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Introduction: Lung adenocarcinoma (LUAD) is the most prevalent lung cancer.
LUAD presents as ground glass nodules (GGN) and solid nodules (SN) in imaging
studies. GGN is an early type of LUADwith good prognosis. However, SN exhibits a
more malignant behavior than GGN, including worse pathological staging and
tumor prognosis. The mechanism leading to the different malignancy levels of
GGN and SN remains elusive.

Methods: Three patients with GGN and three patients with SN diagnosed with
early LUAD were enrolled. The tumor samples were digested to a single-cell
suspension and analyzed using 10× Genomic Single-cell ribonucleic acid
sequences (scRNA-seq) techniques.

Results: A total of 15,902 cells were obtained and classified into nine major types.
The tumormicroenvironment (TME) was subsequently described in detail. ScRNA-
seq revealed that ribosome-related pathways and cell adhesion played similar but
distinct roles in the two groups. SN also had more active cell proliferation,
enriched cell cycle regulatory pathways, and severe inflammatory responses.

Conclusion:We observed changes in the cellular composition and transcriptomic
profile of GGN and SN. The study improved the understanding of the underlying
mechanisms of lung carcinogenesis and contributed to lung cancer prevention
and treatment.
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Introduction

Chest computed tomography (CT) has dramatically increased the detection of early-
stage lung adenocarcinoma (LUAD), which have a radiographic appearance of ground glass
nodules (GGN) (Travis et al., 2011). Compared to solid nodules (SN), GGNs grow more
slowly and have a better prognosis (Zhang et al., 2020). Solid components in pulmonary
nodules are closely associated with patient prognosis, with a higher proportion of solids
indicating a worse pathological staging and tumor prognosis (Travis et al., 2016). The tumor
microenvironment (TME) plays a crucial role in shaping tumor biological and clinical
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behaviors in addition to cancer cells (Quail and Joyce, 2013).
However, whether the TME in GGN is similar to the TME tissue
components or invasive components in SN remains unknown.
Moreover, the transition of the TME in GGN to the TME in SN
has yet to be established. The developing single-cell ribonucleic acid
(RNA) sequencing (scRNA-seq) technology can now provide an
unbiased transcriptome analysis of single cells and their genetic
heterogeneity (Papalexi and Satija, 2018). ScRNA-seq was
performed on samples from three patients with GGN and three
with SN diagnosed as LUAD. We characterized the GGN and SN
ecosystems, identifying differences in their cell types and expression
of molecular signatures, providing insightful biological information
for further research.

Materials and methods

Patients and tissue samples

Tissue samples were collected from six patients who underwent
lung surgery at the Department of Thoracic Surgery, Jiangyin
Clinical College of Xuzhou Medical University, from January
2020 to December 2020. This study included the following
inclusion criteria (Travis et al., 2011): the imaging presentation
of GGN in three patients and of SN in the other three patients
(Zhang et al., 2020), no lesions other than pulmonary nodule (Travis
et al., 2016), no preoperative antitumor treatment (Quail and Joyce,
2013), pathological examination suggestive of LUAD. The detailed
clinical information is presented in Supplementary Table S1. This
study was approved by the Ethics Committee of Jiangyin Clinical
College of Xuzhou Medical University [approval No.2019ER (027)].
All participants provided written informed consent.

Preparation of single-cell suspensions

Fresh tissues were stored on ice in the sCelLive™ Tissue
Preservation Solution (Singleron) within 30 min after surgery.
Hanks Balanced Salt Solution (HBSS) was used three times to
wash the specimens, mince them into small pieces, and digest
them in 3 mL sCelLive™ Tissue Dissociation Solution (Singleron)
by Singleron PythoN™ Tissue Dissociation System at 37°C for
15 min. A 40-micron sterile strainer was used to collect and filter
the cell suspension. After adding the GEXSCOPE® red blood cell
lysis buffer (RCLB, Singleron), the mixture [Cell: RCLB = 1:2
(volume ratio)] was incubated for 5–8 min at room temperature
to remove red blood cells. After centrifuging at 300 × g 4°C for 5 min,
the mixture was suspended in PBS softly after centrifugation.
Finally, Trypan Blue staining was applied to the samples, and cell
viability was assessed microscopically.

