CSSQ DBs in clusters also
followed the trend of up/down proportion of DEGs and exhibited
pronounced signal differences in normalized (IP-IN)* values
(Figure 6, Figure 7, Supplementary Figure S8). The average |FC|
for CSSQ H3K4me3 DBs were 6.2 in K562/hESC and 2.4 in TKO/
WT (Supplementary Figure S9). The higher average |FC| in K562/

hESC DBs than that of TKO/WT is also observed in up/
downregulated DB groups and in each cluster, consistent with
expected trend from DEG profiling (Figure 6, Supplementary
Figure S9). In comparison, CSAW and DiffBind DBs had lower |
FC| values, at 1.8 and 1.1, in TKO/WT, respectively (data not
shown).

CSSQ performance on DB detection and quantification of broad
peaks such as H3K27me3 was also robust. For K562/hESC analysis,
among 41,948 “all K562 MRRs” and 35,023 “K562 only MRRs”,
CSSQ identified 17,552 and 16,554 DBs, respectively, and all (100%)
of the CSSQ DBs were upregulated (Up DBs) (Figure 6B,
Supplementary Figure S8), validating these regions being
K562 MRRs as reported (Cai et al., 2021). The CSSQ
H3K27me3 DBs were mostly concentrated in the “L” cluster
(Supplementary Figure S8). DB Profiling showed a clear
difference in the normalized (IP-IN)* signal levels of CSSQ DBs
and the average |FC| for DBs identified in each cluster (Figure 7,
Supplementary Figure S9). In contrast, CSAW and DiffBind found
fewer DBs among “all K562 MRRs” and “K562 only MRRs”, and
both CSAW and DiffBind had downregulated DBs even in
“K562 only MRRs” despite these MRRs barring
H3K27me3 enriched regions in hESCs (i.e., free of hESC MRRs)
(Figure 8A). Hierarchical clustering for DBs clustered the replicates
together for all three pipelines (Supplementary Figure S10).

To further evaluate the DBs detected by all three pipelines, we
performed pairwise comparisons and scrutinized the common and
unique DBs to each pipeline. For H3K4me3 K562/hESC

FIGURE 6
Analysis of DEGs and CSSQDBs on real ChIP-seq datasets. (A) Volcano plots showingDBs andDEGs Identified in H3K4me3 andH3K27me3 datasets.
Upregulated and downregulated datapoints (p < 0.05) are marked in red and green respectively. (B) bar plots of DB and DEG counts and |FC| of identified
upregulated (Up) and downregulated (Down) DBs.
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comparison, 8,065 common DBs were detected in CSSQ vs CSAW
and 6,243 common DBs were called in CSSQ vs DiffBind, whereas
TKO/WT H3K4me3 analysis resulted in 400 (CSSQ vs CSAW) and
83 (CSSQ vs DiffBind) common DBs (Figure 8B). A representative
common K562/hESC DB was detected at the site of GATA1, the
transcription factor markedly upregulated in K562 cells, and this
locus exhibited robust signal in K562 as expected (Figure 9A). H1d
gene promoter region was among the 400 (CSSQ vs CSAW)
common DBs, lacking signals in TKO cells (Figure 9A),
consistent with the deletion of H1d gene and its promoter region
during H1d gene targeting (Fan et al., 2001; Fan et al., 2005).
DiffBind did not detect H1d as a DB. For H3K27me3 DB
analysis of K562/hESC at K562 MRRs, 705 and 4,009 common
DBs were detected in CSSQ vs. CSAW and CSSQ vs. DiffBind,
respectively (Figure 8B).

The average |FC| of CSSQ unique DBs were statistically higher
(p < 0.0001) than those of CSAW and DiffBind in all pair-wise
comparisons (Figure 8C). Visual inspection of individual CSSQ
unique DBs also validated bona fide signal enrichment of
H3K4me3 and H3K27me3 peaks as the DB regions (Figures 9B,
C). For H3K4me3 DBs, when compared with CSAW, unique CSSQ
DBs had an average |FC| of 3.6 (K562/hESC) and 3.7 (TKO/WT)
while that of CSAW displayed 1.4 FC (K562/hESC) and 1.5 FC

