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The actin cytoskeleton represents a highly dynamic filament system providing cell
structure and mechanical forces to drive a variety of cellular processes. The
dynamics of the actin cytoskeleton are controlled by a number of conserved
proteins that maintain the pool of actin monomers, promote actin nucleation,
restrict the length of actin filaments and cross-link filaments into networks or
bundles. Previous work has been established that cytoplasmic calcium is an
important signal to rapidly relay information to the actin cytoskeleton, but the
underlying mechanisms remain poorly understood. Here, we summarize new
recent perspectives on how calcium fluxes are transduced to the actin
cytoskeleton in a physiological context. In this mini-review we will focus on
three calcium-binding EF-hand-containing actin cross-linking proteins, α-actinin,
plastin and EFHD2/Swiprosin-1, and how these conserved proteins affect the cell’s
actin reorganization in the context of cell migration and wound closure in
response to calcium.
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Introduction

Filamentous actin (F-actin) is a dynamic polymer providing mechanical forces to change
cell morphology. The dynamic rearrangements and turnover of F-actin are pivotal corner
stones for cellular functions such as intracellular transport, cytokinesis and cell migration.
F-Actin polymerization and depolymerization are controlled by different families of actin
binding proteins (ABPs). Profilin and sequestering thymosin-β4 compete for binding of
actin monomers thereby modulating the concentration of free actin monomers available for
polymerization (Pollard, 2016). Nucleation promoting factors (NPF) such as the WASp/
SCAR family proteins at the cell membrane are activated through small Rho GTPases and
can, in turn, activate the actin-related protein (Arp)-2/3-complex (Blanchoin et al., 2000).
Growth of a filament is terminated by capping proteins and eventually filaments are
disassembled through severing and debranching by ADF/cofilin. Severing exposes
filament barbed ends that can continue growing and the dissociated actin monomers
can enter a new actin polymerization cycle (Pollard and Borisy, 2003). Furthermore,
actin filaments are incorporated into different μm-scale higher order structures: from
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loosely cross-linked isotropic networks to tight and highly organized
bundles (Svitkina, 2020). While F-actin bundles are found in the cell
cortex, in thin finger-like cell protrusions such as filopodia and are
also prominent in contractile actomyosin-rings during cytokinesis
and wound closure, cross-linked actin networks are important for
the broad lamellipodium of a migrating cell.

More than 23 different classes of ABPs have been shown to
crosslink or bundle F-actin (Schliwa, 1994; Tseng et al., 2005).
Several studies suggest that actin crosslinking proteins have
redundant roles (Rivero et al., 1999; Lieleg et al., 2010), which
allows for finely adjusting the mechanical and viscoelastic F-actin
network properties through cooperation and competition. Some
proteins frequently also exhibit a dual activity by either cross-linking
filaments into loose networks or laterally into tight bundles of
filaments in vitro, often depending on protein concentration and
solution crowding (Park et al., 2021). Interestingly, some ABPs are
regulated by calcium ions (Ca2+) which allows to coordinate rapid
actin remodeling driving morphological changes in response to
diverse environmental stimuli (Chun and Santella, 2009; Izadi
et al., 2018; Bootman and Bultynck, 2020). Prominent calcium-
regulated ABPs are EF-hand containing proteins such as α-actinin
(Burridge and Feramisco, 1981; Noegel et al., 1987) and fimbrins/
plastins (Lin et al., 1988; de Arruda et al., 1990; Lin et al., 1993b) and
EFHD/Swiprosin (Dutting et al., 2011; Mielenz and Gunn-Moore,
2016). Thus, the study of Ca2+ binding proteins in the context of
actin cytoskeleton reorganization is important for our
understanding of fundamental processes such as cell shape
changes in cell migration and epithelial wound closure. Advances
in biochemical structural analysis and in vivo live-cell microscopy
have revealed new perspectives, how Ca2+ can regulate dynamic
actin cytoskeletal changes by acting on ABPs. This review aims to
outline recent findings on Ca2+ regulation of the most prominent
actin cross-linking proteins α-actinin, plastin and EFHD2/
Swiprosin-1.