RT & amplification & library construction

Single-cell suspensions (2 × 105 cells/mL) with PBS (HyClone)
were placed onto a microwell chip using the Singleron Matrix®
Single Cell Processing System. Reverse transcription of the
mRNA captured by the Barcoding Beads is followed by PCR

amplification of the cDNA generated from the Barcoding Bead
collection. Sequencing adapters are then ligated to the fragmented
cDNA. GEXSCOPE® Single Cell RNA Library Kits (Singleron) were
used to construct the scRNA-seq libraries (Dura et al., 2019).
Illumina novaseq 6,000 was used to sequence 150 bp paired end
reads from individual libraries diluted to 4 nM, pooled, and
processed.

Primary analysis of raw read data

Gene expression matrices were generated using CeleScope
(https://github.com/singleron-RD/CeleScope) v1.9.0 pipeline from
raw scRNA-seq reads. Raw reads were first processed with
CeleScope to remove low-quality reads followed by Cutadapt v1.
17 (Martin, 2011) to trim poly-A tails and adapters. Next, cell
barcodes and UMI were extracted. Next, we mapped reads to the
reference genome GRCh38 (Ensembl version 92 annotation) using
STAR v2.6.1a (Dobin et al., 2013). Finally, each cell’s UMIs and gene
counts have been acquired with featureCounts v2.0.1 (Liao et al.,
2014) software and used to generate expression matrix files for
subsequent analysis.

Quality control, dimension-reduction, and
clustering

Python 3.7 was used to perform quality control, dimension
reduction, and clustering using scanpyv1.8.2 (Wolf et al., 2018). The
expression matrix for each sample dataset was filtered by the
following criteria: 1) cells with a gene count less than 200 or
with a top 2% gene count were excluded; 2) cells with a top 2%
UMI count were excluded; 3) cells with mitochondrial content >50%
were excluded; 4) genes expressed in less than 5 cells were excluded.
There were 15,902 cells retained after filtering for downstream
analyses, with each cell having on average 1,217 genes and
3,433 UMIs. A normalized data matrix was generated by
normalizing the raw count matrix by the total number of counts
per cell. The top 2000 variable genes were selected by setting flavor =
‘Seurat’. Principle Component Analysis (PCA) was performed on
the scaled variable gene matrix, and the top 20 principle components
were used to reduce the dimensions and cluster the genes. Cells were
split into 21 clusters using the Louvain algorithm with a resolution
parameter of 1.2. Cell clusters were visualized by using Uniform
Manifold Approximation and Projection (UMAP) {t-Distributed
Stochastic Neighbor Embedding (t-SNE)}.

Statistics and repeatability

Two-tailed Wilcoxon rank-sum tests were used to compare cell
distributions between the two groups. Student’s t-test was used to
compare gene expression or gene signatures between two groups of
cells. Two-tailed Wilcoxon rank-sum tests were performed to
compare cell distributions between paired groups 1 and 2.
Statistical analyses and presentations were conducted using R.
Statistical tests used in figures were shown in figure legends, and
statistical significance was set at p < 0.05. The exact value of n was
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shown in the figures, and figure legends and what n represents was
shown in the figure legends.

Differentially expressed genes (DEGs)
analysis

To identify differentially expressed genes (DEGs), we used the
Seurat FindMarkers function based on the Wilcox likelihood-ratio
test with default parameters. We selected the genes expressed in more
than 10%of the cells in a cluster, with an average log (FoldChange) value
greater than 0.25 as DEGs. The cell types of each cluster were annotated
using the DEGs and knowledge from the literature as canonical markers.
The expression of markers in each cell type was displayed using
heatmaps/dot plots/violin plots generated with the Seurat
DoHeatmap/DotPlot/Vlnplot functions. Doublet cells were identified
as expressing markers for different cell types and removed manually.

