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The long non-coding RNA (lncRNA) Metastasis-associated lung adenocarcinoma
transcript 1 (MALAT1) maintains the integrity of the intestinal epithelial barrier and
regulates local inflammation. However, its influences on intestinal microbial
communities and tissue susceptibility to cancer development remain
unexplored. Here, we report that MALAT1 regulates host anti-microbial
response gene expression and the composition of mucosal-associated
microbial communities in a region-specific manner. In the APC mutant mouse
model of intestine tumorigenesis, knocking out MALAT1 results in higher polyp
counts in the small intestine and colon. Interestingly, intestine polyps that
developed in the absence of MALAT1 were smaller in size. These findings
highlight the unexpected bivalent role of MALAT1 in restricting and promoting
cancer progression at different disease stages. Among the 30 MALAT1-targets
shared by both the small intestine and colon, ZNF638 and SENP8 levels are
predictive of colon adenoma patient overall survival and disease-free survival.
Genomic assays further revealed that MALAT1 modulates intestinal target
expression and splicing through both direct and indirect mechanisms. This
study expands the role of lncRNAs in regulating intestine homeostasis,
microbial communities, and cancer pathogenesis.
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Introduction

Intestinal epithelial cells (IECs) provide a physical barrier against microbes and facilitate
local immune responses (Ali et al., 2020). Genetic mutations and microbial challenges that
impair IEC functions contribute to gastrointestinal illnesses like inflammatory bowel disease
and colorectal cancer (Zheng et al., 2014; Li et al., 2016; Li et al., 2017a; Zhu and Xie, 2020).
However, our understanding of the molecular regulators of IECs remains incomplete. The
evolutionarily conserved Metastasis-associated lung adenocarcinoma transcript 1
(MALAT1), also known as nuclear enrichment autosomal transcript 2 (NEAT2), is one
of the most abundantly expressed long non-coding RNAs (lncRNAs) in IECs. Recent studies
suggest that human MALAT1 has an important role in maintaining the integrity of the
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intestinal epithelial barrier and contributes to local inflammation. By
sequestering target microRNAs, MALAT1 maintains the expression
of apical junction complex proteins NUMB and CLDN11 (Li et al.,
2021). In Crohn’s disease patients and the dextran sulfate sodium-
induced mouse model of colitis, MALAT1 is downregulated (Li
et al., 2021). In Ulcerative colitis patients, however, MALAT1 is
upregulated (Zhu and Xie, 2020). However, the physiologic and
pathologic functions of MALAT1 in the intestine epithelium under
homeostasis and disease settings remain unclear.

Mechanistic studies on MALAT1 have been performed in the
context of lung, breast, cervix, and esophageal cancers, where
MALAT1 expression is often dysregulated (Chou et al., 2016;
Gong et al., 2016; Li et al., 2017a; Westphalen et al., 2017; Wang
et al., 2018). Cell culture studies suggest that MALAT1 is enriched in
the nucleus and regulates gene expression at multiple levels (Guo
et al., 2010; Wang et al., 2015; Yang et al., 2015; Wang et al., 2016;
Xia et al., 2016; Stamato et al., 2017; Wu et al., 2017). For example, it

can interact with transcription factors and chromatin remodelers
such as PRC2 to regulate transcription, pre-mRNA splicing, and act
as a sponge to sequestrate microRNAs (Ji et al., 2003; Tripathi et al.,
2010; Salmena et al., 2011; Yang et al., 2011; Miyagawa et al., 2012;
Engreitz et al., 2014; Gong et al., 2016; Luan et al., 2016; Chang and
Hu, 2018). Yet, the extent to which these mechanisms contribute to
MALAT1 function in vivo under homeostasis and disease settings
remains unclear.

