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Background: Globally, the most common form of arrhythmias is atrial fibrillation
(AF), which causes severe morbidity, mortality, and socioeconomic burden. The
application of machine learning algorithms in combination with weighted gene
co-expression network analysis (WGCNA) can be used to screen genes,
therefore, we aimed to screen for potential biomarkers associated with AF
development using this integrated bioinformatics approach.

Methods: On the basis of the AF endocardium gene expression profiles
GSE79768 and GSE115574 from the Gene Expression Omnibus database,
differentially expressed genes (DEGs) between AF and sinus rhythm samples
were identified. DEGs enrichment analysis and transcription factor screening
were then performed. Hub genes for AF were screened using WGCNA and
machine learning algorithms, and the diagnostic accuracy was assessed by the
receiver operating characteristic (ROC) curves. GSE41177 was used as the
validation set for verification. Subsequently, we identified the specific signaling
pathways in which the key biomarkers were involved, using gene set enrichment
analysis and reverse prediction of mRNA–miRNA interaction pairs. Finally, we
explored the associations between the hub genes and immune
microenvironment and immune regulation.

Results: Fifty-seven DEGs were identified, and the two hub genes, hypoxia
inducible factor 1 subunit alpha inhibitor (HIF1AN) and mitochondrial inner
membrane protein MPV17 (MPV17), were screened using WGCNA combined
with machine learning algorithms. The areas under the receiver operating
characteristic curves for MPV17 and HIF1AN validated that two genes
predicted AF development, and the differential expression of the hub genes
was verified in the external validation dataset. Enrichment analysis showed that
MPV17 and HIF1AN affect mitochondrial dysfunction, oxidative stress, gap
junctions, and other signaling pathway functions. Immune cell infiltration and
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immunomodulatory correlation analyses showed that MPV17 and HIF1AN are
strongly correlated with the content of immune cells and significantly
correlated with HLA expression.

Conclusion: The identification of hub genes associated with AF using WGCNA
combined with machine learning algorithms and their correlation with immune
cells and immune gene expression can elucidate the molecular mechanisms
underlying AF occurrence. This may further identify more accurate and effective
biomarkers and therapeutic targets for the diagnosis and treatment of AF.

KEYWORDS

atrial fibrillation, bioinformatics analyses, MPV17, HIF1AN, weighted gene co-expression
network analysis

1 Introduction

Atrial fibrillation (AF) is the most prevalent age-associated
arrhythmias occurring in approximately 8.5% of patients
aged >65 years, and the lifetime AF risk is estimated to be 1 in
3 individuals of European ancestry (Virani et al., 2021). AF
substantially affects patients’ quality of life and confers the risk of
morbidity andmortality through stroke and heart failure. In addition to
conventional risk factors such as age, hypertension, diabetes, male
gender, obesity, obstructive sleep apnea, and endurance exercise
(Myrstad et al., 2014; Schnabel et al., 2015; Virani et al., 2021), a
hereditary component for AF risk has also been well recognized (Lubitz
et al., 2010). The mechanisms underlying AF are not comprehensively
clear, and thus, currently available therapeutic options, such as
antiarrhythmic medications and catheter ablation procedures, have
limited efficacy and adverse effects (Prystowsky et al., 2015).
Emerging gene therapy for AF rhythm control may provide a novel
and promising approach to AF (Farraha et al., 2016; Yoo et al., 2020). A
preliminary genome-wide association study (GWAS) meta-analysis
identified at least 134 genetic loci significantly associated with AF
risk (Roselli et al., 2018) and increased our understanding of the
pathophysiology of AF; however, much of the heritability of AF has
been uncharted or inconclusive thus far (Christophersen and Ellinor,
2016). Therefore, there is a growing interest in developing new
therapeutic approaches and exploring effective prognostic models for
screening patients with high-risk AF.