(TKO/WT) (Figure 8C). Similarly, the |FC| of unique CSSQ DBs
were significantly higher than that of DiffBind unique DBs
(Figure 8C). The |FC| difference of unique CSSQ DBs was even
more prominent when H3K27me3 K562/hESC DBs were gauged.
From “all K562MRRs” analysis, unique CSSQDBs hadmean |FC| at
13.6 and 13.9 as compared with that of unique DBs of CSAW and
DiffBind at 2.6 and 7.3 from CSSQ vs. CSAW and CSSQ vs. DiffBind
comparisons, respectively (Figure 8C). A similar trend was observed
with DB analysis on “K562only MRRs” and “K562/hESC
overlapping MRRs” (Supplementary Figure S11).

4 Discussion

ChIP-seq has revolutionized the mapping of DNA binding
proteins across genome in vivo. The massive increase in the
amount of data being generated from ChIP-seq and related
methods demands robust computational tools that allow for
detection and quantitation of genome-wide protein binding
(Schmidl et al., 2015; Visa and Jordan-Pla, 2018). However,
powerful pipelines capable of direct quantitation of ChIP-seq
signals across different datasets are in short supply (Steinhauser
et al., 2016; Nakato and Sakata, 2021). By employing sophisticated

FIGURE 7
Box plots of CSSQ normalized signals for DBs in different clusters identified using CSSQ analysis of real ChIP-seq datasets. Left: comparisons of
H3K4me3 ChIP-seq datasets from human K562 vs. hESC cells and mouse TKO vs WT cells over promoter regions (TSS ± 1 kb); Right: comparisons of
H3K27me3 ChIP-seq datasets from human K562 vs. hESC cells over all K562 MRR regions and over K562 only MRR regions. ***p < 0.0001.
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statistical approaches, we developed CSSQ, an innovative ChIP-seq
signal quantifier that is capable of detection and quantitation of
interesting regions with high confidence and sensitivity.

CSSQ fits a Gaussian mixture model to the transformed data
instead of fitting a single distribution such as the negative binomial
distribution to the raw count data. It utilizes a combination of
Anscombe transformation, k-means clustering, and estimated
maximum normalization to minimize noise and bias from
experimental variations. Anscombe transformation effectively
converts ChIP-seq raw data from an approximate mixture of
Poisson distributions (Supplementary Figure S12) into Gaussian
mixture models. Our choice of k clustering into 4 groups here is
based on extensive tests and analyses. We find that k = 4 in general
balances the goodness-of-fit andmodel complexity of datasets tested. As
illustrated in the representative scree plots generated on “Variance
Explained” (within-in cluster variance) and “Adjusted R-squared”
(between-cluster variance) with respect to different number of

clusters (Supplementary Figure S13), based on the elbow method,
k = 4 represents a bend position and a robust number of clusters,
e.g., the improvement fromk-3 to k = 4 is still relatively large (4%), while
the improvement from k = 4 to k = 5 (2%) turns to relatively small. In
addition, this clustering partitions the data points into 4 well-defined,
biologically meaningful data groups representing low (L), medium (M),
high (H), super high (S) signals, respectively.

To statistically test significance andDB calling, CSSQ utilizes a non-
parametric approach and incorporates comparisons under the null
hypothesis by re-shuffling datasets among different groups to
perform robust statistical tests to account for fewer replicates of
ChIP-seq datasets of the same biological samples. It reports an
adjusted p-value and a fold-change (FC) for all pre-defined regions.
The normalization method adopted in CSSQ and the generation of
comparisons under the null hypothesis by re-shuffling of datasets forDB
calling are novel applications of mathematical treatments to ChIP-seq
datasets. These approaches employed by CSSQ play a critical role in

FIGURE 8
In depth analysis and comparisons of DBs detected by CSSQ, CSAW, and DiffBind on real ChIP-seq datasets. (A) Counts of Up and Downregulated
DBs. (B)Counts of unique and commonDBs identified using each tool from pair-wise comparisons. (C) |FC| of uniqueDBs identified using each tool from
pair-wise comparisons. Labels for H3K27me3 dataset—All: all K562 MRRs; K562 only: K562 only MRRs.
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reducing false DB calls that may arise due to experimental noises and
biases.

