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Small extracellular vesicles (sEVs) are minute vesicles secreted by various cells that
are capable of transporting cargo, including microRNAs, between donor and
recipient cells. MicroRNAs (miRNAs), small non-coding RNAs approximately
22 nucleotides in length, have been implicated in a wide array of biological
processes, including those involved in tumorigenesis. Emerging evidence
highlights the pivotal role of miRNAs encapsulated in sEVs in both the
diagnosis and treatment of urological tumors, with potential implications in
epithelial-mesenchymal transition, proliferation, metastasis, angiogenesis,
tumor microenvironment and drug resistance. This review provides a brief
overview of the biogenesis and functional mechanisms of sEVs and miRNAs,
followed by a summarization of recent empirical findings onmiRNAs encapsulated
in sEVs from three archetypal urologic malignancies: prostate cancer, clear cell
renal cell carcinoma, and bladder cancer. We conclude by underscoring the
potential of sEV-enclosed miRNAs as both biomarkers and therapeutic targets,
with a particular focus on their detection and analysis in biological fluids such as
urine, plasma, and serum.
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1 Introduction

Urologic tumors, primarily composed of prostate cancer (PC), clear cell renal cell
carcinoma (ccRCC), and bladder cancer (BC), exhibit a notable increase in incidence
with age. From 1990 to 2013, a 2.5-fold global increase was observed in the cumulative
number of new cases of kidney, bladder, and prostate cancers. This surge in disease
incidence correspondingly resulted in a 1.6-fold increase in overall mortality (Dy et al.,
2017). PC stands as one of the three leading causes of cancer-related deaths in men, as
well as one of the most frequently diagnosed cancers (Islami et al., 2021). According to
2022 cancer statistics, PC represented 27% of all diagnoses in men. Alarmingly, the
proportion of late-stage diagnoses escalated from 3.9% to 8.2% over the previous decade.
Despite a stabilization in the decline of the mortality rate, the late-stage incidence rate
continued to rise, yielding an average mortality rate of 18.9% (Siegel et al., 2022). BC,
being the ninth most common cancer globally, contributes to an estimated 573,000 new
cases and 212,000 deaths annually (Sung et al., 2021). Its advanced and metastatic stages
are poorly responsive to chemotherapy, leading to suboptimal 5-year survival rates.
Furthermore, the cancer-specific mortality rate for BC patients has seen little significant
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reduction over the past 3 decades (Liu et al., 2022). ccRCC,
accounting for nearly 80% of renal cell carcinoma (RCC)
subtypes, is the predominant cause of kidney cancer-related
deaths (Hsieh et al., 2017). Over the last 2 decades, a yearly
2% increase in RCC incidence has been recorded worldwide.
Current RCC cases show low sensitivity to both radiotherapy and
chemotherapy, leaving surgery as the primary treatment option.
This is particularly true for localized RCC, where surgical
intervention remains the sole curative approach (Ljungberg
et al., 2022). Despite advancements in treatment leading to an
improved 5-year relative survival rate post-diagnosis, the overall
prognosis remains poor, especially for patients at advanced stages
(Barata and Rini. 2017). Consequently, the urgent medical
necessity of identifying reliable diagnostic biomarkers and
formulating effective treatment strategies for urologic tumors
is apparent.

Small extracellular vesicles (sEVs) are lipid bilayer entities
secreted by a wide range of cells that encapsulate a diverse array
of biological components, including proteins, lipids, nucleic
acids, and other molecular entities (Negahdaripour et al.,
2020). As per the MISEV2018 guidelines, these vesicles are
characterized by their diminutive size, typically falling below
200 nm, or even 100 nm, in diameter (Théry et al., 2018). Despite
the nomenclature ambiguity across different studies, where they
may be labeled as exosomes or microvesicles, this paper will
consistently use the term “sEVs” to denote these small
extracellular vesicles, which are frequently referred to as
“exosomes” in scientific literature. Present in virtually all
bodily fluids—ranging from blood (Cumba Garcia et al.,
2019), urine (He et al., 2019; Wang and Zhang, 2022), saliva
(Hofmann et al., 2022), cerebrospinal fluid (Spaull et al., 2019),
semen (Wang et al., 2022), amniotic fluid (Sheller-Miller. 2020),
malignant ascites (Hu et al., 2019) and pleural effusions (Javadi
et al., 2021), bronchoalveolar lavage fluid (Wang et al., 2022) and
breast milk (Vaswani et al., 2019; Ramos-Garcia et al., 2023).
sEVs perform critical roles in the management and treatment of a
multitude of diseases. These include various types of tumors
(Zhou et al., 2021), inflammatory diseases (Fan et al., 2022),
cardiovascular (Burtenshaw et al., 2022), neurodegenerative
(Younas et al., 2022) and renal diseases (Grange and Bussolati.
2022). Their versatile utility spans different stages of cancer
treatment, from early diagnosis and screening to detecting
minimal residual disease, predicting tumor behavior, designing
personalized therapies, and evaluating treatment outcomes and
follow-up care (Ghosh et al., 2019). As of today, the primary
clinical applications of sEVs encompass drug delivery,
biomarkers, therapeutic targets, and anti-cancer vaccines
(Kucuk et al., 2021; Fang et al., 2022; Rezaie et al., 2022).
MicroRNAs (miRNAs, miRs), constituting a class of small
non-coding RNAs approximately 22 nucleotides long, are
pivotal in regulating gene expression at the post-
transcriptional level (Plawgo and Raczynska. 2022). They exert
their regulatory influence by targeting the 3ʹ untranslated region
(UTR) of the mRNA of the target gene, consequently modulating
protein levels (Bartel. 2009). Owing to their integral function in
gene regulation, miRNAs participate in key cellular physiological
processes, such as differentiation, proliferation, apoptosis, and
development. Furthermore, they play a vital role in the

pathogenesis of various diseases, including cancer (Yang et al.,
2021; Kousar et al., 2022; Li et al., 2022), diabetes (Zampetaki
et al., 2010; He et al., 2021) and cardiovascular diseases (Siasos
et al., 2020; Kalayinia et al., 2021).