Calcium-an emerging intracellular
messenger

For the rapid relay of a Ca2+ stimulus, Ca2+-regulated proteins
can either bind to Ca2+/calmodulin (CaM) or bind Ca2+ directly
through calmodulin-like domains (CaMD) to induce specific
Ca2+-dependent processes (Nakayama and Kretsinger, 1994;
Chin and Means, 2000). Calmodulin is a highly conserved
Ca2+ sensor protein that contains the common Ca2+ binding
motif composed of paired helix-loop-helix EF-hands. Binding
of Ca2+ to the EF-hand domains leads to a conformational change
of the target protein (Tufty and Kretsinger, 1975). EF-hand
containing proteins with CaMDs comprise one of the largest
protein family with a wide range of biological functions that bind
Ca2+ with different affinities ranging from 10–6 M to 10–3 M
(Bagur and Hajnoczky, 2017; Kawasaki and Kretsinger, 2017).
Over twenty subfamilies have been defined by both evolutionary
history and functions (Kawasaki and Kretsinger, 2017). Among
them, three prominent EF-hand subfamily groups contain Ca2+-
regulated ABPs including the Fimbrin/plastin group (FIMB), the
α-actinin group (ACTN) and the EFHD2/Swiprosin group
(EFHD2_DM) (Kawasaki and Kretsinger, 2017).

Moreover, Ca2+ can act indirectly on ABPs through activation of
Ca2+-dependent kinases and small Rho GTPases. Therefore,
maintaining cellular Ca2+ homeostasis is crucial for cytoskeletal
dynamics. For the effectiveness of Ca2+ flux into the cytoplasm,
an approximately 20.000-fold gradient between intracellular and
extracellular Ca2+ concentration must be maintained (reviewed in
Clapham, 2007). Special pumps like the plasma membrane Ca2+

ATPases (PMCA) or the sarcoendoplasmic reticular Ca2+ ATPases
(SERCA) constantly remove Ca2+ under energy expenditure from
the cytoplasm to the extracellular space or the endoplasmic
reticulum (ER) which acts as an intracellular Ca2+ storage
(Clapham, 2007). Ca2+ from the ER can also be transferred to
mitochondria, dynamic organelles that have been shown to be
important in locally releasing Ca2+ pulses to induce cytoskeletal
rearrangements during migration and wound healing (reviewed in
Paupe and Prudent, 2018). Moreover, influx of extracellular Ca2+

through Ca2+-permeable ion channels at the plasma membrane can
be regulated by the actin cytoskeleton itself (Qian and Xiang, 2019).

In migrating cells there is a tightly controlled gradient of Ca2+

concentration from low at the leading edge to high at the cell rear.
The low background level at the front of the cell permits even small
changes in Ca2+ concentration to relay signals efficiently allowing,
for example, small Ca2+ pulses to regulate cycles of local lamellipodia
retraction and adhesion (Brundage et al., 1991; Wei et al., 2009; Tsai
and Meyer, 2012; Wei et al., 2012; Tsai et al., 2015). Furthermore,
tissue damage in a continuous epithelial sheet will cause an efflux of
Ca2+ ions from the damaged cells into the extracellular environment
which are then rapidly transported by mechanosensitive ion
channels into the cells surrounding the wound site (Nakamura
et al., 2018). This signal is then propagated within the epithelial
tissue by gap junctions between neighboring cells (Razzell et al.,
2013). The immediate increase of intracellular Ca2+ concentration
leads to the massive cytoskeletal remodeling important for effective
wound healing such as contractile ring and membrane protrusion
formation at the wound margin (Antunes et al., 2013). But the
underlying molecular mechanisms how Ca2+ signals result in local
changes in cell shape and cell behavior are still poorly understood.

Calcium-dependent actin cross-linking
proteins–Bridging the gap

Calcium is a prominent regulatory cell signal which has also
multiple effects on the structure and dynamics of the actin
cytoskeleton (Chun and Santella, 2009; Izadi et al., 2018;
Bootman and Bultynck, 2020). For the mechanical integrity of
the actin cytoskeleton, overlapping actin filaments need to be
attached to one another to rigidify and generate a stable F-actin
network (Ydenberg et al., 2011; Svitkina, 2018; Svitkina, 2020). In
the following we will discuss three highly evolutionarily conserved
ABPs with Ca2+-regulated actin cross-linking activity (Figure 1).

