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The process of macroautophagy plays a pivotal role in the degradation of long-
lived, superfluous, and damaged proteins and organelles, which are later recycled
for cellular use. Normal cells rely on autophagy to combat various stressors and
insults to ensure survival. However, autophagy is often upregulated in cancer cells,
promoting a more aggressive phenotype that allows mutated cells to evade death
after exposure to therapeutic treatments. As a result, autophagy has emerged as a
significant factor in therapeutic resistance across many cancer types, with
underlying mechanisms such as DNA damage, cell cycle arrest, and immune
evasion. This review provides a comprehensive summary of the role of autophagy
in therapeutic resistance and the limitations of available autophagic inhibitors in
cancer treatment. It also highlights the urgent need to explore new inhibitors that
can synergize with existing therapies to achieve better patient treatment
outcomes. Advancing research in this field is crucial for developing more
effective treatments that can help improve the lives of cancer patients.
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Introduction

Cancer remains one of the most significant health concerns and a leading cause of death,
with a reported worldwide mortality rate of nearly 10 million in 2020 (World Health
Organisation, 2020). Advances in early detection and treatments have increased overall
survival, with most improvements seen in low-grade cancers. Despite this, survival rates in
metastatic cancers remain relatively poor, which can be attributed to the complex nature of
treating cancers and therapeutic resistance (Weiss et al., 2022).

Therapeutic resistance is the resistance towards a therapy that the cells either innately
have or develop after exposure to the treatment. Many cellular adaptions may affect this, one
of which is autophagy, the focus of this review. Addressing the role of autophagy in drug
resistance has been a primary focus of efforts in recent years. Autophagy is a molecular
process where organelles and non-essential proteins are degraded to provide energy and
nutrients for the cell in response to cellular and environmental stresses. There are three
mammalian pathways: chaperone-mediated autophagy (CMA), microautophagy and
macroautophagy. Of these three types of autophagy, macroautophagy has been the most
studied and will be referred to as autophagy hereafter. All three pathways vary in how they
transport and target proteins, but they all culminate and achieve the degradation of materials
at the lysosome.
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Understanding the role of autophagy in various cancers has led
to the research and development of autophagy and lysosomal
inhibitors, where pre-clinical studies have demonstrated
promising results, with many agents progressing to clinical trials
as stand-alone treatments or in combination with standard of care
therapeutics. Of note, most current lysosomal inhibitors are
repurposed agents, previously being used for diseases like
malaria, and have thus progressed to the clinic faster than those
in early development. The research discussed in this review
highlights the advances within this area as well as the potential
limitations of their use. Examination of recent evidence for their use
will be used to reveal current knowledge gaps that contribute to their
current limitations and how these can be potentially overcome.
Thereby, gaining a better understanding and sense of the autophagic
process being an effective treatment target for advanced cancers in
the future.

Macroautophagy

Autophagy is one of two central and essential degradative
cellular processes, the other being the highly specialised and
specific proteasomal degradation pathway (ubiquitin-proteasome
system). Autophagy is mainly responsible for degrading superfluous,
long-lived, damaged, dysfunctional proteins, protein aggregates,
oligomers, and organelles. This process helps to maintain cellular
homeostasis and is essential in preventing the toxic build-up of these
materials.

It primarily functions to break down proteins and organelles
into their base components, like glucose, ATP, amino acids and fatty

acids (Lin et al., 2021), as a source of recyclable molecules for use by
the cell. Creating these substrates helps support the cell’s metabolism
and also helps supply the building blocks for the synthesis of new
materials (Kaushik et al., 2010). In addition, autophagy has several
other cytoprotective roles that include but are not limited to
removing toxic proteins, damaging DNA, eliminating invasive
microbes, and participating in antigen presentation. Its activation
is stimulated by the traditional starvation stimuli and several
additional stresses, including growth factor deprivation, hypoxia,
reactive oxygen species (ROS), DNA damage and intracellular
pathogens (He and Klionsky, 2009; Ravikumar et al., 2009; Ma
et al., 2013; Vessoni et al., 2013; Yonekawa and Thorburn, 2013).
These roles make macroautophagy a unique cell survival mechanism
that prevents oncogenic/tumorigenic transformations at the early
stages of cancer development. However, it becomes fundamental at
later stages of cancer progression as it maintains an aggressive
cancer phenotype through providing an alternate nutrient and
amino acid source. Furthermore, autophagy has been shown to
support the cellular changes observed in the aggressive phenotypes
such as the epithelial to mesenchymal transition (Fung et al., 2008).
This “pathologic” autophagic activity has been shown to reduce the
efficacy of cancer treatments facilitating resistance by various
mechanisms, as outlined in this review.

Mechanisms

Macroautophagy is a process where an autophagosome engulfs
organelles and proteins by developing a double membrane vesicle
called the phagophore, which delivers cytoplasmic materials to the

FIGURE 1
Mammalian macroautophagy and autophagy modulators. Autophagosome formation occurs when mTOR and other signalling pathways activate
the ULK1 complex. Subsequently, the phagophore is elongated by stimulating the Atg5-Atg12-Atg16 complex. This process continues onto the
maturation of the autophagosome with the ubiquitin-like reaction, which converts LC3-I to LC3-II. After this, the mature autophagosome fuses with the
lysosome to form the autolysosome, which utilises enzymes to degrade proteins and organelles encapsulated by the autophagosome. The resulting
material is recycled. Created with BioRender.com.
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lysosome (illustrated in Figure 1) (Itakura and Mizushima, 2010).
The lysosome and the autophagosome fuse to form the
autolysosome, making it possible to degrade and recycle the
cytoplasmic proteins and organelles (Itakura and Mizushima,
2010). The autophagosome is regulated by stress stimuli, which
initiates a stepwise process: initiation/nucleation, elongation, and
maturation of the phagophore (the precursor to the
autophagosome) (Ravikumar et al., 2009). The process detailed
below is known as the canonical pathway, as opposed to the
non-canonical pathway that will not be discussed in this review
and is a process that achieves degradation via the lysosome without
the activation of hierarchical Atg’s.

Phagophore initiation/nucleation

The phagophore membrane formation is still poorly understood
in mammals. The formation of the autophagosome from the
phagophore is initiated at multiple sites throughout the
cytoplasm (Itakura and Mizushima, 2010; Feng et al., 2013; Puri
et al., 2013). The membrane components of the phagophore have
been suggested to be derived from numerous sources (Nakatogawa,
2020), including the endoplasmic reticulum–Golgi intermediate
compartment (ERGIC) (Ge et al., 2013; Tan et al., 2013), plasma
membrane (Ravikumar et al., 2010), endoplasmic reticulum (ER)
(Sanchez-Wandelmer et al., 2015), endosome (Longatti et al., 2012;
Knævelsrud et al., 2013), and is sourced from the cargo itself such as
the mitochondria (Yamashita and Kanki, 2017). However, it is most
likely a combination of these that varies depending on the cellular
context, and cargo carried (Kojima et al., 2021).

This initiation is a stepwise process with the initial activation of
the unc-51-like autophagy activating kinase (ULK1/2) complex,
which includes focal adhesion kinase family interacting protein of
200 kDa (FIP200 RB1CC1), autophagy-related protein 13 (Atg13),
and autophagy-related protein 101(Atg101). The activity of this
complex is inhibited by the mammalian target of rapamycin
(mTORC1) or specifically mTOR complex 1 through
phosphorylation of ULK1/2. mTORC1 is involved in cell growth
and proliferation, and its downstream targets are eukaryotic
initiation factor (eIF), 4E-binding protein 1 (4EBP1) and
ribosomal S6 protein kinase 1 (SK61). Its activity is sensitive to
stress signals, particularly nutrient deprivation, or chemical
inhibition with rapamycin directly or indirectly via other
molecules such as AMP-activated protein kinase alpha subunit
(AMPKα) activation, which block mTORC1. All result in
releasing the inhibitory effects of mTORC1 and facilitating
autophagy activation through the ULK1/2 complex (Chan et al.,
2009; Hosokawa et al., 2009; Alers et al., 2012; Shi et al., 2020). The
activated ULK1/2 complex interacts with the phagophore and PI3K
complex. This interaction between these complexes, and the
phagophore is suggested to be maintained by autophagy-related
protein 9 (Atg9). Atg9 is also responsible for all membrane
trafficking to the growing autophagosome; furthermore, it has
been observed that the activity of Atg9 is dependent on
ULK1 and PI3K complexes (Figure 1) (Ravikumar et al., 2009;
Orsi et al., 2012; Karanasios et al., 2016; Guardia et al., 2020; Mailler
et al., 2021). The PI3K complex consists of beclin1,
phosphatidylinositol 3-kinase catalytic subunit type 3 (VPS34 or

PI3KC3), vacuolar protein sorting 15 (VPS15) and autophagy-
related protein 14 (Atg14). Because of its activation, it recruits
phosphatidylinositol 3-phosphate (PI3P) to enable the elongation
of the autophagosome and allow binding to WD-repeat protein
interacting with phosphoinositides (WIPI). This binding of WIPI
facilitates the recruitment of the autophagy-related 16-like 1
(Atg16L) complex.