As integral components of sEVs, miRNAs can be transported
from donor to recipient cells, thereby mediating phenotypic
alterations (Valadi et al., 2007; O’Brien et al., 2020). These
miRNAs, shielded by a lipid bilayer, are resistant to
degradation by extracellular nucleases, resulting in heightened
stability within body fluids (Munir et al., 2020). A growing body
of research reveals a crucial role for sEVs-miRNAs in numerous
physiological processes, as well as in the initiation and
progression of various diseases. Notably, sEVs-miRNAs exert
significant regulatory effects on tumor progression (Sun et al.,
2018; Mori et al., 2019). Given their specificity, sensitivity, and
stability, sEVs-miRNAs circulating in the humoral fluid are
recognized as potentially ideal noninvasive tools for early
tumor diagnosis and targeted therapy (Salehi and Sharifi.
2018; Prieto-Vila et al., 2021). This review discusses recent
discoveries concerning the role of sEVs-miRNAs in the
advancement of urological tumorigenesis and their prospective
use as biomarkers and therapeutic targets in urological tumors.

2 Biogenesis of sEVs

Extracellular vesicles (EVs) are lipid bilayer-encapsulated
particles, produced by various cell types, that are ubiquitously
found in physiological fluids. They carry an assortment of
biomolecules including proteins, lipids, and nucleic acids
(Raposo and Stoorvogel. 2013). Despite a lack of universally
accepted classification, the MISEV2018 guidelines offer a
categorization based on size, distinguishing between small EVs
(sEVs, <200 nm) and medium/large EVs (>200 nm) (Théry et al.,
2018). However, a significant number of publications further
classify EVs into exosomes (40–150 nm), microvesicles
(100–1,000 nm), and apoptotic vesicles (50–1,000 nm) (Willms
et al., 2016; Willms et al., 2018). Among these, sEVs, constituted
by endosomal-derived and plasma membrane-derived vesicles,
are the most abundant in biological fluids (Huang et al., 2021;
Qian et al., 2022).

The biogenesis of sEVs initiates with the inward budding of
the plasma membrane, leading to the formation of cup-like
structures filled with cell surface proteins and extracellular
soluble proteins. This invagination yields early sorting
endosomes (ESEs) (Kalluri and LeBleu. 2020), which through
subsequent maturation, transform into late sorting endosomes
(LSEs), and ultimately, multivesicular bodies (MVBs). During the
process of MVB formation, multiple intraluminal vesicles (ILVs)
are generated, and various cellular proteins, nucleic acids, and
lipids are sorted into these vesicles (Abels and Breliefield. 2016).
According to existing research, the formation of MVBs is chiefly
regulated by the endosomal sorting complex required for
transport (ESCRT) (Liu et al., 2021). MVBs may follow one of
two pathways: either fusing with autophagosomes and
subsequently with lysosomes for degradation or directly
interfacing with lysosomes for the same purpose.
Alternatively, MVBs may navigate to the plasma membrane
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through the cytoskeletal and microtubule network, fusing with it
to release ILVs into the extracellular space as sEVs (Colombo
et al., 2014; van Niel et al., 2018). In addition to endosomal
origins, there is compelling evidence that sEVs can also bud

directly from the plasma membrane or be sequestered in
intracellular plasma membrane–connected compartments
(IPMCs) for delayed release. However, this mechanism is
constrained by the narrow IPMC neck (Pegtel and Gould, 2019).

FIGURE 1
Biogenesis of sEVs and their role in cancer. The miRNAs carried by sEVs in cancer cells play a significant role in all stages of oncogenesis, with major
mechanisms including epithelial-mesenchymal transition (EMT), proliferation, metastasis, angiogenesis, tumor microenvironment, and drug resistance.
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TABLE 1 Role of miRNAs carried by sEVs in the progression of urological tumors.

Cancer types sEVs-miRNA Donor
cells

Recipient
cells

Targets Application Ref.

sEVs-miRNA promotes epithelial-mesenchymal transition (EMT) in urological tumors.

Prostate cancer miR-217, miR-
23b-3p

PC-3,
DU145

PC-3, DU145 E-Cadherin, N-
Cadherin, Vimentin

Promotes the EMT and regulates PC cell
proliferation and invasive ability

Zhou et al.
(2020)

Prostate cancer miR-95 M2-TAM PC3, DU145 JunB Promotes PC cell proliferation and invasion and
the EMT

Guan et al.
(2020)

Bladder cancer miR-663b T24, 5637 T24, 5637 ERF Promotes BC cell proliferation and the EMT Yin et al.
(2020)

Clear cell renal cell
carcinoma

miR-181d-5p CAFs ACHN, 786-O RNF43 Promotes ccRCC cell migration and invasion and
the EMT

Ding et al.
(2022)

Clear cell renal cell
carcinoma

miR-15a ACHN UMRC-2 BTG2 Promotes ccRCC cell migration and invasion and
the EMT

Li et al. (2021)

sEVs-miRNA promotes proliferation and migration in urological tumors.

Prostate cancer miR-146a-5p CAF LNCaP, DU145 EGFR Promotes PC cell migration and the EMT Zhang et al.
(2020)

Bladder cancer miR-21 T24 M0-TAM PTEN Promotes BC cell invasion and migration Lin et al.
(2020)

Bladder cancer miR-217 hBSC T24, 5367 YAP Promotes BC cell proliferation and migration Huang et al.
(2021)

Clear cell renal cell
carcinoma

miR-155 786-O,
Caki-1

786-O, Caki-1 FOXO3 Hypoxia-induced conditions stimulate the
proliferation and migration of ccRCC cell

Meng et al.
(2021)

Clear cell renal cell
carcinoma

miR-155-5p TAM ACHN, 786-O HuR Hypoxic conditions of TAM promote ccRCC cell
proliferation and metastasis.