In this study, we report that murine MALAT1 regulates the
transcription and alternative splicing of a subset of IEC genes
involved in microbial responses through both direct chromatin
recruitment and indirect mechanisms. Knocking out
MALAT1 results in altered intestine microbial communities and
increases susceptibility to developing polyps in the small intestine
and colon. These findings highlight the unexpected tumor
suppressor function of MALAT1 in intestine tumorigenesis and
provide insights into the contributions of lncRNAs in regulating IEC

FIGURE 1
MALAT1 promotes protein-size macromolecule infiltration in the mouse intestine. (A). Heatmap of top ten most abundantly expressed lncRNAs in
the small intestine and colon epithelium isolated from two 8 weeks old wild-type male mice (GSE123881). Dot size indicates normalized read counts and
color indicates relative expression levels of each gene among the four samples. Rep, biological replicate. (B). Left: Breeding scheme for the generation of
CTL (Malat1+/+ or Malat1+/−) and Malat1−/− cohoused littermates employed for this study. Right: Weight of CTL (n = 30) and Malat1−/− (n = 28) mice
assessed at the indicated ages. Each dot represents the result from one mouse. ns: not significant (t-test). (C). Representative H&E staining of colonic
sections from two pairs of 12-week-old CTL andMalat1−/− femalemice. (D). Colon crypt height, density, and overall histology scores fromCTL (n = 3) and
Malat1−/− (n = 4) mice. n.s. not significant (t-test). (E). Quantification of FITC-dextran and RITC-dextran in serum from CTL (n = 5) and Malat1−/− (n = 3)
mice. Each dot represents the result from one mouse. * p-value<0.05, n.s. not significant (t-test).
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functions and the discovery of new therapeutic targets for intestinal
cancers.

Results

MALAT1 regulates the abundance and
splicing of IEC genes involved in anti-
microbial responses

MALAT1 is one of the most highly expressed long non-coding
RNAs in both the small intestine and colon epithelium (Figure 1A).
Previous studies suggest that MALAT1 can regulate gene expression at
the transcriptional and post-transcriptional levels (Tripathi et al., 2010;
Miyagawa et al., 2012). Based on these reports, we hypothesized that
MALAT1 may contribute to intestine functions by regulating gene
expressions in intestine epithelial cells. To test this possibility, we
crossed the Malat1+/− mice to generate gender-matched and
cohoused control (CTL, Malat1+/+ and Malat1+/−) and Malat1
knockout (Malat1−/−) littermates for our study. CTL and Malat1−/−

littermates were born in Mendelian ratios and all survive to adulthood
without notable spontaneous diseases, which is consistent with a
previous report (Zhang et al., 2012). CTL and Malat1−/− littermates
showed similar weights for the duration of our experiments between
days 50 and 130 (Figure 1B). H&E staining of the CTL and Malat1−/−

colonic sections confirmed similar intestine epithelium morphology
(Figures 1C, D). To assess intestine barrier function, mice were orally
gavaged with 4 kDa Fluorescein isothiocyanate-dextran (FITC-dextran)
together with 70 kDa Rhodamine B isothiocyanate-dextran (RITC-

dextran). In the CTL and Malat1−/− bloodstream, we found similar
levels of RITC-dextran, indicating Malat1−/− mice have intact barrier
activity against bacteria-size macromolecules. Interestingly, Malat1−/−

mice showed reduced levels of serum FITC-dextran, suggesting that
MALAT1 promotes protein-size macromolecule passage in the
intestine (Figure 1E).

To elucidate the mechanism(s) underlying MALAT1 function in
the intestine, we isolated small intestine and colon IECs from two pairs
of 8-week-old wildtype and MALAT1 knockout female cohoused
littermates for differential transcriptome and splicing analyses.
Differential gene expression analysis identified 67 and
143 MALAT1-dependent small intestine and colon IEC transcripts,
respectively (Figure 2A, Supplementary Table S1). Splicing analysis was
performed using rMATS (Shen et al., 2014) and revealed a larger
MALAT1-regulatory footprint (Figure 2B, Supplementary Table S2 and
Supplementary Table S3). The majority of the MALAT1-dependent
alternative splicing events in both small intestine and colon are skipped
exons. These results indicate MALAT1 regulates RNA abundance and
processing in both the small intestine and colon and that its higher
expression levels in the colonic epithelium are associated with a larger
set of MALAT1-dependent targets identified in that tissue. We selected
two genes that displayed MALAT1-dependent splicing patterns for
validation by flow cytometry and confirmed a reduced proportion of
TGF-β receptor 1-positive IECs in the Malat1−/− small intestine
(Supplementary Figure S1A,B) and an increased proportion of IL-27
receptor alpha-positive IECs in the Malat1−/− colon (Supplementary
Figure S1C,D).