With the continuous improvement of high-throughput
technologies, several bioinformatics databases have been
developed, which provide new perspectives for researchers to
explore biomarkers and underlying mechanisms of diseases more
precisely and effectively. However, traditional experimental analyses
require long-term exploration due to the large amount of data, and
the accuracy of bioinformatics analysis is influenced by duplicate
data and covariance in database. Weighted gene co-expression
network analysis (WGCNA) is a bioinformatics method that
aggregates genes with the same or similar expression patterns
into a module and analyzes each module in association with
phenotypic data to identify potential key genes (Langfelder and
Horvath, 2008). WGCNA can identify genes that may have great
influences on disease development and is thus widely used to
identify disease biomarkers. Machine learning has also garnered
increasing interest in the screening of disease biomarkers (Wang
et al., 2022). Support vector machine based recursive feature
elimination (SVM-RFE) is a machine learning algorithm that

ranks different genes or features based on the sum of squares of
feature coefficients, minimizing empirical errors and thus effectively
screening genes with significant impact (Duan et al., 2005). Least
absolute shrinkage and selection operator (LASSO) is another
machine learning algorithm that fits a generalized linear model
while performing variable selection and regularization, which can
effectively reduce the effect of covariance and thus screen genes with
a significant association between variables (Duan et al., 2016). The
application of the two machine learning algorithms SVM-RFE and
LASSO, in combination with WGCNA, can effectively avoid
identical or similar data as well as covariance and thus screen the
hub genes from transcriptome data. However, their application in
screening for potential AF biomarkers is rarely reported.

In our study, we aimed to screen for key biomarkers potentially
related to the development of AF. We also investigated the potential
molecular mechanisms of these biomarkers and their association
with immune cell infiltration. We screened differentially expressed
genes (DEGs) and related pathways between AF and sinus rhythm
(SR) samples using two AF microarray datasets retrieved from the
Gene Expression Omnibus (GEO) database. WGCNA and the two
above-mentioned machine learning algorithms were applied to
screen key biomarkers, and the results were validated using an
external validation dataset. Subsequently, single-sample gene set
enrichment analysis (ssGSEA) was used to identify the specific
signaling pathways in which the key biomarkers were involved.
We also quantified the percentages of 28 immune cells in the AF
samples and SR samples respectively and the subsequent association
between identified biomarkers and infiltrating immune cells. These
processes may inform studies on the pathogenesis of AF and the
development of new immunotherapeutic targets.

2 Materials and methods

2.1 Data collection

The workflow of this study is shown in Figure 1. In this study,
the microarray datasets were downloaded from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/), including GSE79768,
GSE115574 and GSE41177. GSE79768 and GSE115574 databases
as training set contained the gene data of 42 atrial samples from
patients with AF and 43 atrial samples from patients with SR, while
GSE41177 database as the validation set included 32 left atrial
samples of AF and 6 left atrial samples of SR. The “sva” package
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in R was used to correct the data between chips for subsequent
analysis. All data analyzed in our study were achieved from public
databases and thus did not require ethics committee approval.

2.2 Enrichment analysis of DEGs and
screening of transcription factors

To determine the biological functions and signaling pathways in
disease progression, DEGs were annotated and visualized byMetascape
(www.metascape.org), and Gene Ontology (GO) analysis was applied
for specific genes. Aminimumoverlap of ≥3 and p≤ 0.01were regarded
as statistical significance.We explored transcription factors based on the
DEGs to elucidate the potential molecular mechanisms by which these
genes affect AF development. We extracted upstream motifs based on
the DEGs, determined the normalized enrichment score (NES), and
performed enrichment analysis for each motif by cumulative recovery
curves. The R package RcisTarget was applied to predict relevant
transcription factors. We used the rcistarget. hg19. motifdb.cisbpont.
500bp base to access the gene-motif ranking database.

2.3 Construction of machine learning-
based models

The LASSO regression algorithm and the SVM-RFE algorithm
were used to identify the diagnostic biomarkers for diseases. First, we
implemented LASSO regression using the “glmnet” R package to filter
and visualize the DEGs. Then, we constructed SVM-RFE models
using the “e1071”package to further identify the biomarkers for
diseases. Finally, we integrated the screened characteristic genes to
obtain optimal characteristic genes, using a Venn diagram.