α-Actinin

α-Actinin belongs to the spectrin protein superfamily that
dimerizes through four spectrin-like repeats (SLR) in their
rod-shaped center (Figure 1). The central rod is connected on
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one side via a flexible neck region to the N-terminal actin binding
domain (ABD), which is composed of two adjacent calponin
homology domains (CH), and at the other side to a C-terminal
CaMD, which is composed of two pairs of EF-hands (EF1/2 and
EF3/4; see Murphy and Young, 2015). Antiparallel dimerization
positions the terminal ABD and CaMD of opposing monomers at
either end and in close proximity to each other allowing Ca2+-
mediated regulation of the ABD (Djinović-Carugo et al., 1999;
Sjöblom et al., 2008). The Ca2+ regulation has recently been
shown to merely involve one single Ca2+ ion bound to the first
EF-loop (Figure 1; Drmota Prebil et al., 2016; Backman, 2015). This
domain is also affected by alternative splicing of the α-actinin gene
which results in four different variants: Ca2+-insensitive muscle α-
actinins and Ca2+-sensitive non-muscle α-actinins (Burridge and
Feramisco, 1981; Sjöblom et al., 2008). In muscles, α-actinin is the
predominant ABP cross-linking thin filaments from adjacent
sarcomeres (Foley and Young, 2014). Here, Ca2+-independent
cross-links are important for maintaining proper sarcomere
structure during Ca2+-triggered muscle contraction. Instead,
muscle α-actinins are regulated by phosphoinositides (Fukami
et al., 1992). In non-muscle tissues, α-actinins are mainly
involved in anchoring F-actin to cell-cell and cell-matrix
adhesions (Foley and Young, 2014). In humans there are four α-
actinin isoforms (1–4) with isoforms 1 and 4 widely expressed in
non-muscle tissues (Murphy and Young, 2015). Mutations in the
EF-hands of α-actinin-1 have been linked to congenital
macrothrombocytopenia (CMTP), a rare blood disorder
characterized by a reduced platelet count and increased platelet
size due to aberrant actin cytoskeletal organization (Murphy and
Young, 2015).

Human non-muscle α-actinin-1 mainly localizes to stress fibers
and focal adhesion sites. Its actin cross-linking activity is inhibited
by cytoplasmic Ca2+ concentrations above 0.1 mM (Burridge and
Feramisco, 1981). Recently it has been shown that upon Ca2+

binding to the first of four EF-loops (EF1) in the CaMD, the

local domain flexibility is altered leading to a more stabilized
structure (Figure 1). It has been suggested that this modifies the
CaMD interaction with the neck domain and therefore changing the
ABD orientation in the dimer to effectively cross-link F-actin while
actin binding is unchanged (Drmota Prebil et al., 2016). Similarly,
Ca2+ has been described as allosteric regulator of F-actin bundling
activity by modulating ABD orientational flexibility in Entamoeba
histolytica α-actinin-2 (EhActn2) (Pinotsis et al., 2020). EhActn2 is
similar to ancestral α-actinin containing only two SLR in the rod
domain. Binding of Ca2+ was shown to support the interaction of the
neck domain with EF-loops 3 and 4 thereby reducing the flexibility
of a hinge region at the neck domain that allows ABD rotation
around the rod axis. Interestingly, increasing the flexibility of the
ABD also resulted in loss of actin bundling activity. Hence, Ca2+

binding to EhActn2 has been proposed to lead to an interdomain
cross-talk increasing overall protein rigidity and therefore
decreasing the conformational flexibility of the ABD which
inhibits F-actin bundling (Pinotsis et al., 2020).

Plastin/fimbrin

Plastins, also known as fimbrins, harbor two ABDs (Figure 1;
ABD1 and 2) of tandem CH domains to effectively stabilize parallel
F-actin bundles with a distance between adjacent filaments of
approximately 120Å (Volkmann et al., 2001). There are three
conserved plastin isoforms, namely I-, L-, and T-plastin (also
called plastin 1-3, respectively) (Lin et al., 1993a), each encoded
by a distinct gene and expressed in a tissue-specific manner. I-plastin
is found in microvilli of intestinal and kidney epithelia (Lin et al.,
1994) and in stereocilia of cochlear hair cells, where also T-plastin is
expressed, though temporally restricted to stereocilia maturation
(Daudet and Lebart, 2002). T-plastin is the most ubiquitously
expressed isoform found in cells from solid tissues such as
fibroblasts, endo- and epithelial cells but also neuronal cell such