Cell type annotation

SynEcoSys database was used to identify the cell type identity of
each cluster based on canonical markers found in DEGs. In addition,
Seurat 3.1.2 was used to generate heatmaps/dot plots/violin plots
that illustrated the expression of markers used to identify each
cell type.

Pathway enrichment analysis

The “clusterProfiler” R package 3.16.1 was used to analyze Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) data to investigate DEG functions (Yu et al., 2012).
Pathways with p_adj value less than 0.05 were considered
significantly enriched. Gene Ontology gene sets, including
molecular function (MF), biological process (BP), and cellular
component (CC) categories, were used as references. GSVA
pathway enrichment analysis used the average gene expression of
each cell type as input data (Hänzelmann et al., 2013).

UCell gene set scoring

Gene set scoring was performed using the R package UCell v 1.1.0
(Andreatta and Carmona, 2021). Based on the Mann-Whitney U
statistic, UCell scores rank query genes according to their expression
levels in individual cells. The rank-based scoring method of UCell is
suitable for large datasets that contain multiple samples and batches.

scRNA-seq-based CNA detection

The InferCNV package detected the CNAs in malignant cells
(cutoff = 0.1, denoise = TRUE, HMM = F, and k_obs_groups = 8)
(Kumar et al., 2020). The CNAs of malignant cells were estimated using
T cells as baselines. The genes expressed in over 20 cells were sorted
according to their loci on each chromosome. Relative expression values
were centered at 1 using a 1.5 standard deviation from residual-

normalized expression values. The relative expression of each
chromosome was smoothened using a sliding window of 101 genes
to remove the effects of gene-specific expressions.

Trajectory analysis

Cell differentiation trajectory was reconstructed usingMonocle2
(Qiu et al., 2017) Highly-variable genes (HVGs) was used to sort
cells based on their spatial-temporal differentiation. Next, we used
DDRTree to perform FindVairableFeatures and dimension-
reduction. Finally, the trajectory was visualized using the plot_
cell_trajectory function. Next, CytoTRACE (Gulati et al., 2020) (a
computational method that predicts the differentiation state of cells
from single-cell RNA-sequencing data using gene Counts and
Expression) was used to predict the differentiation potential of
monocyte clusters.

Cell-cell interaction analysis (CellPhoneDB)

CellPhoneDB v2.1.0 (Efremova et al., 2020) analyzed cell-cell
interactions based on receptor–ligand interactions between 2 cell
types/subtypes. First, the average level of ligand-receptor expression
in interacting clusters was calculated by permuting all cell labels
1,000 times randomly. Then, the individual ligand or receptor
expression was thresholded based on the average log gene expression
distribution across all cell types. Finally, the significant cell-cell
interactions were defined as p-value <0.05 and average log
expression >0.1, visualized with the circle v0.4.10 R package.

Transcription factor regulatory network
analysis

The transcription factor network was constructed by pyscenic
v0.11.0 (Van de Sande et al., 2020) using the scRNA expression
matrix and transcription factors in AnimalTFDB. The
GRNBoost2 model predicts regulatory networks by co-expressing
regulators and targets. CisTarget was applied to exclude indirect
targets and to search transcription factor binding motifs. Following
that, AUCell was used to quantify regulon activity for each cell. Finally,
Pheatmap in R was used to visualize top TF regulons with high RSS
(Regulon Specificity Score).

Results

Single-cell transcriptome analysis of
multicellular GGN and SN ecosystems

Amicrowell-based scRNA sequence analysis was conducted.We
collected 15,902 single isolated cells (4,630 from GGN and
10,392 from SN) from six LUAD samples (Supplementary Figure
S1A; Supplementary Figure S6; Supplementary Table S1). The cells
were classified into nine major cell types using the Uniform
Manifold Approximation and Projection (UMAP) clustering
analysis (Figure 1A). SynEcoSys database identified nine cell
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types annotated with cell type annotation markers, including
alveolar epithelial cells (GGN, 22; SN, 227), cancer cells (GGN,
1,644; SN, 3,806), ciliated cells (GGN, 23; SN, 74), endothelial cells
(GGN, 10; SN, 43), fibroblasts (GGN, 3; SN, 317), the mononuclear
phagocytic system (MPs) (GGN, 2858; SN, 4,468), mast cells (GGN,

14; SN, 90), plasma cells (GGN, 4; SN, 1,205), and T cells (GGN, 52;
SN, 1,042) (Figures 1B,C).