Gu et al.
(2021)

sEVs-miRNA promotes angiogenesis in urological tumors

Prostate cancer miR-27a-3p PC-3 HUVEC Not yet researched Promotes angiogenesis Prigol et al.
(2021)

Bladder cancer miR-93-5p T24, 5637 HUVEC Not yet researched Promotes BC cell proliferation, invasion and
angiogenesis

Yuan et al.
(2023)

Clear cell renal cell
carcinoma

miR-193a-5p TAM 786-O, Caki-1 TIMP2 Promotes ccRCC cell VM and invasion Liu et al.
(2022)

sEVs-miRNAs promote the microenvironment in urological tumors

Prostate cancer miR-1290 CAF PC3, 22RV1 GSK3β Promotes PC cell growth and metastasis Wang et al.
(2022)

Prostate cancer miR-100-5p,
miR-21-5p

CSC WPMY-1 Not yet researched Promotes tumor growth, survival and
proliferation to distant ecological niches

Sánchez et al.
(2016)

Prostate cancer miR-375 LNCaP hFOB1.19 Not yet researched Promotes osteoblast activity Li et al. (2019)

Prostate cancer miR-1275 PC3 hFOB1.19 SIRT2 Promotes osteoclast proliferation and activity Zou et al.
(2021)

Bladder cancer miR-186-5p, T24, SV-
HUC-1

NK cell DAP10 Promotes NK cell dysfunction Huyan et al.
(2022)

Bladder cancer miR-221-5p T24, SV-
HUC-1

NK cell CD96, PRF1 Promotes NK cell dysfunction Huyan et al.
(2022)

Clear cell renal cell
carcinoma

miR-224-5p CAF 769-P Not yet researched Promotes ccRCC cell proliferation, migration and
invasion and inhibits apoptosis

Liu et al.
(2021)

Clear cell renal cell
carcinoma

miR-19b-3p CSC ACHN, 786-O PTEN Promotes ccRCC EMT Li et al. (2019)

Clear cell renal cell
carcinoma

miR-142-3p RCSC HK2 ERp44 Renal impairment Wu et al.
(2022)

(Continued on following page)
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3 Biogenesis and mechanism of
microRNAs

MicroRNAs (miRNAs) are small endogenous non-coding RNAs,
typically around 22 nucleotides long, that canmodulate gene expression
by transcriptional repression or silencing (Lu and Rothenberg, 2018).
Our study revealed that the majority of mature miRNA sequences are
positioned within the introns of pre-mRNA, as well as within the
introns or exons of non-coding RNAs (Saliminejad et al., 2019). The
biogenesis of miRNAs primarily involves transcription by RNA
polymerase II, which generates primary miRNA (pri-miRNA) stem
loops. These stem loops possess a 5′cap structure and can undergo both
polyadenylation and splicing (Bushati and Cohen. 2007). The classical
pathway of miRNA maturation commences in the nucleus, where a
multiprotein microprocessor complex processes the pri-miRNA. This
complex primarily consists of the RNase III family nuclease
Drosha2 and the double-stranded RNA binding domain (dsRBD)
protein DGCR8/Pasha, producing a pre-miRNA with a stem-loop
structure of approximately 70 nucleotides (Bushati and Cohen.
2007). This pre-miRNA is recognized by Exportin-5, which
facilitates its translocation to the cytoplasm through a Ran-GTP-
dependent mechanism (Bohnsack et al., 2004). Once in the
cytoplasm, the pre-miRNA is subject to further processing by the
RNAase III enzyme Dicer, resulting in the creation of short RNA
duplexes. Subsequently, one strand is degraded while the mature
miRNA is incorporated into the RNA-induced silencing complex,
containing the Argonaute protein. This assembly process results in
the mature miRNA being directed to its 3′UTR, binding to the target
mRNA via base pairing, which subsequently leads to mRNA
degradation or translational inhibition (Kobayashi and Tomari,
2016; Shefler et al., 2019).

4 The role of miRNAs carried by sEVs in
the development of urological tumors

miRNAs carried by sEVs have been demonstrated to play a
significant role in the pathogenesis and progression of urological

tumors (Figure 1). Their influence on processes such as invasion,
metastasis, angiogenesis, immune evasion, and chemoresistance has
been validated by several studies (Huang et al., 2013; Liu et al., 2022;
Song et al., 2022) (Table 1).

4.1 Role of epithelial-mesenchymal
transition in urological tumors

The epithelial-mesenchymal transition (EMT) is a vital
biological process characterized by cells transitioning from an
epithelial phenotype to a mesenchymal one. This transition
involves a decrease in cell-to-cell adhesion accompanied by an
increase in the capability for metastasis and tissue invasion,
which are key facilitators of tumor progression and metastasis
(Pastushenko and Blanpain. 2019).

In PC, Zhou et al. (2020) examined the impact of sEVs-miR-
217 and miR-23b-3p on EMT-related factors (E-calmodulin,
N-calmodulin, and Vimentin). A series of in vitro and in vivo
experiments led them to determine that sEVs-miR-217 and miR-
23b-3p could regulate EMT in PC cells. Furthermore, these
molecules could influence the proliferation and invasive capacity
of PC cells through EMT.

In BC, researchers discovered elevated plasma levels of miR-
663b carried by sEVs in BC patients compared to a normal control
group. It was also discerned that sEVs-miR-663b could foster cell
proliferation and EMT by targeting the Ets2-suppressor (ERF) (Yin
et al., 2020).

In ccRCC, theWnt/β-linked protein signaling pathway, a crucial
pathway in ccRCC, is modulated by a variety of factors, including
sEVs-miRNA (Joosten et al., 2018; Liu et al., 2022). Ding et al. (2022)
experimentally demonstrated that sEVs-miR-181d-5p originating
from cancer-associated fibroblasts (CAFs) could activate Wnt/β-
linked protein signaling in ccRCC cells. This activation occurs by
directly repressing the expression of the ring finger 43 (RNF43)
protein, subsequently promoting migration, invasion, and EMT of
ccRCC cells. In a separate study, sEVs-miR-15a was found to be
upregulated in ccRCC cells, thus fostering EMT, and by extension,

TABLE 1 (Continued) Role of miRNAs carried by sEVs in the progression of urological tumors.

Cancer types sEVs-miRNA Donor
cells

Recipient
cells

Targets Application Ref.

Clear cell renal cell
carcinoma

miRNA-21-5p M2-TAM ACHN, 786-O PTEN Promotes ccRCC metastasis Zhang et al.
(2022)

sEVs-miRNAs promote drug resistance in urological tumors

Prostate cancer miR-423-5p CAF LN-CaP, 22Rv-1,
C4-2

GREM2 Increases resistance of prostate cancer to taxane Shan et al.
(2020)

Prostate cancer miR-27a PSC27 PC-3 p53 Mediates chemoresistance in PC-3 cell Cao et al.
(2019)

Bladder cancer miR-148b-3p CAF 5637, T24 PTEN Promotes BC cell the EMT, metastasis and drug
resistance

Shan et al.
(2021)

Clear cell renal cell
carcinoma

miR-31-5p ACHN,
786-O

ACHN, 786-O MLH1 Promotes ccRCC cell resistance to sorafenib He et al.
(2020)
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ccRCC metastasis and growth, by downregulating BTG2 and
enhancing PI3K/AKT signaling pathway activity. (Li et al., 2021).