Gene Ontology analysis of the IEC genes relying on MALAT1 at
the expression and/or splicing levels revealed enrichment for pathways

FIGURE 2
MALAT1 regulates select intestine epithelial cell RNA abundance and splicing. (A). Distribution ofMALAT1-dependent genes in the small intestine and
colon IECs as determined by DESeq2 in two pairs of cohoused CTL andMalat1−/− littermates (12-week-old females). (B). Distribution of small intestine and
colon transcripts relying on MALAT1 for alternative splicing as determined by rMATS in two pairs of cohoused CTL andMalat1−/− littermates (12-week-old
females).
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implicated in anti-microbial responses in both the small intestine
and colon (Figure 3A and Supplementary Figure S2A). Therefore,
we performed meta-genomic analysis to test whether alterations in
anti-microbial response programs in the Malat1-deficient
epithelium may be associated with changes to the mucosal-
associated microbial communities. Interestingly, we identified
an increase of Neisseria meningitidis, Escherichia coli,
Mycobacterium tuberculosis, Mycobacterium kansasii, and
Nakamurella panacisegetis in the MALAT1-deficient small
intestine (Figure 3B). In the MALAT1-deficient colon, however,
there was a decrease of Acinetobacter, Rhodobacteraceae,
Varucomicrobia, Micrococcales and Sulfolobaceae. These results
suggest that the impact of MALAT1 on the intestine microbial
communities is region-specific.

MALAT1 negatively regulates polyposis in
the small intestine and colon

Previous studies reported that dysregulated intestine microbiota
and altered host anti-microbial responses canmodulate individual risks
for developing intestine inflammation and cancer (Louis et al., 2014). In
human colorectal cancers, MALAT1 transcripts were downregulated

relative to normal tissue (Kwok et al., 2018). Compared to primary
Stage I lesions,MALAT1 levels were elevated in Stage IV andmetastatic
lesions (Ji et al., 2019; Zhang et al., 2020). These results suggest that
MALAT1 is dynamically regulated during tumorigenesis and may
contribute to multiple aspects of colorectal cancer pathogenesis in a
stage-specific manner. We then tested whether MALAT1-deficiency
influences disease susceptibility in a tumorigenesis setting. To address
this question, we employed a mouse model of human familial
adenomatous polyposis known as the APC mutant line (Kwong and
Dove, 2009). In this model, haploinsufficiency of the tumor suppressor
APC results in hyperactivation of WNT and early onset of epithelial
dysplasia (Fodde et al., 1994; Hinoi et al., 2007; Kwong and Dove, 2009;
Grivennikov et al., 2012;Wang et al., 2014). Similar to human colorectal
cancers (Kwok et al., 2018), MALAT1 is slightly downregulated in the
murine colonic polyps compared to healthy tissues, a pattern also
observed in genes encoding known colorectal cancer tumor suppressor
molecules, such as Mbd1 and Tmigd1 (Qi and Ding, 2017; Mu et al.,
2022) (Figure 4A). To assess the role of MALAT1 in intestine
tumorigenesis, we crossed the MALAT1 knockout mice to the
Apcfl/+Vil1Cre+ (APCΔIEC) line (Figure 4B). In the small intestine
and colon, APCΔIEC Malat1−/− mice harbored more polyps than
MALAT1-expressing mice (Figures 4C, D). Interestingly, the average
sizes of the small intestine polyps in the APCΔIEC Malat1−/− mice were

FIGURE 3
MALAT1-dependent mucosal-associated microbes in the intestine. (A). Gene ontology enrichment analysis of the small intestine and colon
epithelium MALAT1 targets from DESeq2 and rMATS combined. The size of the dot is proportional to the number of genes mapping to the enriched GO
term. (B). Volcano plots of meta-transcriptomic analysis of small intestine and colon IEC RNA-seq data from two pairs of cohoused CTL and Malat1−/−

littermates (12-week-old females).
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smaller than those found in the MALAT1-expressing mice. These
results revealed a surprising bivalent role of MALAT1 in restricting
intestine polyp generation and later promoting aberrant polyp growth.