The GGN mainly comprised MPs (62%) and cancer cells (36%).
However, SN comprised plasma cells (11%) and T cells (9%) in addition
to MPs (40%) and cancer cells (34%). Malignant cells were present in

FIGURE 1
Overview of 15,902 single cells from 3GGN and 3 SN samples. (A): Workflow for the design of the scRNA-seq experiment and initial data exploration.
(B): Bubble plot showing the expression of marker genes for nine major cell types. The dot size is proportional to the fraction of cells expressing the
specific genes. The color intensity corresponds to the relative expression of each specific gene. (C): Cell map of the samples shown by UMAP; each dot
corresponds to a single cell, and the clusters are labeled by name and color. (D): Bar plot of the relative percentage of cell types in GGN and SN.
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FIGURE 2
Identification and characterization of cancer cells in GGN and SN. (A): UMAP plot showing cancer cells clustered into six subclusters (B): Bar plot of
the relative percentage of cancer cell subclusters in GGN and SN. (C): Heat map showing CNVs Were inferred based on single-cell RNA sequencing data
of individual cells from samples. Non-cancer cells were treated as references (top), and CNVs were observed in cancer cells (bottom). The color shows
the log2 CNV ratio (HCL_1–8). Red: amplifications; blue: deletions. (D): Bar plot of the relative percentage of cancer cell subclusters in GGN and SN.
(E): CNV value of cancer cell subclusters. (F): Box plots of UCell score for different signaling pathways in cancer cell subclusters. Two-sided unpaired
Wilcoxon rank-sum test was used for analysis; all differences with p < 0.05 are indicated, *p < 0.05, **p < 0.01, ***p < 0.001, ns non-significance. (G):
SCENIC analysis of cancer cells (GGN vs SN). Shown are the top 5 upregulated/downregulated transcription factors, respectively.
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both groups in a comparable proportion. The epithelial cells in GGN
mainly consisted of cancer cells, whereas SN had a few alveolar epithelial
cells (2%) and fibroblasts (3%) (Figure 1D). GGN and SN have complex
cellular ecosystems, and their cell proportions differ. Herein, we focused
on the functions of important cellular clusters.

Cancer cells from GGN and SN show
different transcriptional characteristics

We detected cancer cells using markers typical of LUAD and
alveolar epithelium (EPCAM, CDH1, KRT19, KRT18, KRT8)
(Figure 1B). A total of 5,450 cancer cells were categorized into
six subclusters (GGN, 1,644; SN, 3,806) (Figure 2A). The clustering
revealed group specificity, with CancerCells (CaC) 2 predominantly
present in GGN, whereas SN primarily comprised CaC1, CaC3, and
CaC4. A single subcluster dominated the presence of cancer cells in
GGN. However, the cancer cells in SN revealed a mixture of multiple
subclusters with no obvious dominant cluster. Patients with SN had
greater inter-tumour heterogeneity than those with GGN
(Figure 2B).