Numerous studies collectively indicate that sEVs-associated
miRNAs play a pivotal role in promoting EMT in urological
tumors, thereby driving the progression of these tumors. By
exploring the regulatory mechanisms of these sEVs-miRNAs on
urological tumors, we can enhance our understanding and
potentially identify novel therapeutic targets for treating these
malignancies.

4.2 Implications of sEVs-miRNA in
proliferation and migration of urological
tumors

Tumorigenic cellular behaviors, encompassing proliferation,
invasion, and migration, are driven by a multitude of factors.
Among these, sEVs-miRNA emerges as a key player, fostering
tumor expansion and metastasis (Liu et al., 2022).

In PC, a unique role of CAFs-derived sEVs has been noted post-
androgen deprivation therapy (ADT). It is observed that these
CAFs-derived sEVs, enriched with miR-146a-5p, enhance both
migration and invasion of EMT and PC cells under ADT. This
occurs via modulation of the epidermal growth factor receptor
(EGFR)/ERK pathway, thereby contributing to PC metastasis
(Zhang et al., 2020).

With regard to BC, research by Lin et al. (2020) demonstrated that
BC cell-derived sEVs-miR-21 could boost BC cell invasion and
migration. This is achieved by the downregulation of PTEN
expression, which subsequently activates the PI3K/AKT-mediated
STAT3 signaling pathway in TAMs, leading to the promotion of
M2 phenotypic polarization. This is achieved by the downregulation
of PTEN expression, which subsequently activates the PI3K/AKT-
mediated STAT3 signaling pathway in TAMs, leading to the
promotion of M2 phenotypic polarization. Additionally, human
bladder mesenchymal stromal cell (hBSC)-derived sEVs-miR-
217 mimics have been found to bolster BC cell proliferation and
migration while suppressing apoptosis. Conversely, hBSC-derived
sEVs-miR-217 inhibitors serve to suppress BC cell proliferation and
migration while promoting apoptosis. This regulatory dynamic is
mediated through the transcription factor YAP and its target proteins
including Cyr61, CTGF, and ANKRD1, which collectively influence BC
cell proliferation, migration, and apoptosis (Huang et al., 2021).

In ccRCC, a correlation between tumor progression and the
degree of hypoxia, often resultant from rapid tumor growth, is
evident (Mennerich et al., 2019). Notably, ccRCC cells under
normoxic and hypoxic conditions are found to produce sEVs-
miR-155. This results in the hypoxia-induced upregulation of
sEVs-miR-155, which directly facilitates ccRCC cell proliferation
by suppressing FOXO3 expression (Meng et al., 2021). Furthermore,
hypoxic TAM-derived sEVs-miR-155-5p has been reported to
enhance RCC cell proliferation and metastasis through the
activation of the HuR-dependent IGF1R/AKT/PI3K pathway,
thus promoting RCC progression (Gu et al., 2021).

Collectively, these findings underscore the potent influence of
sEVs-miRNA in driving the proliferation and metastasis of
urological tumors, consequently expediting the progression of
urological malignancies.

4.3 The role of angiogenesis in urological
tumors

Angiogenesis, the formation of new blood vessels, is a crucial
component in the study of urological tumors. This process can be
visualized and assessed via the tubular network established by
human umbilical vein endothelial cells (HUVECs), which
faithfully retain the characteristics of vascular endothelial cells.
As such, HUVECs present an effective model for the
investigation of controlled angiogenesis or neovascularization
mechanisms (Park et al., 2006). The connection between
angiogenesis and miRNAs in both in vitro and in vivo
environments was first elucidated by Poliseno et al. (2006). Their
work demonstrated that the silencing of Dicer and Drosha enzymes
in HUVECs diminished tubulogenesis. Since angiogenesis is integral
to tumor cell survival, sEVs-miRNAs have been identified as key
contributors to angiogenesis in urological tumors. For instance, a
study by Prigol et al. (2021) indicated that sEVs from PC-3 cells
prompted angiogenic behavior in HUVECs, a finding attributable to
the overexpression of miR-27a-3p in PC-3 sEVs. This observation
suggests the potential involvement of miR-27a-3p in pro-angiogenic
effects. In BC, recent research has revealed that BC cell-derived sEVs
containing miR-93-5p significantly enhance cell proliferation,
migration, invasion, and angiogenesis. These findings were
confirmed through a combination of bioinformatics techniques
and comprehensive experimental validations (Yuan et al., 2023).
In the case of ccRCC, miR-193a-5p, carried by tumor-associated
macrophage (TAM)-derived sEVs, augments vasculogenic mimicry
(VM) and cell invasion of ccRCC cells. This occurs through the
targeting of the 3′UTR of TIMP2 mRNA in ccRCC cells, inhibiting
its translation and consequently promoting angiogenesis (Liu et al.,
2022).

4.4 Promotion of urological tumor
microenvironment

The tumor microenvironment (TME) is a complex network
comprised of a multitude of components, including but not limited
to, tumor cells, CAFs, endothelial cells, immune cells, and the
extracellular matrix (ECM). Additionally, it encompasses non-
cellular entities such as sEVs and cytokines (Tan et al., 2020).
The intricate interactions between these components, particularly
with tumor cells, serve as critical influencers in the progression and
development of the tumor (Arneth. 2019).