Phagophore elongation and maturation of the
autophagosome

Following phagophore formation is phagophore elongation,
which involves many molecules and interactions, including the
Atg12 conjugating system and two ubiquitin systems (Bhutia
et al., 2013). The ubiquitin-like E1 enzyme (Atg7) and the
ubiquitin-like E2 enzyme (Atg10) covalently conjugate Atg5 to
Atg12 (Ravikumar et al., 2009; Li et al., 2017). The conjugated
Atg5-Atg12 also non-covalently binds with Atg16L to form the
Atg5-Atg12-Atg16L complex (Figure 1) (Li et al., 2017).

Autophagosome formation begins when LC3 is cleaved by Atg4 to
produce LC3-I (Kabeya et al., 2000; Ravikumar et al., 2009; Bhutia et al.,
2013). Next, the ubiquitin-like E1 enzyme Atg7 conjugates LC3-I to the
lipid phosphatidylethanolamine (PE) to form LC3-II in a second
ubiquitin system. LC3-II is the only Atg member to be in direct
contact with the membrane of the autophagosome, and thus levels
indicate the number of autophagosomes, where increased levels indicate
more autophagosomes and vice versa (Kabeya et al., 2000; Ravikumar
et al., 2009). Finally, the autophagosome completes its maturation and
fuses closed. The removal of PI3P and Atg’s from the outer surface
coincides, but the exact mechanisms or relationship of this final step in
maturation is yet to be elucidated in the mammalian system, but in
yeast, it is facilitated by Atg4 (Galluzzi et al., 2017). Evidence suggests
that Atg12 and LC3-I conjugation are the leading mechanisms behind
autophagosome maturation (Figure 1) (Ravikumar et al., 2009; Li et al.,
2017).

Autophagosome-lysosome fusion
The mature autophagosome fuses with the lysosome to create

the autolysosome (Figure 1) (Lőrincz and Juhász, 2020). This
process begins when motor and coupling proteins like dynein,
kinesins (KIFs 1-2), Rab7, and Arl8 facilitate the movement and
contact between the two organelles (Harada et al., 1998; Brown et al.,
2005; Korolchuk et al., 2011; Rosa-Ferreira and Munro, 2011; Xing
et al., 2021a). Once in contact, they are tethered to each other with
protein complexes that bind to GTPases present on the surface of
each organelle. Homotypic fusion and vacuole protein sorting
(HOPS) are proteins essential to this tethering process (Bröcker
et al., 2012). It can tether the two organelles together as it contains
two binding subunits (VPS41 and VPS39) on each end that
recognise and bind to various proteins in both the
autophagosome and lysosome (Bröcker et al., 2012). Proteins
binding to the HOPS complex include syntaxin 17 (STX17) on
the autophagosome, the GTPase Arl8b on the lysosome, and the
GTPase Rab7 adaptor proteins PLEKHM1 and RILP which are
present on both organelles (Jiang et al., 2014; Khatter et al., 2015;
McEwan et al., 2015; van der Kant et al., 2015; Lőrincz and Juhász,
2020). Once tethered, the SNARE family of proteins mediates the
fusion of the organelles. The major players are the lysosomal
R-SNARE proteins VAMP8/VAMP7 and the autophagosome
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Q-SNARE proteins STX17 and SNAP-29 (Jiang et al., 2014; Saleeb
et al., 2019). The regulation of this activity is shown to increase when
UV radiation resistance-associated (UVRAG) binds the PI3K
complex, or conversely, the binding of rubicon (RBCN) inhibits
it (Galluzzi et al., 2017; Xing et al., 2021b; Tremel et al., 2021). The
final step in the degradation process is the release of hydrolase
enzymes from the lysosome into the autophagosome, where the
contents are broken down to their constituents and then exported
through the autolysosome membrane to the cytosol. Then the
autolysosome is degraded, and the lysosomal components are
stored for the development of lysosomes at a later stage (Noda
et al., 2009; Chen and Yu, 2017; Nakamura and Yoshimori, 2017;
Reggiori and Ungermann, 2017; Yu et al., 2018; Shrestha et al., 2020;
Gatica et al., 2021).

Autophagy regulation

The regulation of autophagy is dependent on nutrient signalling
pathways, including the mammalian target of rapamycin (mTOR)

and AMP-activated protein kinase (AMPK) (He and Klionsky, 2009;
Jung et al., 2010). Whilst other pathways and molecules have been
implicated in the regulation of autophagy, these two are commonly
studied and understood.

Mammalian target of rapamycin (mTOR)

The mTOR pathway is activated through nutrient starvation,
cellular/environmental stresses (hypoxia, osmotic stress, heat shock,
ROS, DNA damage, ER stress, decreased trophic factors) and reduced
growth factor signalling (Jung et al., 2010). These stimuli start an
autophagy signalling cascade by inhibiting mTORC1 (protein complex
consisting of mTOR, GβL, RAPTOR, and PRAS40) (Jung et al., 2010).
mTORC1 normally inhibits the ULK1 complex; thus, by suppressing
mTORC1, the ULK1 complex becomes stimulated (Figure 2) (Ganley
et al., 2009; Jung et al., 2009; Kim et al., 2011). The ULK1 complex
activates downstream signalling complexes upon stimulation, leading to
phagophore formation (Chan et al., 2009). Additionally, the PTEN/
PI3K/Akt pathway is a known negative regulator of mTOR. Upon
activation via factors like insulin/IGF, PI3K phosphorylates and
stimulates Akt. Akt activation then facilitates the phosphorylation of
TSC2 and PRAS40, activating mTOR (Figure 2) (Memmott and
Dennis, 2009). PTEN, when activated, acts to inhibit PI3K and is
controlled upstream by p53. Thus, oncogenic transformations and
genotoxic stress, which stimulate p53, can also inhibit mTOR
(Figure 2) (Levine and Abrams, 2008). In many cancers,
mTORC1 is observed to be upregulated, and this is often a
consequence of mutations or hyperactivation of upstream regulators
Akt, PI3K and RAS or suppression of inhibitory regulators such as liver
kinase B1 (LKB1), the phosphatase tensin homolog deleted on
chromosome 10 (PTEN) and tuberous sclerosis proteins 1 and 2
(TSC1/2).

AMP-activated protein kinase (AMPK)
The AMPK pathway is the crucial homeostatic regulator of ATP

levels in the cell and responds to mitochondrial stress (Herzig and
Shaw, 2018). The AMPK signalling pathway can initiate autophagy
by influencing numerous proteins, including mTORC1, ULK1, and
Beclin1 (Figure 2) (Wang et al., 2022). Under glucose deprivation,
AMPK facilitates ULK1 and Beclin1 activation via phosphorylation
at specific sites (Chan et al., 2009; Kim et al., 2011; Zhang et al.,
2016). ULK1 and Beclin1 are essential molecules for canonical
autophagy initiation, and thus AMPKs’ ability to stimulate these
molecules makes it a key regulator. AMPK also indirectly activates
ULK1 through mTOR. In response to starvation, AMPK
phosphorylates raptor, a key regulator of mTORC1 (Gwinn et al.,
2008). Upon phosphorylation, raptor, a family of proteins known as
14-3-3, binds to and inactivates mTORC1; this subsequently
activates the downstream autophagy initiation pathways
(Figure 2) (Gwinn et al., 2008; Lee et al., 2010).

Autophagy and therapeutic resistance
in cancer

Cancer resistance to therapeutics has been an ongoing issue since
the inception of cancer treatment. Enduring efforts have discovered

FIGURE 2
Autophagy regulation. Autophagy initiation is stimulated in
response to nutritional stress, genotoxic stress, and various other
stresses. A prominent player in autophagy regulation is the mTOR
pathway and mTORC1. Once activated, mTORC1 stimulates the
ULK1 complex and the downstream signalling cascade results in
autophagy formation. The mTORC1 complex is stimulated by several
upstream targets, including the PTEN/PI3K/Akt axis, amino acids, and
AMPK. In addition, AMPK can also directly stimulate ULK1 and Beclin 1,
leading to autophagosome formation. Created with BioRender.com.
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TABLE 1 Summary of the effect autophagy modulators have on therapeutic resistance in cancer.