Cancer cells exhibited a higher copy number variation
(CNV) than immune cells. CNV is a general term used to
describe a molecular phenomenon of genome sequence
duplication, The analysis of CNVs is an important aspect of
tumor molecular diagnosis (Pös et al., 2021). Extensive
chromosome 13 deletion was observed in cancer cell samples
(Figure 2C). Human chromosome 13 (HSA13), which
comprises 1,381 genes, 41 novel genes, and 477 pseudogenes,
has the lowest proportion of repetitive sequences and is
connected with the initiation and progression of various
human cancers and disorders (Bailey et al., 2002). The
prognosis of patients with LUAD is adversely affected by
copy number deletion of chromosome 13 (Han et al., 2019).
The CNV values divided cancer cells into eight subclusters
(HCL_1–8) (Supplementary Figure S1B). GGN mainly
comprised HCL_1 and HCL_3, whereas SN primarily
comprised HCL_2, HCL_4, HCL_5, HCL_6, HCL_7, and
HCL_8 (Figure 2D). Chromosomes 16, 18, and 20 in the
GGN cancer cell subclusters underwent significant
amplification. In addition, chromosomes 1 and 7 of the SN
cancer cell subclusters underwent significant amplification,
whereas chromosomes 10 and 15 underwent deletion
(Figure 2C). The CNV values of HCL_2, HCL_5, and HCL_
6 were significantly higher than those of other subclusters
(Figure 2E), indicating that SN cancer cells have a higher
degree of CNV than GGN cancer cells. Studies have proved
that CNV variation is related to tumor malignancy and
prognosis of patient (Pös et al., 2021), suggesting that SN
tumor cells are more malignant.

GGN cancer cells express significantly higher levels of
surfactant-related proteins than SN cancer cells, such as
surfactant protein (SFTP) A1, SFTPA2, and SFTPB. In addition,
cancer cells in SN upregulated MT-RNR2, DST, and MALAT1
(Supplementary Figure S1C). Furthermore, cancer cells in GGN
highly expressed alveolar type II (AT2) cell-related marker genes
(SFTPA1, SFTPA2, SFTPB, ABCaC3), suggesting that cancer cells in
GGN might originate from AT2 cells. However, the alveolar type I

(AT1) cell marker genes PDPN or AGER was not highly expressed
in either group (Supplementary Figure S1D) (Jacob et al., 2017;
Evans and Lee, 2020), suggesting that AT1-like cells had a low
expression level in both samples.

Gene Ontology (GO) pathway enrichment analysis revealed that
cancer cells in GGN upregulate ribosome-related pathways, establish
protein localization to the endoplasmic reticulum, cotranslational
protein targeting to membrane, Major Histocompatibility Complex
(MHC) class II protein complex binding, and other pathways. In
addition, the Kyoto Encyclopaedia of Genes and Genomes (KEGG)
analysis revealed ribosome-related pathway enrichment
((Supplementary Figure S2A). Ribosomal protein (RP) family-
related genes (RPS21,RPS2,RPS18,RPLP1,RPL5,RPL13 A) were
significantly upregulated in GGN (Supplementary Figure S1E).
Thus, ribosome-related pathways play a crucial role in GGN
tumourigenesis. However, RNA splicing, cell cycle phase transition
regulation, transcription coregulator activity, and other pathways
were upregulated in cancer cells in SN. The KEGG enrichment
analysis also revealed enrichment of the pathways associated with
spliceosome and protein processing in the endoplasmic reticulum
(Supplementary Figure S2B). RNA splicing-related pathways were
enriched in SN. Aberrant RNA splicing factor expression in
oncogenes and cancer suppressor genes can regulate post-
transcriptional mechanisms to promote tumor growth (David
et al., 2010; Hsu et al., 2015). According to the gene set variation
analysis (GSVA) and UCell gene set score analysis, CaC2 scored
higher in MHC-II_SIGNALLING; CaC1, CaC3, and CaC4 scored
higher in cell cycle regulation pathways such as CYCLING_
SIGNALLING, HALLMARK_E2F_TARGETS, and HALLMARK_
G2M_CHECKPOINT compared with CaC2; CaC3 and
CaC4 scored higher in the HALLMARK_MYC_TARGETS_
V1 and MHC-I_SIGNALLING (Figure 2F; Supplementary Figure
S2C). Therefore, compared with SN, GGNwas enriched in the MHC-
II_SIGNALLING pathway. SN was enriched in cell cycle regulation
pathways and the MHC-I_SIGNALLING pathway. The above results
suggest different functional patterns of the two groups of cancer cells,
resulting in differences in proliferation and aggressiveness.