Within the TME, CAFs represent themost prolific stromal cell type.
Of particular interest is the significant role that sEVs derived fromCAFs
play in tumor development (Nilendu et al., 2018; Sundararajan et al.,
2018). For instance, in PC, it has been observed that these CAF-derived
sEVs facilitate PC cell migration and invasion. Moreover, they also
instigate the upregulation of miR-1290 within the CAF-sEVs. The
resulting CAF-sEV-miR-1290 complex promotes PC cell migration,
invasion, EMT, and stemness, as evidenced by various cellular and real-
time quantitative polymerase chain reaction (RT-qPCR) assays. The
underlyingmechanism appears to be the inhibition of GSK3β/β-catenin
signaling, leading to enhanced PC cell growth and metastasis (Wang
et al., 2022). In the context of ccRCC, research by Liu et al. (2021) has
revealed a similar pattern. They discovered that CAF-derived exosomes

Frontiers in Cell and Developmental Biology frontiersin.org06

Mao et al. 10.3389/fcell.2023.1192937

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1192937


contribute positively to ccRCC cell proliferation, migration, and
invasion while exerting an inhibitory effect on apoptosis. These
findings were corroborated through cell function, co-culture
experiments, and flow cytometry assays. Further, they ascertained
that miR-224-5p could be transferred to ccRCC cells via CAF-
derived sEVs. Exploring this interaction, they found that
overexpression of miR-224-5p led to a significant increase in cell
migration and invasion. In conclusion, their research demonstrated
that the CAF-sEV-miR-224-5p complex could be internalized by
ccRCC cells, subsequently promoting cell proliferation, migration,
invasion, and apoptosis inhibition.

Cancer stem cells (CSCs) within the TME exert oncogenic
influences, fostering cancer progression, dissemination, and
metastasis. Notably, sEVs derived from CSCs echo these
functional attributes in neoplastic conditions (Scioli et al., 2021;
Liu et al., 2022). In the context of PC, an investigation involving the
precipitation of purified exosomes for miRNA extraction and the
subsequent comparison of these miRNAs via next-generation
sequencing on the Illumina platform was carried out. This
analysis revealed six miRNAs with overexpression in CSC-
derived exosomes, with miR-100-5p and miR-21-5p being the
most profuse. Further bioinformatics scrutiny highlighted that
these differentially expressed miRNAs primarily regulate
angiogenesis and cellular proliferation, essential functions
underpinning tumor growth, survival, and metastatic propagation
(Sánchez et al., 2016). Yet, the specific mechanisms underlying these
interactions remain elusive, warranting further exploration. In
ccRCC, a study by Wang et al. (2019) discerned a markedly
higher migratory and invasive potential in CSC-derived exosomes
compared to cancer exosomes. This was demonstrated through
wound healing, transwell assays, and Western blotting analyses,
revealing an impact on the expression of EMT-related genes. This
suggests that CSC-sEVs may hasten EMT in ccRCC cells. Further
examination using quantitative real-time polymerase chain reaction
(qRT-PCR) to detect and manipulate the expression of miR-19b-3p
within CSC-sEVs via lentivirus revealed that CSC-sEV-miR-19b-3p
levels were significantly elevated compared to those in cancer
exosomes. The influence of CSC-derived exosomes was curtailed
following the knockdown of miR-19b-3p, implying a mediating role
for this miRNA in CSC-exosome action. Subsequent Western
blotting and luciferase activity measurements affirmed that CSC-
sEV-miR-19b-3p could stimulate EMT by suppressing PTEN
expression, thus enhancing the metastatic propensity of ccRCC
cells. Similarly, Wu et al. (2022) discovered that renal CSC
(RCSC)-derived sEVs induced apoptosis and endoplasmic
reticulum stress in kidney cells, as demonstrated by FCM assay,
TUNEL staining, and Western blotting. Following local injection of
RCSC-sEVs in mice, histological and immunohistochemical
analyses deduced that RCSC-sEV-miR-142-3p could impair renal
function. Concurrently, dual luciferase activity measurements and
Western blotting analyses established that miR-142-3p, derived
from kidney CSC-sEVs, could be expressed in renal cells by
interfering with ERp44. This led to the activation of the PERK-
CHOP pathway, subsequently inducing endoplasmic reticulum
stress and apoptosis in renal cells, culminating in renal
impairment. Nevertheless, this complex process of renal
impairment mediated by RCSC-sEVs necessitates further
elucidation through extensive research.

In the TME, numerous constituents contribute significantly to
the evolution of urologic tumors. Notably, in PC, osteoblastic bone
metastases frequently emerge, underscoring the crucial role of
osteoblast activity regulation in managing PC metastases (Borel
et al., 2020). Recent studies have identified sEVs-miRNAs as crucial
mediators of the interface between PC cells and the bone metastasis
microenvironment. Among these, sEVs-miR-375 and miR-1275
have drawn considerable attention (Li et al., 2019; Zou et al.,
2021). Li et al. (2019) demonstrated that sEVs-miR-375, derived
from LNCaP cells, significantly enhanced osteoblast activity. This
effect was confirmed through a series of experiments, including
transfection of osteoblasts with miR-375 mimics, the subsequent
evaluation of alkaline phosphatase activity, extracellular matrix
mineralization, and the expression of osteoblast activity-related
marker genes. In another investigation, PC3 cell-derived sEVs-
miR-1275 was found to promote osteoblast proliferation and
activity by modulating the SIRT2/Runx2 signaling pathway.
Techniques such as ultracentrifugation, qRT-PCR, and CCK-8
assays were employed to isolate exosomes from PC3-derived
conditioned medium, supporting the role of sEVs-miR-1275 as a
vital enhancer of osteoblast activity (Zou et al., 2021). Contrastingly,
in BC, BC cell-secreted sEVs-miR-186-5p and miR-221-5p have
been observed to disrupt mRNA stability in natural killer (NK) cells.
They achieve this by targeting the DAP10 and CD96, and perforin
genes (PRF1), respectively, in NK cells. The overall result is a decline
in NK cell cytotoxicity against target cells and an impairment in NK
cell production. (Huyan et al., 2022). In the context of ccRCC, Zhang
et al. (2022) discovered that M2macrophage-derived sEVs-miRNA-
21-5p could downregulate a tumor suppressor and activate the Akt
signaling pathway to spur ccRCC cell metastasis. This was
accomplished by targeting a specific sequence in the PTEN-3′UTR.

Collectively, these findings underscore the dynamic interplay
between urological tumors and various TME components mediated
by sEVs-miRNAs, ultimately fostering urological tumor
progression. Nonetheless, the necessity for additional evidence
detailing the effects of sEVs-miRNAs interacting with TME
components remains.

4.5 Promotion of drug resistance in
urological tumors

Drug resistance presents a significant obstacle in tumor therapy,
emerging as a major hurdle in its efficacy. This resistance in tumor
cells primarily originates from either intrinsic or extrinsic factors.
Intrinsic drug resistance stems from genetic or phenotypic
modifications within the tumor cells. Conversely, extrinsic drug
resistance arises from the tumor’s interaction with its surrounding
microenvironment (Steinbichler et al., 2019).