Intervention Mode of action Effect on
autophagy

Cancer Treatments Effect on
resistance

References

CQ Autophagosome-lysosome fusion
inhibitor and/or lysosomal lumen
alkalizer

Inhibits CML SAHA Decreases Carew et al. (2007)

BRAF-mutant
brain cancer

Vemurafenib,
Trametinib

Decreases Levy et al. (2014)

Colon Oxaliplatin, BEV Decreases Selvakumaran et al. (2013)

NSCLC Crizotinib, Erlotinib,
Lidamycin, Ceritinib,
Icotinib

Decreases, no
change

Zou et al. (2013), Ji et al.
(2014), Liu et al. (2014),
Datta et al. (2019), Schläfli
et al. (2021), Lyu et al. (2022)

GBM BEV, TMZ, Curcumin Decreases Hu et al. (2012), Encouse
et al. (2014), Zanotto-Filho
et al. (2015), Huang et al.
(2018b)

B cell lymphoma Tamoxifen,
Cyclophosphamide

Decreases Amaravadi et al. (2007)

Cutaneous
squamous cell
carcinoma

Luteolin Decreases Verschooten et al. (2012)

Ovarian Cisplatin Decreases Yan et al. (2019), Hwang
et al. (2020)

Prostate Enzalutamide,
AZD5363, Apalutamide

Decreases Lamoureux and Zoubeidi
(2013), Nguyen et al. (2014),
Eberli et al. (2020)

HCC Sal Decreases Jiang et al. (2023)

Bladder Lapatinib, Gefitinib Decreases Kang et al. (2017)

3-MA Autophagosome formation
inhibitor; PI3K class III and class I
inhibitor; binds to ATP binding
site of PI3K

Inhibits Bladder Lapatinib, Gefitinib Decreases Kang et al. (2017)

CML SAHA Decreases Carew et al. (2007)

GBM TMZ, Curcumin Decreases,
increases

Kanzawa et al. (2004),
Encouse et al. (2014),
Filippi-Chiela et al. (2015),
Zanotto-Filho et al. (2015)

Head and Neck RITA Decreases Shin et al. (2017)

Prostate AZD5363, Apalutamide Decreases Lamoureux and Zoubeidi
(2013), Eberli et al. (2020)

NSCLC Icotinib No change Lyu et al. (2022)

Gastric Epirubicin, Cisplatin,
5-FU

Decreases Ge et al. (2014)

Breast Camptothecin Decreases Abedin et al. (2007)

Tongue Erlotinib No change huang and liu (2016)

BafA1 Autophagosome-lysosome fusion
inhibitor; blocks vacuolar-type H
(+)-V-ATPase machinery

Inhibits Bladder Lapatinib, Gefitinib Decreases Kang et al. (2017)

GBM TMZ Decreases Kanzawa et al. (2004),
Filippi-Chiela et al. (2015)

NSCLC Ceritinib, Icotinib Decreases Schläfli et al. (2021), Lyu
et al. (2022)

Breast Camptothecin Decreases Abedin et al. (2007)

prostate AZD5363 Decreases Lamoureux and Zoubeidi
(2013)

(Continued on following page)
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numerous biological alterations in resistant cancers, a more recent one
being that of autophagy (Paglin et al., 2001; Sotelo et al., 2006; Abedin
et al., 2007; Amaravadi et al., 2007; Carew et al., 2007; Sun et al., 2011;
Zou et al., 2012). In recent years, the development and discovery of
autophagic inhibitors have shown promising results in decreasing
therapeutic resistance in numerous cancers (Li et al., 2017; Mele
et al., 2020). Underpinning this is mounting evidence demonstrating
that the genetic ablation (including knockdown and knockout) of
numerous autophagic genes increases therapeutic sensitivity (Chen
et al., 2014a; Encouse et al., 2014; Kriel et al., 2018). However, its
potential in helping cancer treatment extends past this, with evidence
suggesting that it helps decrease proliferation, migration, and invasion
(Medici et al., 2008; Gao et al., 2010; Catalano et al., 2015; Mowers et al.,
2017; Colella et al., 2019).

Furthermore, studies using knockdowns of Atg’s and autophagy
inhibitors have demonstrated that autophagy inhibition increases
the efficacy of a range of therapeutics (Yang et al., 2011). The re-
sensitising effect that autophagy inhibitors have had on cancer cell
lines and mouse models has been shown in a plethora of cancers,
including, BRAF-mutant brain cancers and thyroid cancers, bladder
cancer, non-small-cell lung cancer (NSCLC) and ALK-positive
NSCLC (Ji et al., 2014; Levy et al., 2014; Ma et al., 2014; Chen
and Shi, 2016; Wang et al., 2016; Kang et al., 2017). Table 1
summarises some of the available research on current autophagy
inhibitors’ effect on therapeutic resistance in cancer.

Research demonstrating the effect of autophagy inhibition on
therapeutic efficacy is readily available; however, the mechanism
underlying autophagy’s involvement is still poorly understood. The

TABLE 1 (Continued) Summary of the effect autophagy modulators have on therapeutic resistance in cancer.

Intervention Mode of action Effect on
autophagy

Cancer Treatments Effect on
resistance

References

HCQ Autophagosome-lysosome fusion
inhibitor and/or lysosomal lumen
alkalizer

Inhibits BRAF-mutant
thyroid

Vemurafenib Decreases Wang et al. (2016)

Melanoma PLX4720 Decreases Ma et al. (2014)

GBM TMZ, BEV Decreases, no
change

Buccarelli et al. (2018), Kriel
et al. (2018), Liu et al. (2019)

tongue Erlotinib Decreases huang and liu (2016)

Lung Trametinib Decreases Bhatt et al. (2023)

Rapamycin Autophagosome formation
inhibitor; mTOR inhibitor; forms
a complex with FKBP12 which
binds to and inhibits mTORC1

Activates GBM TMZ, Radiation Increases,
decreases

Zhuang et al. (2011),
Filippi-Chiela et al. (2015),
Kriel et al. (2018)

Osteosarcoma Gemcitabine Decreases Ando et al. (2020)

Tongue Erlotinib Increases huang and liu (2016)

Breast Resveratrol,
Doxycycline

Decreases, no
change

Alayev et al. (2015), Dankó
et al. (2021)

ACY-241 Unknown activator of autophagy Activates Pancreatic Erlotinib Increases Park et al. (2021)

Clomipramine Autophagosome-lysosome fusion
inhibitor of unknown mechanism

Inhibits Prostate Enzalutamide Decreases Nguyen et al. (2014)

Metformin Autophagosome formation
inhibitor; AMPK activation/
mTOR inhibition via increased
phosphorylation

Inhibits Prostate Enzalutamide Decreases Nguyen et al. (2014)

IL-6 Activator of autophagosome
formation; regulates
PI3KC3 complex formation via
phosphorylation of BECN11

Activates Colorectal Oxaliplatin, 5-FU Increases Hu et al. (2021)

Lys05 Autophagosome-lysosome fusion
inhibitor and/or lysosomal lumen
alkalize

Inhibits Melanoma PLX4720 Decreases Ma et al. (2014)

VPS34-IN1 Autophagosome formation
inhibitor; PI3K class III inhibitor;
potentially binds to the PtdIns(3)
P-binding PX domain

Inhibits NSCLC Ceritinib Decreases Schläfli et al. (2021)

Wortmannin Autophagosome formation
inhibitor; targets and inhibits all
PI3Ks

Inhibits Breast Camptothecin Decreases Abedin et al. (2007)

GBM, glioblastoma; NSCLC, non-small cell lung cancer; CML, chronic myeloid leukaemia; TMZ, temozolomide; 3-MA; 3-Methyladenine, HCQ; hydroxychloroquine, CQ; chloroquine, BafA1;

Bafilomycin A1, SAHA; suberoylanilide hydroxamic acid, IL-6; interleukin 6, HCC, hepatocellular carcinoma, Sal; Salidroside, 5-FU; 5-Fluorouracil.
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current knowledge gap contributes to the lack of robust autophagic
inhibitors in development.

Pharmacological activators of
autophagy

To be comprehensive and give insight into the canonical pathway,
autophagic activation has to be considered. Classically autophagy is
induced by nutritional deprivation and can be replicated in pre-clinical
studies with glucose withdrawal and amino acid deprivation (Klionsky
et al., 2021). Several pharmacological agents can induce autophagy by
inhibiting negative or activating positive regulators within the canonical
pathways. These included AMPK activation through agents such as
metformin, quercetin, resveratrol, and mTOR inhibition through
rapamycin (Figure 1).

Rapamycin

Rapamycin is an antifungal metabolite produced by Streptomyces
Hygroscopicus, which is a bacterium that resides in soil. It was observed
that rapamycin binds to12-kDa FK506-binding protein (FKBP12) to
form a complex that binds to mTORC1 and inhibits its activity. It has
been shown to have activity against mTORC2 with prolonged use but
does have greater specificity for mTORC1 (Li et al., 2014).
mTORC1 directly controls protein synthesis and regulates metabolic
pathways, particularly glycolysis. Rapamycin inhibition of mTORC1 to
induce autophagy in yeast and most mammalian cells has resulted in it
being used extensively in studying the mechanisms and actions of
autophagy (Nyfeler et al., 2011; Klionsky et al., 2021).

Therefore, the potential for inhibiting mTORC1 with rapamycin
was a promising cancer therapeutic; however, it was deemed not feasible
due to solubility issues and its pharmacokinetics. Since then, there has
been the development of analogues with improved solubility and
pharmacology, which have included temsirolimus and everolimus.
These analogues are approved by the Food and Drug
Administration (FDA) in the USA for the treatment of
angiomyolipomas, HER2-negative breast cancers, pancreatic
neuroendocrine tumours, renal cell carcinomas and subependymal
giant cell astrocytoma, and are being tested in numerous cancers in
various clinical trial regime (Roskoski, 2019). However, despite
improving the targeting of mTORC1 with these rapamycin
analogues, their efficacy has overall been disappointing due to
resistance and off-target effects (Hua et al., 2019).