2.4 WGCNA

WGCNA is a systematic biology approach to characterize gene
association between patients with SR and those with AF, and to
identify highly co-varying gene sets and potential biomarker genes
or therapeutic targets based on the endogeneity of gene sets.
Transcriptome datas were read and imported using the R
package “WGCNA” (http:/www.r-project.org/), followed by
which the “hclust” function was used to analyze the dataset for
any significant outliers. A soft threshold filter was used to make the
constructed network compatible with the characteristics of a scale-
free network. Next, the weighted adjacency matrix was transformed
into a topological overlap matrix (TOM) to assess the connectivity in
the network, and a clustering tree structure of TOMwas constructed
using a hierarchical clustering method. Different branches of the
clustering tree represent different gene modules by different colors
according to the weighted correlation coefficients of genes. The
conservativeness of the modules was evaluated based on the
Z-summary score. In our study, the input WGCNA module
genes were crossed with optimal characteristic genes from the
machine learning to obtain the hub genes.

2.5 Identification and validation of hub genes

Box-line plots were used to assess the expression levels of the
identified the hub genes in AF and SR (control) groups respectively.
Subsequently, receiver operating characteristic (ROC) curves were
used to assess the diagnostic efficacy of the hub genes by “pROC”
package. An external database of GSE41177 was employed to
validate the hub genes identified in the training set by the
Wilcoxon test.

FIGURE 1
Flowchart.
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2.6 Gene set enrichment analysis (GSEA)

GSEA was used to assess the distribution of the hub genes in a
gene table ranked by disease relevance to determine their contribution
to disease development by examining whether the hub genes are
enriched at the top or bottom of the table. In this study, GSEA was
used to compare the differences in signaling pathways between the
high- and low-expression groups and to explore the potential
molecular mechanisms underlying the discrepancies of AF and SR
groups, where the number of substitutions was set to 1000 and the
type of substitution was set to phenotype.

2.7 Immune cell infiltration and immune
correlation analyses

To further understand the status of infiltrating immune cells in
these two groups, we analyzed the RNA-sequencing data of these
two groups, using ssGSEA, which inferred the relative proportion of
infiltrating immune cells. The interaction between 22 immune cell
types was then analyzed by the “corrplot” package to further display
the interaction of immune cells. Furthermore, the relative extent of

immune cell infiltration was plotted by the “vioplot” package to
evaluate the effect of the hub genes on immune infiltration.
Spearman correlation analysis was performed for gene expression
as well as the extent of immune cell infiltration.

2.8 Statistical analysis

Statistical analyses were performed using R (version 3.6). All
tests were two-sided with a significance level of P of <0.05.

3 Results

3.1 Identification of DEGs

We downloaded GSE79768 and GSE115574 AF datasets
from GEO and divided 85 patients into SR (n = 43) and AF
(n = 42) groups. After merging microarray data, the batch
effects were adjusted by the “sva” package in R.
Normalization was displayed by a boxplot (Figure 2A) and
clustering between sample subgroups was displayed by a

FIGURE 2
DEGs between AF patients and SR patients. (A) Boxplot diagram of the DEGs between the two groups. (B) Principal component analysis between the
two groups. (C) Volcano plot visualizing DEGs between the two groups. (D) Heatmap displaying DEGs between the two groups.
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FIGURE 3
Enrichment analysis and transcriptional regulation analysis of DEGs. (A) Enrichment analysis among DEGs. (B) Transcriptional regulation analysis
among DEGs.

FIGURE 4
Machine learning screening of the characteristic genes. (A) LASSO coefficient curves. (B) Determination of the optimal penalty coefficient (lambda)
and the minimum absolute shrinkage criterion in the Lasso regression. (C) Error rate of genes identified by SVM-RFE machine learning. (D) Accuracy rate
of genes identified by SVM-RFE machine learning. (E) The top 50 genes with the highest accuracy by SVM-RFE. (F) Venn diagrams to identify the
characteristic genes based on LASSO and SVM-RFE screening.
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principal component analysis plot (Figure 2B). DEG analysis
was performed by the linear model (limma) package in R, and
57 DEGs (20 upregulated and 37 downregulated) with P
of <0.05 and fold change (FC) of ≥0.58 were displayed by a
volcano plot in Figure 2C. In addition, the top 20 upregulated
DEGs versus the top 20 downregulated DEGs were shown in the
heat map in Figure 2D.