In PC, Shan et al. (2020) demonstrated through a series of
studies that the promotion of chemoresistance in PC is mediated
by CAF-derived sEVs carrying miR-423-5p, which targets
GREM2. Intriguingly, sEVs-miR-423-5p was found to inhibit
the activity of the TGF-β pathway, thus inducing resistance in PC
cells. In vivo analysis demonstrated that miR-423-5p increased
the resistance of PC cells to paclitaxel. These studies eventually
led to the conclusion that CAF-secreted sEVs-miR-423-5p
inhibit GREM2 via the TGF-β pathway, thus increasing
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resistance to paclitaxel and fostering PC chemoresistance.
Furthermore, sEVs-derived miR-27a in PSC27 cells enhances
PC chemotherapy resistance by downregulating P53 gene
expression (Cao et al., 2019).

In BC, CAF-derived sEVs-miR-148b-3p curbs apoptosis,
encourages EMT, metastasis, and drug resistance in BC cells.
PTEN was identified as a target of miR-148b-3p. Interestingly,
when sEVs-miR-148b-3p is downregulated, PTEN is upregulated,
inhibiting EMT, metastasis, and drug resistance in BC cells through
the Wnt/β-catenin pathway (Shan et al., 2021).

In ccRCC, He et al. (2020) discovered that miR-31-5p in EV
could transfer resistance information from sorafenib-resistant

ccRCC cells to sensitive ones. This miR-31-5p was found to
promote resistance to sorafenib in ccRCC cells both in vitro and
in vivo by downregulating the MHL1 gene. Elevated miR-31-5p
levels were also observed in plasma EV from sorafenib-resistant
ccRCC patients.

These investigations highlight the potential mechanisms by
which sEVs-miRNA may impair drug efficacy, providing avenues
to enhance urological tumor treatment. However, some findings
appear to be derived from cellular studies based on inferential
evidence and lack rigorous experimental validation. Hence, more
robust and standardized experiments are crucial for further
substantiation of these findings.

TABLE 2 miRNAs carried by sEVs as potential biomarkers for urological tumors.

Cancer type sEVs-miRNA Clinical sample Up/Downregulation Cite

Prostate cancer miR-16, miR-195 Urine Downregulated Borkowetz et al. (2020)

miR-310a Urine Upregulated Hasanoğlu et al. (2021)

miR-21, miR-451, miR-636 Urine Upregulated Shin et al. (2021)

miR-30b-3p, miR-126-3p Urine Upregulated Matsuzaki et al. (2021)

miR-375, miR-574-3p Urine Upregulated Lee et al. (2018)

miR-125a-5p Plasma Downregulated Li et al. (2020)

miR-141-5p Plasma Upregulated Li et al. (2020)

miR-10a-5p, miR-29b-3p Plasma Upregulated Worst et al. (2019)

miR-423-3p Plasma Upregulated Guo et al. (2020)

miR-654-3p, miR-379-5p Serum Upregulated Yu et al. (2018)

miR-181a-5p Serum Upregulated Wang et al. (2021)

miR-1246 Serum Upregulated Bhagirath et al. (2018)

miR-142-3p, miR-142-5p, miR-223 -3p Semen Upregulated Barceló et al. (2019)

Bladder cancer miR -146b-5p Urine Upregulated Baumgart et al. (2019)

miR-96-5p, miR-183-5p Urine Upregulated El-Shal et al. (2021)

miR-21-5p Urine Upregulated Matsuzaki et al. (2017)

miR-93-5p, miR-516a-5p Urine Upregulated Lin et al. (2021)

miR-375, miR-146a Urine Upregulated Andreu et al. (2017)

miR-4669, miR-4298 Plasma Downregulated Yan et al. (2020)

miR-4644 Plasma Upregulated Yan et al. (2020)

miR-663b Plasma Upregulated Yin et al. (2020)

Clear cell renal cell carcinoma miR-497, miR-663b Urine Downregulated Song et al. (2019)

miR-30c-5p Urine Upregulated Kurahashi et al. (2019)

miR-92a-1-5p Plasma Downregulated Xiao et al. (2020)

miR-1293 Plasma Downregulated Dias et al. (2020)

miR-301a-3p Plasma Upregulated Dias et al. (2020)

miR-149-3p, miR-424-3p Plasma Upregulated Xiao et al. (2020)

miR-210, miR-1233 Serum Upregulated Zhang et al. (2018)

miR-4525 Serum Upregulated Muramatsu-Maekawa et al. (2021)
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5 Diagnostic and prognostic potential
of sEVs-carried miRNAs in urological
tumors

Early diagnosis and accurate prognosis of tumors are
instrumental to the success of cancer treatments. The analysis of
miRNAs carried by sEVs has shown substantial potential as a
biomarker for early diagnosis and prognosis across a spectrum of
cancers (Sun et al., 2018; Xiao et al., 2020; Pinzani et al., 2021)
(Table 2).

Extensive research suggests that sEV-carried miRNAs could
serve as potential biomarkers for urological tumors (Zeuschner
et al., 2020). An experimental analysis of miRNA detection in the
urine of prostate cancer patients with elevated serum prostate-
specific antigen (PSA) levels identified sEV-miR-30b-3p and
miR-126-3p as potential PC biomarkers (Matsuzaki et al.,
2021). Additionally, miRNAs conveyed by sEVs in semen may
have considerable diagnostic utility. Three miRNAs in particular,
miR-142-3p, miR-142-5p, and miR-223-3p, were detected in
semen sEVs and found to be overexpressed in patients with
both malignant and benign prostate tumors compared to
healthy controls. The combination of these three miRNAs
with blood PSA concentrations could aid in distinguishing
benign from malignant tumors (Barceló et al., 2019). A
separate study concluded that sEVs-miR-221-3p outperformed
serum PSA levels in differentiating prostate cancer from BPH.
This was determined by evaluating sEVs-miR-21, miR-141, and
miR-221 isolated from plasma and comparing these to serum
PSA levels (Kim et al., 2021). In the realm of prostate cancer
treatment, serum sEVs-miR-654-3p and miR-379-5p have shown
potential as noninvasive biomarkers for predicting the efficacy of
carbon ion radiotherapy (CIRT) in PC patients undergoing this
treatment (Yu et al., 2018).