Pharmacological inhibitors of autophagy

Currently, two main classes of autophagy inhibitors will be the
focus of this review. These are PI3K inhibitors that stop
autophagosome formation and lysosomal inhibitors that prevent
proper lysosome acidification (Figure 1).

PI3K inhibitors
PI3K inhibitors comprise chemical compounds that inhibit the

PI3K complex and, thus, autophagy initiation in the canonical
pathway, as previously discussed (Figure 1). The PI3K family is

divided into classes I, II and III, with numerous isoforms within
classes I and II. PI3K class I isoforms form part of the Akt mTOR
axis and regulate growth, metabolism, cellular movement, and
protein synthesis. PI3K class II isoforms are involved in
endocytosis, mitosis, and cell migration. The class III enzyme is
involved in autophagy and extra vesicle trafficking. Thus ideally,
PI3K inhibitors would be targeted towards class III enzymes;
however, until recently, inhibitors have lacked this specificity.
The most common inhibitors include 3-Methyladenine (3-MA),
Wortmannin and LY294002 (Arcaro and Wymann, 1993; Powis
et al., 1994; Vlahos et al., 1994; Wu et al., 2010).

One of the most commonly used autophagic inhibitors in pre-
clinical studies over the last decade has been that of 3-MA. 3-MA
inhibits VPS34 by binding to its ATP binding site. 3-MA inhibits the
class III PI3K only transiently whilst blocking class I PI3K more
persistently (Wu et al., 2010). In addition, it only suppresses
autophagy under starvation conditions and in fact promotes
autophagy in complete media, similar to rapamycin and the
suppression of mTOR (Wu et al., 2010). Therefore, further
research using 3-MA as an autophagy inhibitor should
potentially be discontinued due to this uncertainty and the
availability of more selective autophagy inhibitors. In addition, its
poor solubility has severely limited its use in several settings,
including clinical studies. However, derivatives of 3-MA have
been developed and have improved solubility and specificity to
class III PI3K (Wu et al., 2013). Thus, these derivatives should be
used going forward.

A few recent studies have proven efficacious in treating
colorectal cancer cells in hypoxic conditions with 3-MA causing
apoptosis (Dong et al., 2019). Another has shown that treatment in
head and neck cancers with reactivation of p53 and induction of
tumour cell apoptosis (RITA). The treatment potential of RITA has
been limited to date due to resistance which can be overcome with
the addition of 3-MA (Shin et al., 2017). Curiously, both studies
presented LC3 levels to represent autophagy but did not show any
PI3K class I activity to ascertain if this pathway had a role.
Additionally, a study that examined the efficacy of various PI3K
inhibitors; 3-MA, the newer derivative Autophagy inhibitor IV,
more commonly referred to as Compound 18 (Cpd18) (Wu
et al., 2013), SAR-405 and lysosomal inhibitors demonstrated
that 3-MA was the most effective at reducing cell viability across
cell lines compared to Cpd18, SAR-405 and lysosomal inhibitors.
However, it was shown that 3-MA induced DNA damage resulting
in subsequent cell death. It was also shown that 3-MA had aminimal
inhibitory effect on PI3K class I downstream targets. Moreover, both
Cpd18 and SAR405 were found to have no effect on the PI3K class I
targets (Chicote et al., 2020).

Alternative drugs to 3-MA include Wortmannin and
LY294002. Wortmannin transiently blocks PI3K class I but
persistently blocks PI3K class III (Powis et al., 1994; Wu et al.,
2010) and LY294002, an analogue of the naturally occurring
compound Quercetin, specifically targets and inhibits PI3K
activity (Vlahos et al., 1994).

SAR-405 is a first-in-class ATP-competitive inhibitor of
VPS34 and was identified through high throughput small
molecule screening. Its activity is specific to VPS34, inhibiting
autophagy and late endosome to lysosome trafficking (Pasquier,
2015; Bago et al., 2016). Interestingly, it has been shown that the
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SAR-405 IC50 significantly decreases when an mTOR inhibitor
induces autophagy. Therefore, a study into the combination of SAR-
405 and mTOR inhibitor everolimus showed increased cytotoxicity
in renal cancer cell lines (Ronan et al., 2014; Pasquier, 2015). More
recently, it has been shown to induce inflammation within the
tumour and provide an environment for the successful use of
immunotherapeutic agents in vivo in melanoma and colorectal
cancer models (Noman et al., 2020). In addition, evidence shows
that SAR-405 ameliorates radiotherapy-induced mitophagy and
improves tumour refraction when radiotherapy is combined with
SAR-405 in head and neck cancer in vivo (Lee et al., 2021).

VPS34-IN1 is a specific and potent VPS34 inhibitor, and its
mechanisms of action are suggested to be through its PtdIns(3)P-
binding PX domain but are yet to be fully elucidated (Bago et al.,
2014). A recent study showed improved efficacy of Ceritinib with
VPS34-IN1 in treating non-small cell lung cancer cells and reduced
cell survival (Schläfli et al., 2021). Ceritinib is an anaplastic
lymphoma kinase (ALK) inhibitor which activates several
signalling cascades resulting in the inhibition of PI3K. It is this
inhibition of PI3K that reduces proliferation, tumour growth and
induces apoptotic cell death. The additive effect that VPS34-IN1 has
on these cells suggests that Ceritinib may only be targeting PI3K
class I and class II.

It was also suggested that VPS34-IN1 and SAR-405 offered more
significant treatment potential due to their specificity (Schläfli et al.,
2021). Recently, VPS34-IN1 has been shown to have promising
effects in acute myeloid leukaemia (AML) cells, with increased cell
death observed in response to treatment (Meunier et al., 2020).

Lysosomal inhibitors
Lysosomal inhibitors include numerous compounds that alter

the pH of the lysosome thereby making the function of the enzymes
that rely on this defunct. Common lysosomal inhibitors include
Bafilomycin A1 (BafA1), chloroquine (CQ), and
hydroxychloroquine (HCQ).

BafA1, a vacuolar-type H (+)-V-ATPase inhibitor, is an
antibiotic that inhibits subunit c of the V-ATPase machinery
(Wang et al., 2021). V-ATPases are a type of proton pump
essential for maintaining the acidic environment in the lysosome,
which is required for proper functioning and activation of
degradative enzymes (Mauvezin and Neufeld, 2015).
BafA1 prevents both acidifications of the lysosome and
autophagosome-autolysosome fusion by disrupting the function of
the V-ATPases (Yamamoto et al., 1998). It has also been shown to be
a potassium carrier to mitochondria, resulting in mitochondrial
swelling and dysfunction; this activity was observed at nanomolar
concentrations (Teplova et al., 2007). It has been suggested that the
use of BafA1 is not feasible due to this toxicity, although interestingly,
claims of toxicities have not been supported by data, and on the
contrary, there are studies, at least in leukaemia, that have shown no
toxicity in vivo (Yan et al., 2016; Li et al., 2020). It is proposed that this
suggested toxicity is possibly related to off-target effects at higher
concentrations. However, as the current evidence demonstrates this
off-target toxicity is not observed at lower concentrations where
BafA1 has been shown to be effective in in vivomodels for a variety of
cancer types, this still maybe worth exploring (Pivtoraiko et al., 2010;
Yuan et al., 2015; Yan et al., 2016; Fitzwalter et al., 2018). Despite this,
to date its use in humans has not been approved.

CQ and its analogue HCQ are lysosomal lumen alkalises. They
are lysosomotropic and accumulate within acidic vessels,
particularly the lysosome, where their weak base formula reduces
lysosome acidity and function, although the exact mechanism is yet
to be elucidated. Other research suggests that they affect the
lysosome and autophagosome-lysosome fusion (Shingu et al.,
2009; Mauthe et al., 2018). Although hydroxychloroquine is
approved by the Therapeutic Goods Administration (TGA) for
the treatment of rheumatoid arthritis, systemic lupus
erythematosus, discoid lupus erythematous and malaria, its use as
a co-treatment in cancer may not be viable due to the high
concentrations required to inhibit autophagy and the detrimental
symptoms that arise because of this (arrhythmias, myopathy,
cardiovascular cytotoxicity) (Rosenfeld et al., 2014; Al-Bari,
2015). One potential remedy to that is using a more potent
analogue, several of which have already been developed, the most
notable being Lys01 and Lys05 (McAfee et al., 2012).

A systematic review and meta-analysis of all cancer trials that
have been undertaken using chloroquine or hydroxychloroquine for
cancer treatment were analysed to determine efficacy. The review
assessed the use combined with gemcitabine, doxorubicin, radiation,
temozolomide and single therapy with hydroxychloroquine.
Cancers included were glioblastoma, non-Hodgkin’s lymphoma,
pancreatic, metastatic non-small cell lung cancer, and metastatic
breast cancer. The meta-analysis demonstrated that the overall
response rate was significantly higher with the inclusion of
hydroxychloroquine or chloroquine than without (Xu et al.,
2018). However, stress exerted on the ER and Golgi by HCQ and
CQ may also have contributed to some of the clinical results rather
than just autophagic inhibition alone (Mauthe et al., 2018).