3.2 Functional enrichment analysis of DEGs
and screening of transcription factors

Metascape analysis indicated that the upregulated DEGs and
downregulated DEGs were mostly enriched in the core matrisome
pathway and endoplasmic reticulum lumen pathway respectively.
These results suggested that different mRNAs fulfilled different
physiological functions and were involved in the regulation of AF
(Figure 3A). We further explored the downstream regulatory

mechanisms of the DEGs and found them to be regulated by
multiple transcription factors via a common mechanism. Therefore,
we implemented an enrichment analysis of these transcription factors
through cumulative recovery curves and Motif-TF annotation and then
screened for important genes. The transcription factor of
IKZF1 annotated as a motif of cisbp_M3450 was the main regulator
in the gene set; 10 DEGs were enriched in this motif, and the NES was
4.87. The results showed that all the motifs and corresponding
transcription factors were enriched in 10 DEGs (Figure 3B).

3.3 Construction of machine
learning models

LASSO regression and SVM-RFE were performed to identify the
characteristic genes that were most relevant to AF. LASSO identified
16 genes of AF (Figures 4A, B). 50 genes with the highest accuracy
screened by SVM-RFE (Figures 4C–E) took the intersection with the

FIGURE 5
Verification of WGCNA feasibility. (A) The clustering dendrogram of SR patient samples to detect outliers. (B) The clustering dendrogram of AF
patient samples to detect outliers. (C) Scaleless fit index and average connectivity of soft threshold power of SR patients. (D) Scaleless fit index and average
connectivity of soft threshold power of AF patients. (E)Histogram of k and correlation coefficient between k and p (k) of SR patient samples. (F)Histogram
of k and correlation coefficient between k and p (k) of AF patient samples.
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genes identified by LASSO regression, and 8 characteristic genes of
AF were ultimately identified (Figure 4F).

3.4 Construction of Co-Expression modules
and identification of the hub genes

AF is a heterogeneous syndrome, andmultiple modulating genes
are involved in its pathogenesis. In most diseases, genes with similar
expression patterns are prone to have similar biological functions.
Thus, gene co-expression networks can facilitate analysis of AF-
related biological pathways. We included all genes from 85 patients
and found no significant outlier samples in the dataset using the
hclust function (Figures 5A, B). A soft threshold power was selected
to make the constructed network compatible with the characteristics
of scale-free networks. We set the soft threshold to 9 in SR group
(Figure 5C) and 7 in AF group (Figure 5D). Through the calculation
of the scale-free topology, the R2 value reached 0.9 (Figures 5E, F).
These results further verified the feasibility of WGCNA.

Two co-expression networks of genes from 85 patients were
constructed and hierarchical clustering analysis was performed
according to weighted correlation coefficients. The clustering results
were segmented based on set standards to obtain different gene modules
(Figures 6A, B). We identified 35 modules of different sizes represented
by the branches of the cluster tree with different colors by WGCNA for
the AF group. The network modules in SR group were compared with

those in AF group to identify non-conserved modules that could be
interpreted as the change in the network attributed to AF group. These
non-conserved modules might be related to disease progression in
patients with AF. The median rank and Z-summary scores of
conservatism of different color modules were shown in Figure 6C.
The Z-summary score of the bluemodulewas the highest, indicating that
it retained the network characteristics of SR group. The dark orange
module with the lowest Z-summary score was less conservative,
indicating that it could be used as a module feature to distinguish
patients withAF from those with SR.We extracted the first 1000 genes of
themodule and took the intersectionwith 8 characteristic genes screened
through LASSO and SVM, and finally obtained two hub genes: hypoxia
inducible factor 1 subunit alpha inhibitor (HIF1AN) and mitochondrial
inner membrane protein MPV17 (MPV17) (Figure 6D). And the
enrichment analysis for other genes included in the dark orange
module was displayed in Supplementary Figure S1.