RNAs from intestine polyps and adjacent normal tissues were
harvested and assessed for the expression of Ctnnb1 encoding β-
Catenin and Ki67 as an index of cell proliferation. In the small
intestine polyps and adjacent normal tissues, Ctnnb1 and Ki67 levels
negatively correlate with theMalat1 gene dosage (Supplementary Figure
S3 and Supplementary Figure S4). In contrast, expression of the tumor
stem cell marker Cd44 was MALAT1-independent. To determine the
epithelial cell-intrinsic role of MALAT1 in polyposis, we purified and
cultured colonic crypt stem cells from APCΔIEC CTL and APCΔIEC

Malat1−/− mice and assessed their capacity to establish colonies on
Matrigel in vitro. Overall, APCΔIEC Malat1−/− colonies were more

abundant than those derived from APCΔIEC CTL cells (Figure 5A).
Flow cytometry analysis revealed that the APCΔIEC Malat1−/− cultures
harbored a larger fraction of Ki67-positive actively proliferating
population (Figures 5B, C). These results suggest that MALAT1 in
epithelial cells is a negative regulator of colony establishment in vitro.

MALAT1 occupies the chromatin regulatory
elements on a subset of its epithelial target
genes

We hypothesized that MALAT1 suppresses polyposis in the
small intestine and colon by regulating a common set of targets in
both intestine regions that are involved in epithelial cell

FIGURE 4
MALAT1 negatively regulates polyposis in the small intestine and colon. (A). Normalized read counts of MALAT1 and select genes encoding known
tumor suppressors in colorectal cancer in the steady state colonic epithelium and colonic polyps from the APCΔIEC mice (GSE146014). (B). Experimental
scheme of APCΔIEC CTL and APCΔIEC Malat1−/− mice. (C). Polyp count and average polyp diameter in the small intestine (combined counts of the
duodenum, jejunum, and ileum) and colon of 120-day old APCΔIEC CTL (circle, n = 7) and APCΔIEC Malat1−/−mice (triangle, n = 7). Each dot represents
the results from one mouse. Open circles/triangles indicate the results from the tissues shown in Figure 3D. * p-value<0.05, ** p-value<0.01, n.s. not
significant (t-test). (D) Representative bright-field images of tumor-bearing small intestine and colons from a pair of APC△cIEC CTL and APC△cIEC Malat1−/−

mice from (C). Scale bar equals 1 cm.
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transformation. To identify these targets, we overlaid the small
intestine and colon MALAT1-dependent transcripts identified
from the DESeq and rMATS analysis and found 30 targets that
were dependent on MALAT1 at the overall RNA expression or
alternative splicing levels (Figure 6A), including those encoding an
acetylglucosaminyltransferase MGAT4C, an aldehyde
dehydrogenase ALDH1A1, and an adenylate kinase AK4 that
have been previously implicated in other types of cancers. In
addition, two of the MALAT1 targets shared across the small
intestine and colon, ZNF638 and SENP8, are associated with a
change in hazards ratio for overall survival and disease-free survival
in human colon adenocarcinoma patients (Figure 6B). These results
suggest that MALAT1 downstream targets may contribute to cancer
pathogenesis in humans.

To determine whether these targets were regulated by
MALAT1 at the chromatin level and/or through more complex
mechanisms, we employed the GRID-seq assay to characterize the
chromatin occupancy of MALAT1 in small intestine epithelium as
previously described (Li et al., 2017b; Zhou et al., 2019). In the small
intestine epithelium, 12 of the 30 MALAT1 target genes identified
earlier had MALAT1 binding near the gene locus (Figure 7A). For
example, MALAT1 occupied the promoter/5′UTR region on
Mgat4c, Slc10a2, and Sorbs2, intragenic regions of Mapt, Tcf7l2,

and Crem, and distal elements on Zfp638, Rps6ka3, Timm23, Shoc2,
Smtn, and Herc3 (Figure 7B). Chromatin accessibility ATAC-seq
assays further indicate that MALAT1 occupied regions in the small
intestine epithelium lied within both regions of open and closed
chromatin in a gene-specific manner. These results suggest that
MALAT1 regulates intestine epithelial cell gene programs through
both direct and indirect mechanisms.