Promising inhibitors of autophagy initiation
molecules

Current autophagy inhibitors lack specificity, and historically, very
few inhibitors have been shown to directly impact the Atg’s and other
autophagymarkers, including theULKs, LC3s, RB1CC1, andGABARAP
(Akin et al., 2014). Recently, NSC185058 has been demonstrated to be an
agonist of ATG4B and LC3B lipidation (Akin et al., 2014).
Computational research has suggested that it exerts this effect by
binding to the pocket of ATG4B required for its proteolytic activity
(Akin et al., 2014). Additionally, Akin and colleagues have demonstrated
in osteosarcoma that cell viability and tumour size were significantly
reduced upon the addition ofNSC185058. They have established it to be a
potent stand-alone treatment (Akin et al., 2014). Aside fromNSC185058,
several other drugs, including S130, 4-28, LV-320, and S068, have been
screened, but very little has been done to confirm their in vivo efficacy
(Cleenewerck et al., 2016; Bosc et al., 2018; Agrotis and Ketteler, 2019; Fu
et al., 2019). It has also been suggested that targeting other Atg’s such as
Atg7 and Atg5, may not be appropriate as knockout studies have
demonstrated an increase in cytotoxicity, mortality in mice, reduced
lifespan, and neurodegeneration, to name a few deleterious impacts
(Karsli-Uzunbas et al., 2014; Kuma et al., 2017; Yoshii et al., 2017).

Lazarus et al. (Lazarus et al., 2015) pioneered the initial
identification of the ULK1 structure, which aided in identifying
and designing targeted inhibitors toward ULK1. The most recent
was Martin et al., who performed a small molecule screen and
identified several potential inhibitors of ULK1, which was later
confirmed by further in vitro analysis (Martin et al., 2018). The
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TABLE 2 Summary of the current and active clinical trials implementing autophagy modulation.

Clinical
trial phase

Intervention Treatment dose Action on
autophagy

Condition Status NIH
ClinicalTrials.gov
REF No.

I/II Hydroxychloroquine,
Palbociclib, and Letrozole

To be defined Inhibition ER positive
HER2 negative breast
cancer

Active NCT03774472

I/II mFOLFIRINOX With
Perioperative Oral
Hydroxychloroquine

Hydroxychloroquine- escalated
from 400mg to 1200 mg

Inhibition Pancreatic
Adenocarcinoma
(resectable)

Recruiting NCT04911816

II Sorafenib and
Hydroxychloroquine

Sorafenib-400 mg daily Inhibition Hepatocellular Cancer Recruiting NCT03037437

Hydroxychloroquine −400 mg daily

II Cobimetinib (MEK
Inhibitor), Atezolizumab
(Immune Checkpoint
Blockade),
Hydroxychloroquine

As per cycle Cobimetinib
40–60 mg daily

Inhibition Gastrointestinal,
pancreatic, and agnostic
cancer (specifically
KRAS-mutated
advanced malignancies)

Active NCT04214418

Hydroxychloroquine −600 mg
twice daily

Atezolizumab-840 mg day 1 and 15

II Hydroxychloroquine
Encorafenib and Cetuximab
or Panitumumab

As per cycle Inhibition Stage IV Colorectal
(BRAF V600E)

Recruiting NCT05576896

Hydroxychloroquine-Not stated

Encorafenib −300 mg daily

Cetuximab-400 mg/m2, 250 mg/m2

Panitumumab-Not stated

II LY3214996 with or without
Hydroxychloroquine

To be defined Inhibition Pancreatic cancer
(Metastatic)

Recruiting NCT04386057

I/II Hydroxychloroquine,
nelfinavir, metformin,
dasatinib and sirolimus

To be defined Inhibition And
Activation

Advanced solid
tumours or Relapse
prostate cancer

Recruiting NCT05036226

I Enzalutamide and
Metformin Hydrochloride

To be defined Activation Hormone-resistant
prostate cancer

Active NCT02339168

I MK2206 (AKT inhibitor)
and Hydroxychloroquine

To be defined Inhibition Advanced solid
tumours Melanoma,
Prostate or Kidney

Active NCT01480154

II Trametinib (MEK Inhibitor)
and Hydroxychloroquine

Trametinib -2 mg daily Inhibition Bile Tract Carcinoma
(KRAS mutation
refractory)

Recruiting NCT04566133

Hydroxychloroquine-600 mg twice
daily

I Binimetinib and
Hydroxychloroquine

To be defined Inhibition Metastatic Pancreatic
cancer (KRAS
mutation)

Recruiting NCT04132505

I TACE (trans arterial
chemoembolization) Plus
Axitinib and
Hydroxychlorquine

TACE-4–8-week intervals Inhibition Metastatic colorectal
cancer (liver dominant)

Recruiting NCT04873895

Axitinib- 5 mg twice daily

Hydroxychlorquine- 600 mg twice
daily

II Autophagy Activation for
the Alleviation of
Cardiomyopathy Symptoms
After Anthracycline
Treatment (Carvedilol

To be defined Activation Breast Carcinoma Active NCT04190433

Lisinopril Hematopoietic and
Lymphoid Cell
Neoplasm

Pravastatin and
Spironolactone)

Lymphoma

Sarcoma

(Continued on following page)
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TABLE 2 (Continued) Summary of the current and active clinical trials implementing autophagy modulation.

Clinical
trial phase

Intervention Treatment dose Action on
autophagy

Condition Status NIH
ClinicalTrials.gov
REF No.

Early I Quercetin, EGCG,
metformin, zinc

Quercetin-500 mg daily Activation Metastatic Breast
Cancer and Triple-
negative Breast Cancer

Not yet
recruiting

NCT05680662

EGCG-300mg daily,
Metformin −850 mg daily

Zinc-50 mg daily

II Paricalcitol and
Hydroxychloroquine in
Combination With
Gemcitabine and Nab-
Paclitaxel

To be defined Inhibition Advanced Pancreatic
Cancer

Recruiting NCT04524702

II Ulixertinib in Combination
With Hydroxychloroquine

Ulixertinib-50 mg twice daily Inhibition Advanced
gastrointestinal
malignancie (RAS
mutation)

Recruiting NCT05221320

Hydroxychloroquine-600 mg twice
daily

I CPI-613 (Devimistat) in
Combination With Modified
FOLFIRINOX Plus
Bevacizumab

As per cycle Activation Metastatic Colorectal
Cancer

Not
recruiting
yet

NCT05070104

Devimistat CPI-613

250–1000mg/m2

Modified FFX

Irinotecan-50 mg/m2

Leucovorin-400mg/m2

Oxaliplatin-85mg/m2 5FU:
2400mg/m2 IV

Bevacizumab-5mg/kg

II Abemaciclib (CDK4/
6 inhibitor) and
Hydroxychloroquine

Abemaciclib −100 mg or 150 mg
twice daily

Inhibition Breast Cancer (residual
disease)

Recruiting NCT04523857

Hydroxychloroquine-600 mg twice
daily

NA Intermittent Fasting 5:2 Method (intermittent fasting
regimen)

Activation Chronic Lymphocytic
Leukemia (CLL)

By
invitation

NCT05708326

16/8 Method (intermittent fast
regimen)

Small Lymphocytic
Lymphoma (SLL

II Dabrafenib and Trametinib
With or Without
Hydroxychloroquine

To be defined Inhibition Melanoma (Stage IIIC
or IV BRAF V600 E/K)

Active NCT04527549

II Chemoimmunotherapy and
fasting

Dietary Supplement: Control diet
or Fasting-Like Approach
anthracycline-taxane-carboplatin
chemotherapy plus
Pembrolizumab

Activation Triple negative breast
cancer

Not yet
recruiting

NCT05763992

I Sunitinib Malate and
Hydroxychloroquine

To be defined Inhibition Advanced solid
tumours (not
responded to
chemotherapy)

Active NCT00813423

II Avelumab or
Hydroxychloroquine With
or Without Palbociclib

As per cycle Inhibition Breast Cancer ER
positive (disseminated
tumour cells)

Recruiting NCT04841148

Avelumab-10 mg/kg

Hydroxychloroquine-600 mg twice
daily

Palociclib-125 mg daily

(Continued on following page)
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results also indicate their efficacy against ULK2 which, as expected,
would improve its inhibitory effects on autophagy activity. Their
activity was examined further to reduce it to one specific inhibitor,
ULK-101, with efficacy at the low nanomolar ranges in non-small
cell lung cancer (Martin et al., 2018). Furthermore, in line with our
unpublished findings and others, KRAS mutant cancer is more
susceptible to autophagic inhibition in the context of lung cancer,
particularly in a nutrient-deprived microenvironment. In addition,
ULK1 inhibition resulted in the cessation of autophagosome
formation/maturation demonstrating its specificity of action and
promise as a future therapeutic (Maria et al., 2020).