3.5 Identification and validation of hub gene
expression levels and diagnostic value

The expression levels of HIF1AN and MPV17 were assessed by
box-line plots and found to be significantly higher in AF group than
those in SR group (p < 0.001) (Figure 7A). The sensitivity and
specificity of two hub genes as diagnostic genes were evaluated by
the area under the ROC curve (AUC). The AUCs of HIF1AN and

FIGURE 6
Identification of trait-module genes by WGCNA (A) Clustering dendrograms of SR samples. (B) Clustering dendrograms of AF samples. (C) The
preservation median rank and Z summary score of co-expression modules. (D) Venn diagrams to identify the hub genes based on WGCNA and machine
learning models.
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MPV17 were 0.743 (Figure 7B) and 0.700 (Figure 7C), respectively,
which indicated thatHIF1AN andMPV17 had high diagnostic value
and could better predict disease development. To further validate the
results of the bioinformatics analysis, we downloaded
GSE41177 dataset from GEO database, which included 32 cases
with AF and 6 cases with SR and verified the significant differences
in the expression of HIF1AN and MPV17 between AF and SR by
Wilcoxon test (p < 0.05) (Figure 7D). The enrichment analysis for
two hub genes in metabolic processes was displayed in
Supplementary Figure S2.

3.6 GSEA

The specific signaling pathways in which the two hub genes got
involved were explored to reveal the specific molecular mechanisms
associated with AF development. As shown in Figure 8A, the main
pathways enriched by the high expression of HIF1AN were
INOSITOL PHOSPHATE METABOLISM (Figure 8D),
AMINOACYL TRNA BIOSYNTHESIS (Figure 8E), and
UBIQUITIN MEDIATED PROTEOLYSIS (Figure 8F); as shown
in Figure 8B, the pathways enriched by high expression of MPV17

were mainly GAP JUNCTION (Figure 8G),
PHOSPHATIDYLINOSITOL SIGNALING SYSTEM (Figure 8H),
and INOSITOL PHOSPHATE METABOLISM (Figure 8I). And
correlation analysis revealed a positive relationship between
HIF1AN and MPV17 expression (Figure 8C).

3.7 Immune cell infiltration and correlation
analysis between hub genes and
immune cells

By virtue of analysis of the association between hub genes and
immune cells in AF dataset, the potential molecular mechanisms by
which HIF1AN and MPV17 influence AF development were
revealed. CIBERSORT-based immune cell infiltration analysis
indicated that mast cells, neutrophils, natural killer (NK) cells,
and type I interferon (IFN) were significantly higher in patients
with AF and T helper 2 (Th2) cells were significantly lower in AF
(Figure 9A). The immune cell correlation was manifested in
Figure 9B, in which red represented positive correlation and blue
represented negative correlation. The correlation of HIF1AN and
MPV17 with immune cells was analyzed and found that both

FIGURE 7
The hub gene expression in AF and SR. (A) Expression levels of the hub genes in two groups. (B) ROC curve ofHIF1AN in AF group. (C) ROC curve of
MPV17 in AF group. (D) Hub genes expression in the external validation database GSE41177. Statistical test: * *p < 0.01, * * *p < 0.001.
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HIF1AN and MPV17 were strongly correlated with quantities of
immune cells (Figures 9C,D).

3.8 Correlation analysis between hub genes
and immune genes

The differential expression analysis of immune regulatory genes
indicated that the significantly different levels of HLA-DMA, HLA-
DPB1, and HLA-DRA were observed between the AF group and SR
group (Figure 10A). The correlation analysis between the hub genes
and the related immune regulation genes indicated thatHIF1ANwas
significantly negatively correlated with HLA-DOB and MPV17 was
significantly positively correlated with HLA-DRA (Figure 10B). In
addition, reverse-prediction of the two hub genes by FunRich

3.1.3 visualized a total of 14 pairs of mRNA–miRNA
interaction (Figure 10C).