In the case of BC, recent findings have highlighted the potential
of urinary sEVs-miRNA-96-5p and miRNA-183-5p as promising
diagnostic biomarkers. These two miRNAs have demonstrated
robust sensitivity and specificity in distinguishing BC. Specifically,
miR-96-5p showed a sensitivity and specificity of 80.4% and 91.8%,
respectively, while the corresponding values for miR-183-5p were
78.4% and 81.6%. Importantly, when these miRNAs were used in
combination for BC diagnosis, the sensitivity increased to 88.2% and
the specificity to 87.8%, further attesting to their diagnostic potential
(El-Shal et al., 2021).

For ccRCC, one study identified significant disparities in miR-
30c-5p expression levels within urinary sEVs. The researchers
compared patients with early-stage ccRCC and healthy control
individuals. For ccRCC diagnosis, the urinary sEVs-miR-30c-5p
levels demonstrated a sensitivity of 68.57% and an impressive
specificity reaching 100% (Song et al., 2019). A further
experimental analysis compared sEVs-miRNA expression in
plasma from ccRCC patients with localized disease (both pre-
and post-surgery) to those with metastatic disease. This study
revealed a consistent decreasing trend in the expression of sEVs-
mir-301a-3p among patients who had undergone surgery, in
contrast to a significant increase in the metastatic group. These
findings suggest that sEVs-mir-301a-3p may assume a crucial role in
the metastatic process, and it may hold promise as a prognostic
biomarker (Dias et al., 2020).

Taken together, it is easy to find that miRNAs of sEVs origin can
be potential biomarkers for urological tumors due to their
specificity, wide source, and stability.

6 Therapeutic applications of sEVs

Recent advancements in the field of sEV research have
uncovered the multifaceted roles of sEVs in cancer therapy.
sEVs are not only ideal noninvasive biomarkers for disease
diagnosis but also effective drug delivery vehicles for diverse
cancer therapies. Their membrane permeability enables them to
traverse biological barriers, including the blood-brain barrier
(Zhuang et al., 2011; Patil et al., 2020). A variety of cell types,
such as immune cells, mesenchymal stem cells (MSCs), and
cancer cells, can serve as sources for sEV-based drug delivery
systems (Walker et al., 2019). Given the potent tumor-targeting
capability, low immunogenicity, high tolerance, and
nanoparticle properties of bioengineered MSC-derived sEVs,
they are frequently employed as carriers for the delivery of
various functional RNAs, natural compounds, or
chemotherapeutic agents in oncology treatment (Weng et al.,
2021). Numerous experimental studies have delineated methods
for loading therapeutic molecules into sEVs. These include pre-
loading, post-loading, and the creation of artificial structures
mimicking natural sEVs (Sil et al., 2020). Apart from their role in
drug delivery, sEVs also show substantial promise in cancer
immunotherapy. sEVs derived from a range of cell types,
including B cells, dendritic cells (DCs), macrophages, cancer
cells, and normal cells, have potential use in cancer
immunotherapy. The hope is that these could eventually be
developed into tumor vaccines, adding another powerful tool
to the arsenal of cancer therapies (Thakur et al., 2022).

Experimental studies have underscored the therapeutic
potential of miRNAs carried by sEVs for urologic tumors
(Linxweiler and Junker, 2020) (Table 3). In the context of
PC, sEVs-miRNAs such as miR-320a-3p and miR-186-5p
have been identified through next-generation sequencing
(NGS) analysis. These miRNAs have potential as grading
tools for patients with ISUP grade 1, 2, and 3 prostate
cancer, suggesting that regular monitoring of urinary sEVs-
miRNAs in PC patients could enhance therapeutic strategies
(Ramirez-Garrastacho et al., 2022). Recent reports also
highlight that sEVs-miR-26a and sEVs-miR-1246 can impede
tumor development through the inhibition of EMT in PC.
Specifically, sEVs-miR-26a may suppress the EMT process in
PC by modulating the expression of EMT-related factors (Wang
et al., 2019). On the other hand, sEVs-miR-1246 may inhibit
EMT by repressing PC mesenchymal genes, thereby exerting
multifaceted effects on cell proliferation, apoptosis, invasion,
and migration (Bhagirath et al., 2018). MSC-derived sEVs have
been utilized to deliver miR-let-7c to Castration-resistant
prostate cancer (CRPC), impeding cell proliferation and
migration and providing a targeted approach to CRPC
(Kurniawati et al., 2022).

In BC, sEVs-miR-375-3p, bone marrow mesenchymal stem
cell (BMSC)-derived sEVs-miR-139-5P, and sEVs-miR-9-3p
have been found to inhibit the progression of BC (Cai et al.,
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2019; Li et al., 2020; Xiang et al., 2022). sEVs-miR-375-3p can
obstruct the expression of the BC cell growth gene FZD8, thereby
inhibiting the Wnt/β-catenin pathway and downstream
molecules Cyclin D1 and c-Myc, suppressing proliferation
and metastasis while promoting BC cell apoptosis (Li et al.,
2020). BMSC-derived sEVs can transfer miR-139-5p into
bladder cancer cells, inhibiting proliferation, migration, and
invasion while inducing apoptosis. This effect is mediated by
BMSC-sEVs-miR-139-5p activating p21 through KIF3A
targeting and inhibition, thereby limiting tumorigenesis and
lung metastasis in bladder cancer cells (Cai et al., 2019).
Human umbilical cord mesenchymal stem cells (hUCMSCs)-
derived sEVs-miR-9-3p exert anti-tumor effects by
downregulating the tumor promoter gene endothelial cell-
specific molecule-1 (ESM-1), leading to reduced BC cell
viability, migration, invasion, and enhanced apoptosis (Xiang
et al., 2022). Conversely, MSC-derived sEVs-miR-139-5p
inhibits BC development by targeting and downregulating
cytokinesis 1 (PRC1), thereby suppressing BC cell
proliferation and subsequent BC progression (Jia et al., 2021).

In ccRCC, recent findings have demonstrated the potential
therapeutic efficacy of sEVs-miR-1 and sEVs-miR-549a (Xuan
et al., 2021; Yoshino et al., 2022). sEVs-miR-1 exerts a

substantial inhibitory effect on ccRCC cells, curbing cell
proliferation, migration, and invasion (Yoshino et al., 2022).
Meanwhile, sEVs-miR-549a attenuates angiogenesis and
endothelial cell migration by suppressing HIF1α protein in
vascular endothelial cells. However, in the context of TKI-
resistant renal cancer, which secretes lower levels of sEVs-
miR-549a, the inhibition of HIF1α is reduced, thereby
facilitating vascular permeability and angiogenesis, which in
turn promotes tumor metastasis (Xuan et al., 2021).