Clinical trials targeting autophagy

The chemical modulation of autophagy in cancer as an adjuvant
therapy prospect is well-established. There have been over 100 clinical
trials and more than 30 are currently being undertaken to explicitly
determine the efficacy and appropriateness of mainly autophagic
inhibitors, (with a few in autophagy activators) in cancer treatment.
The aim inmost of these trials is to increase the effectiveness of frontline

treatment by limiting resistance, as summarised in Table 2. However,
nearly all of the trials are utilising hydroxychloroquine or chloroquine.
As discussed earlier, these compounds have othermechanisms of action
in conjunction with autophagy inhibition. Additionally, autophagy
inhibition is often only achieved with high concentrations of HCQ,
and this consequently leads to a multitude of adverse side-effects. In
previous trials with HCQ treatment where patients’ samples were
collected, there was no evidence to demonstrate the expected
inhibition of autophagy (NCT03344172). Therefore, the translation
from bench to bedside is being impeded by the lack of available specific
and potent autophagic inhibitors. Response to the clinical demand has
led to the trialling of non-specific alternatives that do not truly reflect
the therapeutic benefit of autophagic inhibition in cancer treatment.

Mechanism of autophagy underlying
therapeutic resistance

The exact mechanism by which autophagy affects therapeutic
resistance is still unclear. Autophagy inhibition improves
therapeutics’ efficacy with multiple actions ranging from DNA

TABLE 2 (Continued) Summary of the current and active clinical trials implementing autophagy modulation.

Clinical
trial phase

Intervention Treatment dose Action on
autophagy

Condition Status NIH
ClinicalTrials.gov
REF No.

I Carfilzomib in Combination
With Cyclophosphamide
and Etoposide

To be defined Activation Children with solid
tumours (relapsed/
refractory) or leukemia

Recruiting NCT02512926

II Ezurpimtrostat Autophagy
Inhibitor in Association
With Atezolizumab-
Bevacizumab

As per cycle Inhibition Hepatocellular
Carcinoma
(unresectable)

Recruiting NCT05448677

Ezurpimtrostat-to be defined

Atezolizumab-1200 mg daily

Bevacizumab-15 mg/kg

II Chloroquine and
Chemoradiation

Chloroquine-to be defined Inhibition Glioblastoma Not yet
recruiting

NCT02432417

Temozolomide- 75 mg/m2

Radiation-30 fractions of 2 Gy (Gy)

I/II Gemcitabine, Docetaxel, and
Hydroxychloroquine

To be defined Inhibition Osteosarcoma
(recurrent or refractory)

Recruiting NCT03598595

I/II TN-TC11G (THC + CBD)
Combination with
Temozolomide and
radiation

As per cycle Activation Glioblastoma Not yet
recruiting

NCT03529448

TN-TC11G -to be defined

Temozolomide- 75 mg/m2,
150 mg/m2, 200 mg/m2

Radiation-1.8–2.0 Gy/day (total
dose 58–60Gy)

I/II Dabrafenib, Trametinib and
Hydroxychloroquine

To be defined Inhibition Glioma of the brain
(low and high grade
with BRAF aberration)
Glioma of brain (low
grade with
neurofibromatosis
type1)

Recruiting NCT04201457

Information sourced from clinicaltrials.gov.
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damage, cell cycle inhibition, and immune system recruitment
(Figure 3). Autophagy inhibition can affect these vastly different
therapeutics, suggesting that autophagy has multiple roles in
resistance.

Autophagy and DNA damage repair

Autophagy repairs DNA damage, so DNA-damaging agents that
induce cell death via this pathway are less effective with increased
autophagy. Thus, by inhibiting autophagy, damage to DNA can no
longer be repaired, and the cells are destroyed. An example is the
alkylating agent Temozolomide (TMZ), which is used in the
treatment of Glioblastoma (GBM). This chemotherapeutic
induces apoptotic cell death through the methylation of DNA
residues resulting in DNA damage (Agarwala and Kirkwood,
2000). In addition, recent studies have suggested that autophagy
is necessary for DNA Damage Response (DDR) (Liu et al., 2015;
Qiang et al., 2016; Hewitt and Korolchuk, 2017). Thus, it has been
proposed that due to this ability, autophagy increases the cell’s

resistance to TMZ by increasing DDR (Liu et al., 2015). Numerous
other therapeutics induce cell death via DNA damage, including
Platinum (Cisplatin, Oxaliplatin), replication disrupting agents
(Gemcitabine), and radio mimetics (Etoposide, Doxorubicin),
which are common treatments for cancers including colon,
breast, pancreatic, and lung as well as many more (Cheung-Ong
et al., 2013; Woods and Turchi, 2013).

Autophagy and the cell cycle
Autophagy has been shown to regulate the cell cycle

independent of its role in the DNA damage repair mechanisms
as mentioned previously. Its role in cell cycle arrest is based on the
understanding that it has a critical function in recycling regulatory
components of the cell cycle. It is suggested that this degradation of
cell cycle components is increased in cells being treated with
chemotherapeutic agents targeted towards DNA and results in an
upregulation of autophagy. Whereby autophagy stalls cell division
allowing time for the cell to repair the DNA damage elicited by the
treatment, but the exact mechanisms are yet to be elucidated
(Galluzzi et al., 2015). In line with this, a preliminary clinical

FIGURE 3
Increased autophagy prevents cancer cell elimination and contributes to therapeutic resistance. Autophagy is upregulated in cancer cells due to
various microenvironmental stresses including exposure to therapeutics. Autophagy eliminates MHC-I and decreases antigen presentation and CD8+

T cells which inhibits NK- and CTL-mediated cell lysis and the thus the immune response. Apoptotic cell death is also reduced as autophagy facilitates
mitochondria and cleaved caspase-8 degradation which prevents downstream signalling cascades. It also prevents death signalling cascades by
actively promoting DNA damage repair. Themechanism behind this is unclear. Potentially, autophagy’s degradation of Cyclin D1 and thus cell cycle arrest
allows for this. Its upregulation also prevents the Ferroptosis, Pyroptosis and LMP-associated death pathways through unclear mechanisms. Suppression
of autophagy via inhibitors could prevent the degradation of components that would otherwise inhibit cell death pathways. Created with BioRender.com.
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study demonstrated co-localisation between Beclin-1 and Cyclin
D1 in glioblastoma patient’s primary and recurrent tumours treated
with temozolomide and radiotherapy it was suggested that
autophagy was removing Cyclin D1 (Luigi et al., 2016) which is
an important regulator of cell cycle arrest. Furthermore, Cyclin
D1 has also been observed to be targeted by autophagy in
hepatocarcinoma (Wu et al., 2019). Interestingly, both studies
suggest that autophagy’s role is cytoprotective although this may
be reflective of the study limitations in glioblastoma as it has been
shown in many other studies reviewed in this article that autophagy
provides resistance against temozolomide in this context. Moreover,
it is also suggested that the cytotoxic effects observed with
rapamycin in the context of hepatocarcinoma may be resulting in
a dysfunctional autophagy that then has elicited synthetic lethality in
the cells rather than a functional protection (Wu et al., 2019).

The role of autophagy during the cell cycle has more recently
been observed to vary at different stages, apart from induction, it
is also suggested to be inhibited. The mitotic regulator Cyclin
Dependent Kinase 1 (CDK1) was shown to inhibit autophagy
directly during mitosis. This suppression is driven by binding of
CDK1 to regulatory ATGs at sites usually bound by
mTORC1 which facilitates the inhibition of autophagy (Odle
et al., 2020). This is perplexing as CDK1 is commonly
upregulated in cancer which would suggest increased
autophagic inhibition would be expected. However, it is
proposed that this inhibitory effect may be circumvented by
p27 activity in some contexts therefore reinstating autophagic
activity and is worth further investigation (Jung et al., 2018;
Zhang et al., 2018).

Additionally, there is renewed interest in using CDKI inhibitors
particularly in combination with immunotherapy to improve
tumour cytotoxicity. Based on these previous findings there is a
possibility autophagy would be inhibited, and within the context of
treatment, may increase its efficacy. However, in this setting of
immune therapy it may also have a potential to interfere with the
role autophagy as has been shown in the T-cell response (Delamarre
et al., 2005).

Autophagy and the immune system
Autophagy is implicated in regulating the innate and adaptive

immune systems through its regulation of antigen presentation,
cytokine release and T and B cell activity. It has been
demonstrated to play a role in immune system suppression
and tumour evasion of the immune system by various
mechanisms. This includes degradation of MHC-I,
suppression of antigen presentation and decreased CD4+ and
CD8+ T cells (Baghdadi et al., 2013; Yamamoto et al., 2020). It has
been well established that these factors are needed for recognition
and elimination of cancer cells by cytotoxic T lymphocytes (CTL)
or Natural Killer (NK) cells and the loss of these leads to the
evasion of immune system (Yamamoto et al., 2020). Autophagy’s
complex role in the immune system may be one explanation
behind resistance towards immunotherapies. Immunotherapies
are a class of therapies that promote the patient’s immune system
and enhances the body’s ability to identify and destroy cancer
cells. Autophagy’s role in decreasing NK- and CTL-mediated cell
lysis may be a leading mechanism behind resistance to
immunotherapies (Vessoni et al., 2013).