Discussion

MALAT1 is dysregulated in various cancer types, including
colorectal cancer (Wei and Niu, 2015; Li et al., 2017a; Arun
et al., 2020). Subsequent studies reported that the expression of
MALAT1 is an independent prognostic factor and is involved in
tumor cell proliferation, metastasis, and epithelial-mesenchymal
transition (Ji et al., 2014; Sun et al., 2019). Using the APC
mutant mouse model of intestine tumorigenesis, our study
provides the first in vivo evidence that MALAT1 restricts polyp
formation in both the small intestine and colon. Knocking out
MALAT1 results in the generation of a larger number of intestine
polyps. In addition to a role in restricting polyp formation,
MALAT1 also contributes to abnormal intestinal polyp growth at

FIGURE 5
MALAT1 negatively regulates intestine organoid colony formation and proliferation. (A). Representative brightfield images of organoids derived from
APCΔIEC CTL and APCΔIEC Malat1−/− colonic crypt stem cells. Scale bar represents 200 μm. (B). Representative flow cytometry analysis of intracellular
Ki67 staining in live APCΔIEC CTL and APCΔIEC Malat1−/− colonic organoid cells (Live Epcam+). SSC: side scatter as an index for cell granularity. (C). The
proportion of Ki67+ colonic organoid cells in the APCΔIEC CTL and APCΔIEC Malat1−/− cultures. Each dot represents the result from one independent
experiment. * p-value<0.05 (t-test).
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a later stage. The polyps found in the MALAT1 knockout small
intestine were smaller in size than those found in MALAT1-
expressing mice. More detailed histological analysis in the future
will be needed to determine the exact mechanism underlying
MALAT1’s bivalent roles in polyp initiation and growth at
different disease stages.

We speculate that MALAT1 protects against polyp formation by
regulating a set of target genes involved in tumorigenesis shared by
both the small intestine and colon. Among the thirty
MALAT1 targets commonly found in the small intestine and
colon, many have been previously implicated in other types of
cancers. Most interestingly, we identified two MALAT1-
dependent novel molecules, ZNF638 and SENP8, that are
associated with significant alterations in colon adenocarcinoma
patients’ overall survival and disease-free survival. One limitation
of our current transcriptomic analysis is the reliance on two pairs of
control and MALAT1-deficient mice. While we have validated a few
of the MALAT1-dependent IEC targets using other approaches such

as flow cytometry on independent sets of mice, future
transcriptomic studies powered by a larger experimental cohort
will be needed to further validate these initial findings.

MALAT1 has been implicated in immune regulation, including
modulating pro-inflammatory cytokine production and activating
T cells and natural killer cells upon bacterial or viral infections
(Kakaradov et al., 2017; Kim et al., 2017; Kanbar et al., 2022). Our
findings now provide in vivo evidence that MALAT1 regulates anti-
microbial responses in intestine epithelial cells at the levels of gene
expression and alternative splicing and influences intestinal
microbiome composition. Our mechanistic studies further identified
MALAT1-occupied chromatin sites in the intestine epithelium
genome-wide. Coupled with our transcriptomic studies, these results
suggest that MALAT1 regulates intestinal epithelial gene programs by
direct binding to target gene chromatin and/or indirect mechanisms.
Collectively, these findings provide new insights into the function of
MALAT1 in the intestine epithelium and its potential as a prognostic
marker as well as a therapeutic target in intestinal diseases.

FIGURE 6
Select MALAT1-dependent genes in predicting colorectal cancer patient hazard risks. (A). Overlap analysis of the differential expressed genes and
MALAT1-dependent splicing events in the small intestine and colon. RI: retained intron. SE: skipped exon. A5SS: alternative 5′ splice site. A3SS: alternative
3′ splice site. (B). Overall survival and disease-free survival among colon adenocarcinoma patients with high or low expression of each MALAT1 target
identified in (A).
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Materials and methods