4 Discussion

AF is a complex disease characterized by environmental and
genetic factors that contribute to its pathogenesis. The onset and
maintenance of AF require electrical and structural remodeling of
the atria (Nattel and Harada, 2014). Atrial electrical remodeling is
characterized by shorter effective refractory periods and slowed
conduction velocity due to alterations in cardiac action potential,
indicating a re-entry substrate in AF (Yeh et al., 2008). Structural
remodeling includes atrial dilation, cell hypertrophy, and fibrosis, all
of which also contribute to the abnormal electrical signal formation

FIGURE 8
Enrichment pathway of the hub genes. (A) The main enrichment pathway of high expression of HIF1AN. (B) The main enrichment pathway of high
expression of MPV17. (C) Correlation between HIF1AN and MPV17 expression. (D,E) The first three enriched pathways of HIF1AN: inositol phosphate
metabolism (D); aminoacyl trna biosynthesis (E); ubiquitin mediated proteolysis (F). (G–I)The first three enriched pathways of MPV17: gap junction (G);
phosphatidylinositol signaling system (H); inositol phosphate metabolism (I).
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(Allessie et al., 2002). The molecular basis of the mechanisms
underlying AF is not completely understood and attributed to
fibrosis, calcium dysregulation, inflammation, and oxidative
injury (Ferrari et al., 2016; Nattel, 2017). To unravel the
mechanism, the genetic variation has increasingly been identified
and categorized into three components: rare variation—encoding
ion channels and gap junction proteins and influencing cardiac
depolarization and repolarization in familial forms of AF; common
variation—identified using GWAS and regulating cardiac
development and cardiomyocyte contractility and structure; and
unidentified variation (Tucker et al., 2016). Genetic variation in AF
is heterogeneous. To better understand the pathogenesis and key
biomarkers of AF, we compared DEGs between the AF and SR
groups based on two GEO datasets and performed enrichment
analyses to explore the potential biological functions of DEGs in
AF. To more accurately identify central genes associated with AF
pathogenesis, we screened two hub genes by combining machine
learning algorithms (SVM-RFE and LASSO) based onWGCNA and
also confirmed the validity of HIF1AN and MPV17 in both the
training and validation sets. Subsequently, using gene enrichment
analysis and GSEA, we found that HIF1AN and MPV17 can affect
key signaling pathway functions, such as mitochondrial dysfunction,

oxidative stress, and gap junctions. Finally, we performed a
correlation analysis between the hub genes and immune cell
regulation. We attempted to develop a deep understanding of the
pathogenesis and key biomarkers of AF through our study and
identify the potential targets for early diagnosis and treatment of AF.

We found that the mRNA expression levels of HIF1AN and
MPV17 were significantly upregulated in AF samples compared to
those with sinus rhythm, and there was a positive correlation
between these two genes. Therefore, HIF1AN and MPV17 could
be considered diagnostic biomarker for AF.

MPV17, located at 2p23-p21 encodes a mitochondrial inner
membrane protein associated with mitochondrial homeostasis and
reactive oxygen species (ROS) metabolism (Spinazzola et al., 2006;
Casalena et al., 2014). In a swine rapid atrial pacing model of AF,
increased activity of ROS in both of the left atria and left atrial
appendage (Cai et al., 2002). The ROS can cause atrial fibrosis and
increase the susceptibility to AF (Friedrichs et al., 2012). As the major
source of intracellular ROS, mitochondrial oxidative stress can lead to
arrhythmias such as AF through alterations of ion homeostasis and
ion channel behavior (Liu et al., 2022). The precise function ofMPV17
in mitochondria has not been established. An enhanced ROS
production was registered in MPV17 gene-inactivated mice (Binder

FIGURE 9
The immune cell infiltration in patients with AF and patients with SR. (A) The difference in immune cells between patients with AF and patients with
SR. Blue represents patients with AF and yellow represents patients with SR (B) Correlation heatmap of immune cells. Red represents positive correlation
and blue represents negative correlation. (C) The correlation between HIF1AN and immune cells. (D) The correlation betweenMPV17 and immune cells.
Statistical test: * *p < 0.01.
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et al., 1999; Casalena et al., 2014). The MPV17 gene product was
identified as a membrane protein of peroxisomes playing a major role
in the peroxisomal metabolism of ROS (Zwaka et al., 1994). MPV17
forms a non-selective channel in the inner mitochondrial membrane
to decrease mitochondrial membrane potential that may be beneficial
under some conditions to preserve mitochondrial homeostasis by
preventing excessive production of ROS (Antonenkov et al., 2015).
However, elevatedMPV17 in AF in our bioinformatics-based findings
appeared to be counterintuitive, and one possible explaination is that
it represents a compensatorymechanism in response to excessive ROS
in AF. It has been proposed that mitochondria targeted antioxidants
may mitigate the progression of arrhythmia (Liu et al., 2022).