Thus, autophagy inhibition may make tumour cells more
susceptible to the immune system but conversely may limit the
capacity of the immune cells to function. This highlights the need for
further studies to examine the effects of autophagic inhibition in this
context to truly assess the potential of autophagy activity
modulation and how it may improve current and design future
immunotherapeutic strategies.

Autophagy and elimination of apoptotic death signals
Another potential mechanism by which autophagy can

circumvent the efficacy of therapeutics is due to its inverse
relationship with apoptosis. The upregulation of one appears to
suppress the other. It has also been suggested that they may
represent different sides of the same coin, but what exactly elicits
one and not the other to control cell fate is unclear. Suppression of
autophagy demonstrated a marked increase in therapeutic efficacy
in resistant cells via an increase in apoptosis, as seen with imatinib in
chronic myelogenous leukaemia (Carew et al., 2007). The
mechanism behind this is unclear. There is potentially the
involvement of p53, which facilitates several cascades that
activate caspases and induces apoptosis. Furthermore, autophagy
inhibition with CQ leads to an increase in p53 activation and
apoptosis in lymphoma cells (Amaravadi et al., 2007).

Arguably the most influential group of proteins in classical
apoptotic death signalling pathway are the BCL-2 apoptotic and
antiapoptotic family members. The BCL-2 family members can be
categorised into three classes. First there are the antiapoptotic family
members (includes Bcl-2, Mcl-1, Bcl-XL), second the apoptotic
members (includes BAK and BAX) and third the BH3 only
proteins (includes BAD, BIK, BID) (Youle and Strasser, 2008). In
brief, when the apoptotic family members are active, they stimulate
cytochrome c release from the mitochondria which in turn activates
caspases responsible for cell death (Leibowitz and Yu, 2010). The
anti-apoptotic family members supress apoptotic members and are
themselves supressed by the BH3 only proteins and other factors
(e.g., UV, DNA damage, viruses) which leads to apoptosis (Youle
and Strasser, 2008; Leibowitz and Yu, 2010).

Autophagy has been demonstrated to manipulate several members
of this family, although its exact relationship to the anti-apoptotic and
apoptotic members is unclear. One particularly important molecule in
both apoptosis and autophagy is Beclin-1. As previously discussed
Beclin-1 is a key member of the class III
phosphatidylinositol −3 complex and is essential for autophagosome
formation. It also forms a complex with BCL-2, and in this complex
Beclin-1 was found to be inhibited from its function in autophagy
(Pattingre et al., 2005). However, with stimuli that induce autophagy
such as starvation, ROS, and hypoxia, Beclin1 dissociates from BCL2
(Pattingre et al., 2005; Wei et al., 2008; Bellot et al., 2009; Tang et al.,
2010). Once dissociated, Beclin-1 can form the class III
phosphatidylinositol −3 autophagosome formation complex, and
BCL-2 continues to perform its antiapoptotic role.

In addition, Atg12 inactivates antiapoptotic members Bcl-2 and
Mcl-1 by the binding of the BH3-like motif on Atg12 to the BH3-
binding groove of BCL-2 family members (Rubinstein et al., 2011).
Truncated Atg5 formed by the cleavage of ATG5 by calpains 1 and
2 is also able to induce apoptosis (Yousefi et al., 2006). Once Atg5 is
truncated it translocates to the mitochondria where it facilitates the
release of cytochrome c, and thus, stimulates apoptosis (Yousefi
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et al., 2006). It maybe postulated that the suppression of autophagy
will result in these molecules being more readily available for
apoptotic processes.

In contrast, autophagic inhibition increased cell death upon
nutrient starvation in fibroblast cells. Although the mechanism is
unclear it is believed that the apoptotic BAX and BAK molecules are
involved as double knockout BAX−/− BAK−/−

fibroblast cells had a
reduced cell death upon nutrient starvation and autophagy
inhibition (Boya et al., 2005). The contradiction may be
explained by the context being a physiological setting compared
to pathologic. As most research to date has demonstrated that
autophagy is able to prevent apoptosis at the later stages. And is
seen by its ability to degrade the mitochondria, thus preventing
cytochrome c release, and degradation of the caspases.

Furthermore, cleaved caspase 8 is increased upon autophagy
inhibition, and under normal conditions, the large subunit of
caspase 8 is taken into the autophagosome and eliminated in the
lysosome (Hou et al., 2010; Yan et al., 2019). Autophagy also
potentially degrades cleaved caspase 3 as its presence increases in
CQ-treated lymphoma cells (Amaravadi et al., 2007). In addition,
several chemotherapies, including doxorubicin, trastuzumab and
Sunitinib, can enlist apoptotic death signalling cascades because of
the damaged mitochondria caused by the pharmacological
compounds (Gharanei et al., 2013; Sarosiek et al., 2013; Westrate
et al., 2014; Gilliam et al., 2016; Huang et al., 2018a; Gorini, 2018).
Autophagy can circumvent the release of cytochrome c and the
death cascade by pre-emptively degrading the mitochondria
(Ravikumar et al., 2006; Colell et al., 2007). Thus, active
autophagy can prevent apoptosis through this pathway, whilst
suppression of autophagy can enable this pathway.

A recent study by Hwang et al. demonstrated that combining
CQ and Cisplatin in ovarian cancer increased γH2Ax, a DNA
damage marker, caspase 3, and phosphorylated ATM, and it does
this through p21 suppression, which was suggested to induce
autophagy (Hwang et al., 2020). These findings were further
supported by Maheshwari et al. with their research confirming
the negative regulation of autophagy by p21, which was observed
to be facilitated by Akt (Maheshwari et al., 2022). Furthermore, these
findings were observed in several cancer models, suggesting it is not
context dependent (Maheshwari et al., 2022).

A recent study by Gremeke et al. explored the mechanisms of drug
resistance in numerous cancers and found that the treatment induced
autophagy activity. The results of this study highlight the complexity of
targeting drug-refractory tumours such as NSCLC, whereby the
mechanism of resistance in these cells made them vulnerable to
other targets (Gremke et al., 2020). Cancer cells resistant to
platinum compounds demonstrated an acquired resistance through
increasedMTORC1 protein complex. Increases inMTORC1 lead to the
suppression of autophagy and created vulnerabilities to metabolic
inhibitors (2DG, DCA, metformin, phenformin, AZD7457) (Gremke
et al., 2020). This vulnerability should be exploited in the clinical setting
to achieve synthetic lethality in the future.

Perhaps one of the clearest indicators of autophagy’s relationship to
cell death is seen through multiple studies performed with gene
knockdown/knockout of autophagy related proteins. In these studies,
genetic ablation of autophagy genes has been seen to decrease cell death
pathways including LMP-associated death (the result of lysosomal
contents being released into the cell due to lysosomal

permeabilization), Pyroptosis (inflammatory dependant cell death
due to cytokine release via inflammasome activation), and
Ferroptosis (iron dependant cell death that is instigated by lipid
peroxidation). These studies are summarised in Table 3.

Potential cancer adaption to autophagy inhibition
Inhibition of autophagy for prolonged periods of time, like with

any drug, may lead to resistance. In fact, some research has
suggested that by blocking autophagy several other non-canonical
autophagy pathways and the Nrf2 pathway are upregulated to
circumvent this loss.

In a study by Towers and colleagues it was determined that even
autophagy dependent cell lines could adapt and survive despite the
knockout of Atg7, and that the Atg7 null cell population had an
upregulation of Nrf2 and the Nrf2 signalling pathway. This
upregulation of Nrf2 resulted in increased proteasomes, increased
cell growth, decreased apoptosis and contributed to therapeutic
resistance (Towers et al., 2019). Evidence has suggested that this
is due to an increase in p62 availability. Nrf2 when bound to Keap1 is
inhibited, however, if Keap1 is bound to p62 instead then
Nrf2 remains active (Komatsu et al., 2010; Towers et al., 2019).

Additionally, a phase I clinical trial performed on canines with
lymphoma was done to evaluate the effect of combining HCQ with
doxorubicin. The initial findings of this study were promising as
canines demonstrated a high overall response rate of 93.3% (Barnard
et al., 2014). However, progression-free interval was only observed
to be around 5 months (Barnard et al., 2014). In a comparable study
of canines treated with doxorubicin alone a similar progression free
interval of 5.6 months was observed (Lori et al., 2010).

Thus, some cancer cells may adapt to autophagy inhibition by
upregulating other stress pathways. Furthermore, cellular adaptions
to autophagy inhibition like the upregulation of the Nrf2 pathway
may then create a cell-fate determining vulnerability to
Nrf2 targeted therapies which should be explored.

Discussion/conclusion

Therapeutic resistance remains a major area for concern in
cancer treatment and significantly impacts upon patient outcomes.
Research into the specific mechanisms by which the cancer cell
develops therapeutic resistance has highlighted the cellular process
known as autophagy.

Autophagy is upregulated in numerous cancers, and increasing
evidence demonstrates that its inhibition, either through genetic
knockdown or by pharmacological compounds, has improved the
cell’s response to therapeutics. Furthermore, increasing evidence
suggests that autophagy can influence therapeutic resistance due to
its inverse relationship with apoptosis and its influence on DNA
damage repair pathways.