Mice

C57BL/6 wild-type were obtained from the Jackson Laboratory.
Malat1−/− mice were obtained from Dr. David Spector’s laboratory
and have been previously described (Zhang et al., 2012).
Heterozygous mice were bred to yield 8–12-week old cohoused
littermates for transcriptomic and genomic studies.Apcflox mice were
obtained from Dr. Eric Fearon’s Laboratory and previously
described in reference (Grivennikov et al., 2012). Intestine tissues
were harvested from 120 to 130-day-old CTL and Malat1−/− in the
Apcflox background to assess tumor burden. Tumor measurements
were determined by double-blinded analyses using ImageJ. Both

male and female mice were used in the experiments described. All
animal studies were approved and followed the Institutional Animal
Care and Use Guidelines of the University of California San Diego
(Protocol #S16156). Our vivarium at the University of California
San Diego is kept under specific pathogen-free conditions. Regular
serology and PCR tests are used to monitor and ensure the absence
of epizootic diarrhea of infant mouse virus (EDIM), mouse hepatitis
virus (MHV), mouse parvovirus (MPV), minute virus of mice
(MVM), Theiler’s murine encephalomyelitis virus (TMEV), fur
mites and pinworms. Colonic sections from 8-week-old
littermates were stained with H&E and scored for changes in the
inflammatory infiltrate, submucosal inflammation, crypt
morphology, and muscle thickening in a double-blind fashion as
described in (Abbasi et al., 2020).

FIGURE 7
MALAT1 occupies the chromatin regulatory elements on a subset of its epithelial target genes. (A). Venn diagrams of overlapping differential
expressed genes andMALAT1-dependent splicing events between small and large intestine. Black: MALAT1 chromatin occupancy detected at or near the
gene body. Grey: MALAT1 not recruited to nearby chromatin. (B). IGV browser views of MALAT1 GRID-seq and open chromatin (ATAC-seq) signals on
select MALAT1-direct target genes from A (Tang et al., 2017). Rep, biological replicate.
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Intestinal permeability assay

Mice were deprived of food and bedding for 4 h prior to oral
gavage with 4 kDa Fluorescein isothiocyanate–dextran
(Millipore-Sigma, FD4, 100 mg/kg) together with 70 kDa
Rhodamine B isothiocyanate-dextran (Millipore-Sigma, R9379,
50 mg/kg). Blood samples were taken 4 h post-gavage by
submandibular bleed. The FD4 and Rhodamine signals were
measured using a TECAN fluorescent plate reader at the
excitation/emission wavelengths of 485/535 and 540 nm/
585 nm, respectively.

Intestinal crypt isolation and organoid
culture

Colonic crypts were isolated according to the manufacturer’s
recommendation (STEMCELL, technical bulletin #28223). Briefly,
intestine tissues were harvested from 6–8-week-old CTL and
Malat1−/− in the Apcflox background and cut into 2 mm pieces.
After 20 washes in cold PBS, tissues were resuspended in 25 mL
room temperature Gentle Cell Dissociation Reagent (STEMCELL,
#07174) and incubated at room temperature for 15 min on a rocking
platform at 20 rpm. The pellets enriched with intestinal crypts were
resuspended in cold PBS containing 0.1% BSA. Isolated colonic
crypts were embedded in Corning® Matrigel® Matrix (Corning™
356231) and seeded onto pre-warmed, non-treated 24-well plates
(CytoOne® by StarLab) and overlaid with conditioned media
(STEMCELL, #6005) as described previously (Miyoshi and
Stappenbeck, 2013). Organoid pictures were imaged using a
Keyence bz-x800 microscope at ×20 magnification with image
stacks capturing the entire organoid volume.

Flow cytometry analysis

Intestinal epithelial cells were surface stained with LIVE/DEAD
Fixable Cell stain (ThermoFisher, L34957), and fluorescent
conjugated antibodies against EpCAM, TGFBR1, and IL27RA
(see Supplementary Table S4 for detailed information, 1:400 in
PBS) for 30 min. For intracellular staining of Ki67, cells were first
fixed/permeabilized (ThermoFisher Cat: 00-5521-00) and then
incubated with the anti-Ki67 antibody for 1 h at room
temperature. Intestine epithelial cells were defined as live
Epcam+. Flow cytometry data was analyzed with FlowJo (version
10.8.1).

cDNA synthesis and qPCR

Total RNA was extracted with the RNeasy Plus kit (QIAGEN)
and reverse transcribed using iScript™ Select cDNA Synthesis Kit
(Bio-Rad). Real time RT-PCR was performed using iTaq™
Universal SYBR® Green Supermix (Bio-Rad). Results were
normalized to mouse Hprt. Primers were designed using Primer-
BLAST to span across splice junctions, resulting in PCR amplicons
that span at least one intron. Primer sequences are listed in
Supplementary Table S4.