HIF1AN, also known as FIH-1, is located at 10q24 and encodes
a protein that binds to hypoxia inducible factor 1-alpha (HIF-1α)
to negatively modulate HIF-1α stability and inhibit HIF-1α
signaling (Mahon et al., 2001). The MPV17 lacking cells
displayed enhanced HIF-1α signaling under normoxia and
hypoxia (Shvetsova et al., 2017). And thus, both HIF1AN and
MPV17 have a negative effect on HIF-1α. It has been widely
accepted that HIF-1α is a modulator in various organisms for
sensing and responding to changes in the oxygen concentration,
mediating the cellular adaptation to hypoxia (Menendez-Montes
et al., 2016; Zhang et al., 2019). The expression of HIF1 is
essential to vasculogenesis and ventricular development at

early gestational stage under hypoxic conditions. However,
sustained HIF1 activation at midgestation precludes regulation
of genes essential for establishment of the cardiac conduction
system, such as genes encoding gap-junction protein Connexin
40 essential for the rapid cardiac conducting capacity, and also
impedes energy metabolism in mitochondrion, accompanied by
increased oxidative stress, resulting in misregulation of genes
involved in cardiac conduction system maturation (Menendez-
Montes et al., 2016). HIF-1α protein expression is elevated in AF
atrial tissues in vivo than those with SR (Ogi et al., 2010). HIF-1α
can increase the expression of matrix metalloproteinases (MMPs)
and transforming growth factor (TGF)-β in AF through
promoting atrial fibrosis (Ogi et al., 2010), and inhibiting the
expression ofHIF-1α can decrease the levels of TGF-β and MMP-
9 accompanied by the less myocardial fibrosis in rabbit models
(Su et al., 2014). HIF-1α was found increased in LAA of patients
with AF, suggesting that HIF is involved in the inflammatory and
fibrotic change of epicardial adipose tissue (Abe et al., 2018).
Furthermore, reduced fatty acid oxidation caused by
upregulation of HIF-1α has been demonstrated in AF models
(Bai et al., 2019). HIF1AN could be a potential strategy for
limiting exacerbated inflammation responses (Palazon et al.,
2014). Increased HIF1AN in patients with AF in our
bioinformatics-based findings manifested the protective

FIGURE 10
Analysis of immune regulatory genes related to the hub genes and prediction of mRNA-miRNA regulating the hub genes. (A) Differential analysis of
immune regulatory genes. (B) Correlation analysis of the hub genes and immune regulatory genes (C) Prediction of mRNA-miRNA regulating the
hub genes.
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property of HIF1AN against atrial fibrosis and inflammation
induced by HIF-1α in AF.

GSEA can be used to estimate changes in pathway activity in a
sample population (Xie et al., 2022). Using GSEA, we found that high
expression ofMPV17 was significantly enriched in GAP JUNCTION
pathway. Gap junctions in myocardium are responsible for the
intercellular conduction of action potentials; Spach et al. suggested
that altered topology of gap junctions took important effects on AF
and could be used as a therapeutic strategy for AF (Spach and Starmer,
1995). In recent years, the concept of AF treatment with a normalized
gap junction distribution has been widely recognized. It is now
believed that various mechanisms affecting gap junctions could
lead to an increased susceptibility to AF. Gap junction remodeling
during AF can be reversed, which can be accompanied by a decrease
in atrial susceptibility to AF (Guo and Yang, 2022). GSEA also
revealed that high HIF1AN expression was significantly enriched
in the inositol phosphate metabolism pathway. This pathway, in
which extracellular signaling molecules are activated by binding to
cell surface G protein-coupled receptors to release
phosphatidylinositol, possibly influences the regulation of cardiac
function, especially during the post-ischemic reperfusion of the
myocardium (Anderson et al., 1995). The cAMP produced in the
activation of phosphatidylinositol metabolism, such as inositol-1,4,5-
triphosphate receptors (InsP3Rs), modulates atrial muscle contraction
and is thought to contribute to AF. The expression levels of InsP3Rs
are upregulated in patients with AF—a process that may be associated
with Ca2+ release and altered homeostasis (Varma et al., 2022). These
findings suggest that these signaling pathways are involved in the
onset and development of AF and that MPV17 and HIF1AN may be
involved in the pathogenesis of AF through these signaling pathways.