Three distinct sets of target genes have been identified to
illustrate the involvement of sEVs-miRNAs in urological
cancers. These differentially expressed sEVs-miRNAs, either
individually or collectively, hold promise as biomarkers. They
could play a vital role in various aspects of cancer management,
including tumor staging, early diagnosis, progression
monitoring, prognostic assessment, and treatment response
evaluation. Furthermore, they may also serve as potent
therapeutic agents. Despite these promising developments,
research in this field remains in its infancy, with many
unexplored avenues. Further investigations are necessary to
enhance our understanding of sEVs-miRNA-based therapies
and their application in the treatment of patients with
urological tumors.

TABLE 3 Therapeutic potential of miRNAs carried by sEVs for urological tumors.

Cancer types sEVs-miRNA Clinical sample Biological function Cite

Prostate cancer miR-654-3p、miR-379-5p Serum Predicting the efficacy of CIRT for PC Yu et al. (2018)

miR-1246 Serum Inhibition of PC metastasis and tumor growth Bhagirath et al. (2018)

miR-99b-5p HBMSCs Inhibition of PC progression through downregulation
of insulin-like growth factor 1 receptor (IGF1R)

Jiang et al. (2022)

miR-let-7c HBMSCs Inhibition of PC cell proliferation and migration Kurniawati et al. (2022)

miR-205 HBMSCs Inhibits PC cell proliferation, invasion and migration
and enhances apoptosis by targeting RHPN2

Jiang et al. (2019)

miR-146a-5p CAFs Inhibition of migration and invasion of EMT and PC
cells through regulation of the EGFR/ERK pathway

Zhang et al. (2020)

miR-26a PC cells Inhibition of PC metastasis and tumor growth Wang et al. (2019)

Bladder cancer miR-133b Serum Inhibition of BC cell proliferation and induction of
apoptosis by targeting DUSP1

Cai et al. (2020)

miR-9-3p BMSC Inhibits BC cell viability, migration and invasion via
ESM1 downregulation; induces apoptosis

Cai et al. (2019)

miR-139-5p BMSC Inhibits the proliferation, migration and invasion of BC
cells by regulating the KIF3A/p21 axis, while inducing
apoptosis

Xiang et al. (2022)

miR-139-5p hUCMSCs Inhibition of BC cell proliferation by targeting and
decreasing the expression of PRC1

Jia et al. (2021)

miR-138-5p MSCs Inhibited migration, invasion and proliferation of BC
cells

Liu et al. (2022)

miR-375-3p BC cells Inhibits the proliferation and migration of BC cells and
promotes apoptosis

Li et al. (2020)

Clear cell renal cell carcinoma miR-1 Serum Inhibition of ccRCC cell proliferation, migration and
invasion

Yoshino et al. (2022)

miR-549a ccRCC cells Silencing of HIF1α protein in vascular endothelial cells
reduces angiogenesis and endothelial cell migration

Xuan et al. (2021)
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7 Conclusion

In recent years, sEVs and miRNAs have emerged as an active
research Frontier, although their implementation within research
methodologies is still relatively nascent. Given the ubiquity of sEVs
in various body fluids and their capacity to transport miRNAs to
target cells, these entities hold significant promise in cancer research.
In the context of urological tumors, the composition of sEV-carried
miRNAs within biological fluids differs markedly. Current studies
suggest these differential miRNAs can significantly influence cell
EMT, proliferation, migration, angiogenesis, TME, and drug
resistance. They can exert their influence through the activation
or suppression of various regulatory mechanisms in vivo. As we
move forward, these sEV-carried miRNAs could potentially be
harnessed for early detection, diagnosis, prognosis prediction,
and treatment efficacy assessment of urological tumors. They
offer a promising, noninvasive alternative to biopsy for
monitoring recurrence and individual responses to therapy.
Moreover, the elucidation of their regulatory pathways could
provide novel therapeutic targets to better inhibit tumor
progression.

Despite significant strides in the study of sEV-carried miRNAs
in urological tumors, several challenges warrant attention. Firstly,
the molecular mechanisms underlying sEV generation and their
biological roles in tumor progression remain somewhat elusive,
necessitating further experimental studies. Secondly, the potential
of sEV-carried miRNAs as reliable biomarkers and therapeutic
targets for urological tumors remains to be fully explored. Lastly,
to guarantee the clinical safety and efficacy of sEV-carried miRNAs
as therapeutic agents, large-scale stratification studies are needed to
ensure reproducible results. By addressing these challenges, we can
strive to translate the diagnostic and therapeutic potential of sEVs
into clinical reality.
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Glossary

ADT Androgen deprivation therapy

BC Bladder cancer

BMSC Bone marrow mesenchymal stem cell

ccRCC Clear cell renal cell carcinoma

CAFs Cancer-associated fibroblasts

CSCs Cancer stem cells

CIRT Carbon ion radiotherapy

CRPC Castration-resistant prostate cancer

DUSP1 Dual specific phosphatase −1

EVs Extracellular vesicles

ESEs Early sorting endosomes

EMT Epithelial-mesenchymal transition

ERF Ets2-suppressor

HUVECs Human umbilical vein endothelial cells

hUCMSCs Human umbilical cord mesenchymal stem cells

HBMSCs Human bone marrow mesenchymal stem cells

ILVs Intraluminal vesicles

IPMCs Intracellular plasma membrane–connected compartments

LSEs Late sorting endosomes

MVBs Multivesicular bodies

MSCs Mesenchymal stem cells

PSA Prostate-specific antigen

pri-miRNA Primary miRNA

PC Prostate cancer

PRC1 Polycomb repressor complex 1

RCC Renal cell carcinoma

qRT-PCR Quantitative real-time polymerase chain reaction

RT-qPCR Real-time quantitative polymerase chain reaction

RNF43 Ring finger 43

RCSC Renal cancer stem cell

sEVs Small extracellular vesicles

TAM Tumor-associated macrophage

TME Tumor microenvironment

UTR Untranslated region

VM Vasculogenic mimicry
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