FIGURE 1
α-Actinin, Plastin and EFHD2/Swiprosin-1—three conserved EF- hand containing actin cross-linking proteins regulated by Ca2+. Schematic diagram
of the protein domains of α-Actinin, Plastin and EFHD2/Swiprosin-1 and structural and functional changes in response to calcium. Domains as indicated:
ABD (actin bindind domain) consists of two CH (calponin homology) domains; EF-hands (helix-loop-helix motif) that bind Ca2+ (green spheres); R
(spectrin-like repeats) facilitate dimerization of α-Actinin; LM (ligand mimic domain); CC (coiled-coil domain) facilitates dimerization of EFHD2/
Swiprosin-1; H5 (fith helix).
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as microglia (Arpin et al., 1994; Shinomiya, 2012). L-plastin is
expressed in hematopoetic cells serving fundamental functions in
immunity including migration and adhesion (Morley, 2012).
Further highlighting their importance for cell migration, L- and
T-plastin are often associated with the invasiveness of metastatic
cancer cells (reviewed in Lin et al., 1993b; Delanote et al., 2005).

The bundling activity of plastins is negatively regulated by Ca2+

binding. Plastins have two N-terminal EF-hands arranged in a so-
called headpiece domain that is connected to ABD1 by a short 40 aa
linker. Within this linker region lies a conserved fifth helix (H5)
reminiscent of a calmodulin binding motif (Figure 1). This helix
specifically interacts with the helices of the Ca2+-bound EF-hands. It
has been suggested that in the tertiary protein structure of L-plastin,
H5 acts as a wedge possibly between CH1 and CH2 of
ABD1 changing their relative position and stabilizing an
orientation that is favorable to actin binding (Ishida et al., 2017).
The authors proposed that binding of Ca2+ to the EF-hands leads to
sequestration of H5 from ABD1, destabilizing the orientation and
thus decreasing actin bundling (Ishida et al., 2017). Another study
looked at Ca2+ binding and its effect on actin binding in all three
human plastin isoforms. They, however, identified ABD1 of
L-plastin to bind F-actin Ca2+-independently while ABD2 is
regulated by Ca2+ binding to the EF-hands (Schwebach et al.,
2017). Therefore, the former hypothesis could still be applicable
to CH3 and CH4 of ABD2. Another recent finding concerns the
localization of T-plastin in osteoblast, osteocyte and fibroblast cells
depending on Ca2+ binding. Wildtypic T-plastin can cycle between
the lamellipodium and focal adhesions while Ca2+-hyposensitive
T-plastin mutants localized exclusively to focal adhesions and Ca2+-
hypersensitive mutants only in the lamellipodium. Chelation of Ca2+

led the latter to localize to focal adhesions as well, identifying Ca2+

binding as the regulator for T-plastin cycling between the leading
edge and adhesion complexes. The authors proposed that in the
presence of Ca2+, CH3 and CH4 of ABD2 are locked in an inhibited
state by the headpiece domain therefore only ABD1 binds to F-actin.
Binding of Ca2+ leads to detachment of the H5 from the EF-hands
therefore releasing ABD2 from its structural constraints (Schwebach
et al., 2020). However, the crystal structures of Ca2+-bound and
-unbound human T-plastin has not been solved yet to reveal the
exact inhibitory mechanism proposed for H5.

EFHD2/Swiprosin-1

EFHD2/Swiprosin-1 (Swip-1) is also an EF-hand containing
ABP that has recently been identified to create orthogonal F-actin
cross-links aiding the rapid cytoskeletal rearrangements necessary
for lamellipodia formation (Lehne et al., 2022). Physiologically,
Swip-1 has been associated with a plethora of pathologies such as
neurodegenerative diseases, acute and chronic inflammation and
cancer especially invasive stages of malignant melanoma (Dütting
et al., 2011; Mielenz and Gunn-Moore, 2016; Thylur et al., 2018). It
has also been reported that Swip-1 is involved in BCR-induced Ca2+

flux controlling BCR signaling to activate B cells (Kroczek et al.,
2010; Hagen et al., 2012) and in Drosophila embryos it was
hypothesized that it regulates Ca2+-dependent exocytosis of
electron dense vesicles during myoblast fusion (Hornbruch-
Freitag et al., 2011).