During AF, the immune system is greatly altered and plays an
important role in the pathophysiology of disease development (Yao
et al., 2022). We found neutrophils, mast cells, NK cells, and IFN-γ
to be significantly elevated in AF and Th2 cells to be significantly
decreased among 22 types of immune cell. The number of
neutrophilic granulocytes was higher in the atrial fat tissue of AF
patients relative to SR individuals (Begieneman et al., 2015).
Neutrophils play an important role in AF development by
releasing cytokines such as interleukin-6 (IL-6), tumor necrosis
factor-α(TNF-α), MMP-2 and ROS that promote atrial
remodeling (Liu et al., 2018). Mast cells get involved in cardiac
fibrosis by releasing fibrogenic mediators in animal models of AF
(Kong et al., 2014; Uemura et al., 2016). However, the number of
mast cells in AF patients was similar to those with SR (Smorodinova
et al., 2017). The controversial effect of mast cells in AF is due to
some anti-fibrotic mediators in mast cells (Yao et al., 2022). The
influence of Th2 cells on AF is uncertain. Anti-inflammatory
cytokines (IL-4 and IL-10) secreted by Th2 cells downregulate
cell-mediated immune responses and cytotoxic inflammatory
responses. However, Th2 cells have also been implicated in the
pathogenesis of fibrotic conditions (Liu et al., 2018). IFN-γsecreted
by T cells and NK cells promotes atrial remodeling through
macrophage (Liu et al., 2015; Liu et al., 2018).

Hypoxia delays neutrophil apoptosis through HIF-1α-dependent
nuclear factor-κB activity that results in sustained inflammation
(Walmsley et al., 2005). The functions of the HIF on macrophage
polarization depend on the pathophysiological context. HIF-1α can
also drive immunosuppressive functions by macrophages lacking

HIF-2α fail to mount an inflammatory response (Palazon et al.,
2014). Hypoxia induces the production of proinflammatory
cytokines (TNF-α, IL-1β) by dendritic cells (DCs) (Mancino et al.,
2008). Due to the inhibitary effects ofHIF1AN andMPV17 onHIF-1α
(Mahon et al., 2001; Shvetsova et al., 2017), the hub genes attenuate
the influence of immune response induced by HIF-1α. In our
bioinformatics-based findings, HIF1AN had a positive relationship
with NK cells and macrophages, and a negative relationship with DCs
in AF; MPV17 had a positive association with B cells in AF.

Although the hub genes screened based on WGCNA and the
machine learning methods showed accurate diagnostic power and
were validated using external datasets, there were still some limitations
should be announced. First, this study was based on bioinformatics
analyses to obtain hub genes, it is necessary to be cautious to conclude
gene expression elucidating themolecular mechanisms underlying AF
without verification in vivo and in vitro experiments, and thus, further
investigation is warranted to address in vitro and in vivo. Second,
external clinical features of these data were not used in our study.
Furthermore, immune cell infiltration analysis was based on limited
genetic data, and the specific regulatory mechanisms need further in
vivo and in vitro experimental validation.

5 Conclusion

In summary, we used WGCNA combined with machine
learning methods to screen and validate the hub genes and
identified the correlations between two hub genes and the
immune microenvironment and immune regulation. Our results
may provide more accurate and effective diagnosis biomarkers and
therapeutic targets for AF.
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