RNA-seq analysis

Small intestine and colonic epithelial cells from two pairs of
Malat1−/− and CTL cohoused littermates were enriched as previously
described in (Abbasi et al., 2020). Ribosome-depleted RNAs were
used to prepare sequencing libraries. 100 bp paired-end sequencing
was performed on an Illumina HiSeq4000 by the Institute of
Genomic Medicine (IGM) at the University of California San
Diego. Each sample yielded approximately 30–40 million reads.
Paired-end reads were aligned to the mouse mm10 genome with
the STAR aligner version 2.6.1a (Dobin et al., 2013) using the
parameters: “--outFilterMultimapNmax 20 --alignSJoverhangMin
8 --alignSJDBoverhangMin 1 --outFilterMismatchNmax 999 --
outFilterMismatchNoverReadLmax 0.04 --alignIntronMin 20 --
alignIntronMax 1000000 --alignMatesGapMax 1000000”.
Uniquely mapped reads overlapping with exons were counted
using featureCounts (Liao et al., 2014) for each gene in the
GENCODE. vM19 annotation. Differential expression analysis
was performed using DESeq2 (v1.18.1 package) (Love et al.,
2014), including a covariate in the design matrix to account for
differences in harvest batch/time points. Regularized logarithm
(rlog) transformation of the read counts of each gene was carried
out using DESeq2. Pathway analysis was performed on differentially
expressed protein coding genes with minimal counts of 10, log2 fold
change cutoffs of ≥0.5 or ≤ −0.5, and p-values < 0.05 using Gene
Ontology (http://www.geneontology.org/) where all expressed genes
in the specific cell type were set as background.

Alternative splicing events were analyzed by Multivariate
analysis of transcript splicing (rMATS (Shen et al., 2014)) using
the parameters “python rmats. py --b1/path/to/b1. txt --b2/path/to/
b2. txt–gtf/path/to/the.gtf -t paired --readLength 150 --nthread 4 --
od/path/to/output --tmp/path/to/tmp_output”. Using a 0.01 FDR
cutoff, MALAT1-dependent splicing events were identified.

For metatranscriptomic analysis of ileal associated microbial
populations, reads from the CTL and Malat1−/− IEC RNA-seq
dataset that were not mapped to the mouse genome were
assigned with taxonomic labels using Kraken V.1. The standard
Kraken database encompassing annotated bacterial, archaeal, and
viral genomes was used for classification of sequences with the
command: “kraken --classified-out/path/to/classified_fq
--unclassified-out/path/to/unclassified. fq --db $DBNAME
--paired --fastq-input pair1. fa pair2. fa >/path/to/results”. A
Kraken report was generated with the command: “kraken-report
--$DBNAME kraken. output” (Wood and Salzberg, 2014).
Differential microbial counts were assessed by DEseq2 cut-off of
p < 0.05 with theWald test and Log2 fold change (Malat1−/−/CTL) >
1.5 or ≤1.5.

GRID-seq

GRID-seq of small intestine epithelial cells were performed as
described (Li et al., 2017b; Zhou et al., 2019). Briefly, two
independent biological replicates (5–10 × 106) were crosslinked
with disuccinimidyl glutarate (DSG) and formaldehyde. DNA in
isolated nuclei were digested with AluI. A biotinylated bivalent
linker was ligated to chromatin-associated RNA (with the ssRNA
stretch on the linker) and nearby fragmented genomic DNA and
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captured by streptavidinmicrobeads for library construction. Single-
end sequencing was performed on HiSeq400 (Illumina, 200 million
reads/sample). Raw sequencing reads were evaluated by FastQC (Gu
et al., 2014). Reads below 85bp were filtered out and those above
90bp with high quality were trimmed by Cutadapt (Martin, 2011) as
suggested according to previous report (Li et al., 2017b; Zhou et al.,
2019). The GRID-seq linker position at each read and the paired
reads originated from RNA or genomic DNA were identified by
matefq in GridTools (Zhou et al., 2019). Paired RNA and DNA reads
were then mapped to the mouse genome (GRCm38/mm10) by
BWA respectively. Uniquely paired reads were used to generate a
set of RNA-DNA interaction matrix for downstream analyses in the
GridTools pipeline. Read counts from the two repeats were
summarized into two 1 kb genomic bins. Chromatin enriched
with MALAT1 RNAs (GRID-seq peak call) were defined as 2 kb
regions with clustered MALAT1 signals above the background
signal expected from random interactions (>5-fold changes).