Using simulation studies and quantitative metrics, we benchmarked
CSSQ with the CSAW and DiffBind pipelines. CSSQ identified induced
DBs with a low FDR and high sensitivity under all simulation scenarios.
While CSAWhad a slightly lower FDR than CSSQ, its sensitivity was not
consistent and much lower than CSSQ in nearly all simulations
(Figure 4). Even though DiffBind occasionally had similar sensitivity
as CSSQ inDB calls, such as in simhESC-2 simulations, it consistently had a
higher FDR (Figure 4). CSSQ exhibited the highest power and robustness
in distinguishing between true and false DBs, as evidenced from its ROC
curves and the highest AUCs in all simulations. Further, in our in-depth
analysis of a simulated dataset, unique DBs identified by CSSQ had a
higher |FC| with statistical significance (p < 0.0001) when compared to
those of CSAW and DiffBind, suggesting that unique DBs of CSSQ are
more likely to be trueDBs than those of CSAWandDiffBind (Figure 5C).
The results were consistent in both simulation studies, one analyzing the
performance on different percentages of true DBs and the other on
different magnitudes of signal differences in DBI. The results from these
simulations demonstrate the robustness of the CSSQ pipeline.

CSSQ also outperforms parallel pipelines in benchmarking
exercises using real ChIP-seq datasets. K562 human multipotent

leukemia cell line and H1 human pluripotent embryonic stem cell
line are two distinct cell types with 11,197DEGs that accounts for nearly
20% of all genes in the human genome. While ChIP-seq analysis of
promoter H3K4me3 reflected this well with all three tools identifying
thousands of potentialDBs. including various cell specificmarker genes,
unique DBs from CSSQ had a higher |FC| when compared with those
from CSAW and DiffBind. In addition to comparison test using ChIP-
seq datasets from entirely different cell types, we also scrutinized DBs
detected by the three pipelines on datasets from two highly similar cell
lines, mouse H1 TKO and WT ESCs that had very limited gene
expression changes at undifferentiated states (Fan et al., 2005).
Transcriptome analysis of RNAseq datasets from TKO/WT
comparisons only identified 27 statistically significant DEGs (Geeven
et al., 2015), and CSSQhad the least number ofDBs from analysis of the
TKO/WT H3K4me3 ChIP-seq datasets among the three pipelines
(Figures 6, 8).

To robustly compare the performance of the pipelines on
different signal profiles, we further benchmarked using
H3K27me3 ChIP-seq data which exhibit a broad signal profile.
Utilizing H3K27me3-rich regions (MRR) in K562 and hESC (Cai
et al., 2021), again we found that CSSQ has a higher sensitivity in
identifying DBs than CSAW and DiffBind (Figures 6, 8).

FIGURE 9
ChIP-seq signal profiles at representative loci. (A) H3K4me3 ChIP-seq signal profile around TSS of representative gene loci of DBs identified from
K562 vs. hESC (left) and H1 TKO vs. WT (right) comparisons. (B, C) Representative H3K4me3 and H3K27me3 ChIP-seq signal profiles of uniqueDB regions
identified by CSSQ in K562 vs. hESC comparisons.
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CSSQ and DiffBind were designed to analyze predefined regions of
interests. DiffBind uses statistical routines developed for RNAseq
(DESeq2 (Love et al., 2014) and EdgeR (Robinson et al., 2010)) to
identify significant DB regions (Ross-Innes et al., 2012). CSAW was
primarily designed for genome-wide de novo detection of DB regions
between samples using statistical tests implemented in edgeR. CSAW,
like DiffBind, utilizes statistical testing methods that were developed for
differential gene expression analysis in EdgeR package (Robinson et al.,
2010; Lun and Smyth, 2016). The inherent difference between the data
distribution of ChIP-seq and RNAseq datasets and the use of control
libraries for background correction in ChIP-seq make it less ideal to
apply the same statistical approach for RNAseq on ChIP-seq datasets
(Figure 1B, Supplementary Figures S1, S14).

In summary, the CSSQ pipeline is a statistically robust pipeline
to perform differential binding analysis on pre-defined regions of
interest across ChIP-seq samples. It enables quantitative analysis of
ChIP-seq data by utilizing statistically sound methods to normalize
for experimental biases, control false discovery rate and provide high
confidence DB calls and quantification.
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