Swip-1 contains a disordered region at the N-terminus that
varies across species, two functional EF-hand domains, a connecting
short α-helix called ligand mimic (LM) helix and a coiled-coil (CC)
domain at its C-terminus allowing self-dimerization (Avramidou
et al., 2007; Vega et al., 2008; Hagen et al., 2012; Ferrer-Acosta et al.,
2013). After gene duplication in Euteleostomi, the efhd2 gene was
duplicated giving rise to the efhd1 gene encoding EFHD1/Swiprosin-
2 (Swip-2) (Dutting et al., 2011). While Swip-2 also binds Ca2+, it
localizes in the inner mitochondria membrane and will therefore not
be further discussed here. Although it is known that the
cytoplasmically expressed Swip-1 binds F-actin (Huh et al., 2013;
Kwon et al., 2013; Huh et al., 2015; Tu et al., 2018), the localization
and number of ABDs has not been fully addressed, yet. Most
probable, a binding site is located within the first EF-hand
domain because its deletion has been shown to sufficiently
dimmish F-actin binding (Moreno-Layseca et al., 2021). Swip-1’s
role in cell motility and lamellipodia formation has been established
(Huh et al., 2013; Kwon et al., 2013), but the mechanism how it
regulates the underlying necessary F-actin rearrangements in
response to Ca2+ has only recently been elucidated (Lehne et al.,
2022). In vivo studies in Drosophila showed that Swip-1 is enriched
in the forming lamellipodium of both migrating immune cells and at
epidermal wound edges where it drives the initial phase of wound
healing to re-establish tissue integrity (Lehne et al., 2022). In the
absence of Ca2+, Swip-1-mediated cross-links stabilizes the F-actin
network while Ca2+ binding to Swip-1 results in transient cross-
links. Therefore, upon Ca2+ binding to Swip-1, the actin meshwork
becomes relaxed making the filaments accessible for severing and
branching (Figure 2). Amodel has been proposed in which increased
Ca2+ concentrations reduce Swip-1 cross-linking activity to promote
rapid reorganization of existing actin networks, to drive fast and
efficient epithelial wound closure by extension of newly formed
lamellipodia (Figure 2). Defective constriction of the wound margin
in mutant epidermal cells further suggests that Swip-1 function
might also be involved in the subsequent formation of the contractile
supracellular acto-myosin ring forming along the wound margin
(Figure 2; Lehne et al., 2022). Thus, Swip-1 could act as a Ca2+ sensor
protein responding to the transient local changes of Ca2+

concentration at the leading edge of migrating cells and in
wounded epidermis (Lehne et al., 2022).

Human Swip-1 also bundles efficiently actin filaments,
however this activity is calcium-insensitive (Lehne et al., 2022).
Of note here, Ca2+ concentrations of up to 1 mM did not
completely abolish Swip-1-mediated cross-links but only
shifted them from stable to transient. Structurally, binding of
Ca2+ at the two EF-hands does not alter the overall secondary
structure nor the actin-binding properties (Ferrer-Acosta et al.,
2013). However, it is believed that upon depletion of Ca2+ the local
conformation at the EF-hand domains and LM helix becomes
more flexible (Park et al., 2016). Because recent findings have been
contradictory in regards to positive or negative regulation of Swip-
1 by Ca2+, the underlying structural changes and how it influences
Swip-1 cross-linking activity are of great interest. Remarkably, a
recent study also identified a calcium-independent role of Swip-1
in regulated exocytosis where it contributes to the recruitment of
Rho-GTPase regulating actomyosin activity to drive proper
vesicle membrane crumpling and expulsion of cargo (Lehne
and Bogdan, 2023).
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Conclusion and future perspectives