ATAC-seq

ATAC-seq libraries were generated as described in
(Buenrostro et al., 2015). ATAC-seq processing followed the
ENCODE guideline with some modifications (Landt et al.,
2012). Specifically, single-end raw reads were mapped to the
mouse genome (GENCODE assembly mm10) by bowtie2
(Version 2.3.4.1) in the local mapping mode with parameter
“--local”, followed by PCR deduplication by SAMTools (Version
1.9) with the utility markedup (Li et al., 2009). Mapped reads
from each sample repeats were merged into a single BAM file by
SAMTools, and peaks were called using MACS2 (Version 2.2.6)
(Zhang et al., 2008) with “callpeak --nomodel --extsize 100”.
Regions with peak-score below 30 were filtered out and the
remaining reliable peak profiles were transformed into bigwig
format and visualized on the Integrative Genomics Viewer (IGV
Version 2.8.2) (Thorvaldsdottir et al., 2013).

Statistical analysis

The values are presented as the mean ± standard deviation (SD).
Statistical significance was evaluated using GraphPad Prism
V.8 software (GraphPad). The t-test was used to determine
significant differences between groups. A p-value of less than
0.05 was considered statistically significant in all experiments.
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SUPPLEMENTARY FIGURE S1
MALAT1-dependent target validation. (A) IGV browser views of CTL (black)
and Malat1−/− (grey) RNA-seq signals at the Tgfbr1 locus. Connecting lines
indicate reads spanning exon junctions. (B) The proportion of TGFBR1-
expressing small intestine epithelial cells (Epcam+) in three pairs of 12-week-
old CTL and Malat1 littermates as determined by flow cytometry. Each dot
represents the result from one mouse. * p-value < 0.05 (t-test). (C) IGV
browser views of CTL (black) and Malat1 (grey) RNA-seq signals at the Il27ra
locus. Connecting lines indicate reads spanning exon junctions. (D) The
proportion of IL-27RA-expressing colonic epithelial cells (Epcam+) from
two pairs of 12-week-old CTL and Malat1 littermates as determined by flow
cytometry. Each dot represents the result from onemouse. * p-value < 0.05
(t-test).

SUPPLEMENTARY FIGURE S2
MALAT1-dependent genes involved in response to bacteria. (A) MALAT1-
dependent gene network in the small intestine and colonic epithelium. Each
orange dot represents one gene and blue nodes indicate pathway
annotation. The color of the nodes represents the number of MALAT1-
dependent genes associated with the specific annotation term and the size
of the node represents the -log10(adjusted p-value).

SUPPLEMENTARY FIGURE S3
Select small intestine gene expression in the polyposis model. (A) Ctnnb1, Ki67,
and Cd44 mRNA expression in ileal polyps and adjacent normal tissues from
APCΔIEC Malat1+/+ (n = 3),Malat1+/− (n = 5), andMalat1−/− (n = 7) mice harvested
on day 120. Levels were normalized to housekeeping gene Hprt. Adj Norm,
adjacent normal tissue. *, p-value < 0.05, n.s. not significant (Welch’s t-test).

SUPPLEMENTARY FIGURE S4
Select colonic gene expression in the polyposis model. (A) Ctnnb1, Ki67, and
Cd44mRNA expression in colonic polyps and adjacent normal tissues from
APCΔIEC Malat1+/+ (n = 2), Malat1+/− (n = 3), and Malat1−/− (n = 5) mice
harvested on day 120. Levels were normalized to housekeeping gene Hprt.
Adj Norm, adjacent normal tissue. n.s. not significant (Welch’s t-test).
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