PI3K and lysosomal inhibitors have demonstrated promising results
in overcoming therapeutic resistance in cancer cells. However, several
factors should be considered before their use in the clinical setting.

On a broader scale, autophagy is essential for maintaining cellular
homeostasis in healthy cells. The wide-scale targeting of autophagymay
prevent its cytoprotective roles and lead to the toxic buildup of damaged
and out-lived proteins and organelles in otherwise healthy tissue. The
ability of autophagy to degrade large out-lived, and toxic materials is
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one of the reasons why its decline is hypothesised to be involved in
several pathologies, including ageing and neurodegenerative diseases
like Huntington’s and Parkinson’s (McAfee et al., 2012; Akin et al.,
2014; Bosc et al., 2018; Xu et al., 2018; Fu et al., 2019). Thus, the effect of
long-term treatment on the organs of the nervous system should be
considered in any treatment regime.

More specifically, several factors about the current PI3K and
lysosomal inhibitors should be considered before future use. Firstly,
the specificity of the PI3K inhibitors has not been consistent in targeting
class III PI3K until recently. Although more specific derivatives have
been developed, most of the research done to date has been with older
inhibitors. In addition to this, autophagy can be activated via non-
canonical pathways. Thus, targeting PI3K may not have the capacity to
completely inhibit autophagic activity as the cells could potentially
circumvent the initiation complex and still have upregulated autophagy
in the presence of PI3K inhibitors. As both canonical and non-canonical
autophagy pathways require the lysosome, targeting the lysosome may
prove a more beneficial and effective approach.

The benefit of targeting the lysosome extends past it being
just a more specific target but also introduces the inhibition of,
not only macroautophagy, but also the alternative autophagic
pathways of chaperone-mediated autophagy and micro
autophagy. In contrast to the benefits, a potential
disadvantage of targeting the lysosome is that emerging
evidence shows that lysosomes have independent roles and
are not just specific to autophagy. Furthermore, lysosomes
are fused with macrophages and dendritic cells and aid with
the clearance of foreign microbes and antigen presentation (Xu

et al., 2018). Thus, the immune system may be adversely affected
by targeting the lysosomes indiscriminately.

Of interest is an apparent trend in the glycolytic phenotype being
the most sensitive or responsive to autophagic inhibition. It has been
presented as a consistent predictor in blood cancers (Chen et al.,
2014b) and solid tumours (Cohen et al., 2022). However, it is
suggested efficacy would be increased as an adjuvant with some of
the frontline chemotherapeutics that result in a shift in metabolic
programming as a means of evading their effects, such as Cisplatin
(Xu et al., 2022), 5FU (Denise et al., 2015) andDoxorubicin (McGuirk
et al., 2021).

The current autophagy inhibitors have several potential drawbacks,
as discussed above. Research into autophagic mechanisms and the
differences between physiological autophagy and pathologic
autophagy is warranted. Delineating molecules specific to autophagy
in the context of cancer would also be beneficial as it highlights potential
therapeutic targets. Several macro autophagy-specific molecules could
also be targeted in the future, including the Atg’s and LC3 involved in
autophagosome formation. Targeting these molecules may reduce off-
target effects like the immune system. Theoretically, the alternative to
suppressing autophagy would be to stimulate and cause an over-
activation of the process to bring about dysfunction, particularly in
the context of cancer cell but potentially positively regulating the
immune system (Yonekawa and Thorburn, 2013; Karsli-Uzunbas
et al., 2014).

Despite these considerations, autophagy inhibitors are a very
promising co-treatment for aggressive and resistant cancers whose
advantages potentially outweigh their disadvantages. Further

TABLE 3 The effect of autophagy gene alteration on cell death pathways.

Gene/
protein

Gene
alteration

Model Type of cell
death

Modulation that
occurred

Reference

ATG13 KO In Vitro MEFs Ferroptosis Decreased Gao et al. (2016)

ATG3 KO In Vitro MEFs Ferroptosis Decreased Gao et al. (2016)

ULK1/2 KO In Vitro MEFs Ferroptosis Decreased Gao et al. (2016)

ATG5 KO, KD In Vitro Cell lines: MEFs, PANC1, PANC2.03,
HT-1080, Y79-CR, HepaG2

Ferroptosis Decreased Gao et al. (2016), Hou et al. (2016),
Bai et al. (2019), Liu et al. (2022)

In Vivo Model: HepaG2 cells subcutaneously
injected in 6- to 8-week-old athymic nude or
B6 mice

ATG7 KO, KD In Vitro Cell lines: MEFs, PANC1, PANC2.03,
HT-1080

Ferroptosis Decreased Hou et al. (2016)

In Vitro Cell line: C17.2 LMP-Associated
cell death

Decreased Walls et al. (2010)

In Vivo ER-Cre: atg7 fl/flmice Pyroptosis Increased Pu et al. (2017)

ATG16L1 KO In Vitro Cell line: MEFs Pyroptosis No change Saitoh et al. (2008)

In Vivo Atg16L1-deficient C57BL/6 mice

ATG12 KD In Vitro Cell line: Hek293 Apoptosis Decreased Rubinstein et al. (2011)

BECN1 OE In Vitro Cell lines: HCT116, CX-1, HT1080 Ferroptosis Increased Song et al. (2018)

KD In Vitro Cell lines: HCT116, CX-1 Ferroptosis Decreased Song et al. (2018)

SQSTM1 KD In Vitro Cell line: MEFs Ferroptosis Decreased Yang et al. (2019)

KO, knock out; KD, Knock Down and OE, over expression.
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investigation into current autophagy inhibitors in therapeutic resistance is
warranted, especially in the context of cancers like pancreatic cancer and
GBM, whose survival rate is abysmal due to resistance to current
treatments. Furthermore, a sustained effort should be made to
research and understand the mechanism of the “pathologic” form of
autophagy so that more specific and directed autophagy inhibitors can be
developed and used to treat advanced and therapeutically resistant
cancers more precisely.
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Glossary

3-MA 3-methyladenine

4EBP1 4E-binding protein 1

Akt Protein kinase B

ALK Anaplastic lymphoma kinase

AML Acute myeloid leukaemia

AMP Adenosine monophosphate

AMPK AMP-activated protein Kinase

ATG/Atg Autophagy related proteins

ATM Ataxia-telangiectasia mutated

ATP Adenosine triphosphate

BAD BCL2 associated agonist of cell death

BafA1 Bafilomycin A1

BAK Bcl-2 homologous antagonist/killer

BAX Bcl-2-associated X protein

Bcl-2 B-cell lymphoma 2

Bcl-XL B-cell lymphoma-extra large

BID BH3 interacting-domain death agonist

BIK Bcl-2-interacting killer

CMA Chaperone Mediated autophagy

CML Chronic myeloid leukaemia

CQ Chloroquine

DDR DNA damage response

DNA Deoxyribonucleic acid

ER Endoplasmic reticulum

ERGIC Endoplasmic reticulum-Golgi intermediate compartment

EIF Eukaryotic initiation factor

GBM Glioblastoma

GTP Guanosine triphosphate

GβL mammalian lethal with sec-13

HCC Hepatocellular carcinoma

HCQ Hydroxychloroquine

HOPs homotypic fusion and vacuole protein sorting

IC Inhibitory concentration

IGF Insulin-like growth factor

IL-6 Interleukin 6

Keap1 Kelch-like ECH-associated protein 1

LC3 Microtubule-associated protein light chain 3

LMP Lysosomal Membrane Permeabilization

Mcl-1 myeloid cell leukemia sequence 1

mTOR Mammalian target of rapamycin

Nrf2 nuclear factor erythroid 2–related factor 2

NSCLC Non-small cell lung cancer

PI3K phosphoinositide 3-kinase

PI3P Phosphatidylinositol 3-phosphate

PLEKHM1 Pleckstrin Homology and RUN Domain Containing M1

PRAS40 Proline-rich Akt substrate of 40 kDa

PTEN Phosphatase and tensin homolog

RAPTOR regulatory-associated protein of mTOR

RILP Rab-interacting lysosomal protein

RITA Reactivating p53 and Inducing Tumor Apoptosis

ROS Reactive oxygen species

SK61 S6 protein kinase 1

SAHA Suberoylanilide hydroxamic acid

Sal Salidroside

SNAP-29 synaptosome associated protein 29

SNARE Soluble N-ethylmaleimide-sensitive factor activating protein receptor

STX17 Syntaxin 17

TGA Therapeutic goods administration

TMZ Temozolomide

TORC1 mammalian target of rapamycin complex 1

TSC2 Tuberous sclerosis 2

ULK Unc-51 Like Autophagy Activating Kinase 1

UVRAG UV radiation resistance-associated gene

VAMP Vesicle-associated membrane protein

V-ATPase Vacuolar ATPase

VPS Vacuolar protein sorting

WIPI WD-repeat protein interacting with phosphoinositides

γH2Ax Phosphorylated form of the H2A histone family member X
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