Ca2+ is an important second messenger, whose change in
concentration induces and controls spatiotemporally pathways of
many physiological processes such as proliferation or cell death and
many processes dependent on cell migration such as development,
immune response or cancer metastases (Clapham, 2007; Evans and
Falke, 2007; Tsai et al., 2015). The main pillars of cellular migration
are protrusions, forming new adhesion sites allowing traction force
generation and lastly release of the cell rear by dissolving mature
adhesions (Lauffenburger and Horwitz, 1996). These processes rely
on dynamic cellular changes where Ca2+-dependent actin cross-
linkers can respond to the fast-acting second messenger. Low
cytoplasmic Ca2+ concentration at the protruding edge would
stabilize F-actin cross-links that can be rearranged by local Ca2+

pulses while high Ca2+ at the trailing edge destabilizes adhesion
complexes (Drmota Prebil et al., 2016). It is therefore not surprising
that aberrant Ca2+ signaling as well as the described cross-linkers, α-
actinin, plastins and Swip-1, all have been implicated in migration-
linked pathologies such as invasive cancers (Shinomiya, 2012; Huh
et al., 2015; Tsai et al., 2015). A common theme seems to be that on a
structural level, binding of Ca2+ influences protein domain flexibility

through interdomain cross-talk. Further investigations like
comparing Ca2+-bound and -unbound states can help elucidate
the regulatory mechanisms of structural changes and possibly
uncover new strategies for cancer treatment.

Not to be dismissed, actin cross-linkers inherently bind actin so
other regulating mechanisms independently of their bundling
activity are conceivable such as regulating actin turnover. For
instance, Swip-1 has been implicated to regulate small Rho
GTPases (Huh et al., 2015; Lehne and Bogdan, 2023) and has
been shown to regulate actin depolymerization by recruiting
cofilin (Huh et al., 2013). On the other hand, T-plastin has been
suggested to control actin turnover by displacing cofilin therefore
decreasing the actin depolymerization rate and possibly recruiting
other ABPs such as α-actinin (Giganti et al., 2005). This also shows
that functional cross-linker synergy poses interesting new ways of
deciphering dynamic actin cytoskeleton regulation. In line with this,
for future investigations and interpretation of obtained results one
should also consider that the concentration of a cross-linking
protein is crucial for its function (Lieleg et al., 2010). For
example, α-actinin has been shown to cross-link actin at low but
bundle it at high concentrations (Tseng et al., 2002; Lieleg et al.,
2010). Thus, in vitro experiments are crucial to dissect how

FIGURE 2
Swip-1 cross-linked lamellipodial actin networks drive single cell migration and epithelial wound closure. Upper panel: Schematic of the in vivo
model to study calcium-dependent wound healing in the abdominal epidermis inDrosophila. Laser-induced single-cell ablation starts at t = 0 min. In the
first two minutes (t = 2 min) F-actin assembled into broad lamellipodial protrusions within cells at the wound edge; lamellipodial protrusions reached a
maximum size between 5–10 min after wounding. Later on (t = 15 min) lamellipodia formation decreased and a supracellular acto-myosin ring is
formed at the leading edge of the wound, contracted laterally to pull cells forward and increasingly contributes to wound closure. Lower panel:
Schematic showing the proposed role of Swip-1 in regulating lamellipodial actin networks and supracellular acto-myosin rings upon laser-induced
single-cell wounding within the epidermis (see also text; adapted from Lehne et al., 2022). Left: The actin crosslinking activity of Swip-1 (blue spheres)
synergizes with WRC-Arp2/3-branched actin nucleation (red stars) promoting generation of a stable and densely branched actin filament network.
Plasma membrane damage or mechanical activation of calcium channels (green) allows a rapid reorganization of the actin cytoskeleton through Swip-1.
Right: After initial calcium wave propagation, the levels of intracellular calcium decreased mediated by special pumps (green) like the sarcoendoplasmic
reticular calcium ATPases (SERCA) which constantly remove calcium from the cytoplasm to the ER lumen. A supracellular actin-myosin ring is formed
stabilized by stable actin cross-links induced by Swip-1.
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nanoscale structural changes of a cross-linking protein can alter the
mesoscale geometric and mechanical properties of the actin
cytoskeleton network. On the other hand, the limitations of
in vitro studies should be emphasized. ABPs often interact with
multiple proteins that integrate signaling pathways between the
plasma membrane and the actin cytoskeleton in a living cell. Thus,
structure-function in vivo studies using genetic model systems such
as Drosophila will further improve our understanding of how the
cross-linkers function in a physiological context.
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