Single-cell regulatory network inference and clustering analysis
(SCENIC) showed significant upregulation of E26 transformation-
specific transcription factor 2 (ETS2) in GGN and transcriptional
repressor erythroid transcription factor binding 1 (TRPS1) in SN
(Figure 2G). ETS2, an ETS transcription factor family oncogene,
inhibits lung cancer cells’ growth, migration, and invasion by
suppressing mesenchymal-epithelial transition (MET) expression
(Kabbout et al., 2013). TRPS1, a GATA family transcriptional
regulatory factor, has been shown to induce tumor angiogenesis,
affect VEGFA expression, and promote tumor cell proliferation in
tumors (Hu et al., 2014). TRPS1 can also induce MET to increase
malignant cell migration and invasion through ZEB2 regulation
(Stinson et al., 2011).

An analysis of the trajectory of six cancer cells was performed to
determine the developmental relationship between cancer cells in GGN
and SN. The dominant subclusters of cancer cells in GGN were
concentrated at the tail end of the trajectory. In contrast, cancer cells
in SN were scattered in the anterior-middle part of the trajectory.
Therefore, cancer cells in SN were more dispersed and differentiated
earlier in the trajectory than in GGN, and the cancer cell stemness in the
former might be stronger (Supplementary Figure S2D). In addition,
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expressions of C16orf89, CD74, CD55, and CCND1 were significantly
upregulated at the end of the trajectory as the trajectory developed
(Supplementary Figure S2E). CD74 is a type II transmembrane protein
with various biological functions that promote the angiogenesis of lung
cancer cells when co-expressed with macrophage migration inhibitory
factor (MIF) (McClelland et al., 2009). In addition, CD74 can form
oncogenic fusion genes with NRG1 to promote the progression of lung
cancer cell (Murayama et al., 2016). CD55 and CCND1 are reportedly
associated with cancer progression, as demonstrated in liver cancer
(Meng et al., 2017; Nie et al., 2020).

Varying distribution of MPs subtypes
between GGN and SN

MPs were identified by marker genes (LYZ, CD14, C1QB,
CD1C) (Figure 1B). A total of 6,726 MPs (2,858 in GGN and
4,468 in SN) were divided into three subclusters: macrophages,
monocytes, and conventional dendritic cells (cDCs). Among them,
macrophages accounted for most of the subclusters. In GGN,
macrophages were almost dominant, and a small number of
cDCs(3%) were also included. However, in addition to most

FIGURE 3
Detailed description of MPS (A): Bar plot of the relative percentage of MPS subclusters in GGN and SN. (B): Heat map showingmarker genes of three
MPS subclusters. (C, D) The bubble plots show significantly enriched GO and KEGG pathways of cDCs (C) and monocytes (D) in SN. The color of the
bubbles represents the values of significance, and the size represents the number of genes enriched in the pathway.
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macrophages, SN comprised a certain percentage of monocytes
(14%) and cDCs (10%) (Figure 3A). CDCs (CD207+, FCER1A+,
CD1A+) (Figure 3B) were more enriched in SN. The GO and KEGG
enrichment pathway analyses revealed that the upregulated

enrichment pathways of cDCs in SN included neutrophil-related
immune response and oxidative phosphorylation pathways
(Figure 3C). In SN, monocytes (IGHG3+, MMP9+, IGHG1)
(Figure 3B) accounted for approximately 14% of the MPs. In

FIGURE 4
Different composition and characteristics ofmacrophages betweenGGN and SN. (A): Bubble plot showingmarker genes ofmacrophage subcluster.
The color of the bubbles represents the average expression level of the gene, and the size represents a fraction of cells. (B): Heat map showing the
difference in metabolic pathways scored by GSVA of macrophage subclusters. (C): Differentiation trajectory of cancer cells was predicted by monocle 2.
(D): Box plot showing cytotrace scores of macrophage subclusters, ranked from top to bottom by the median value. (E): SCENIC analysis of
macrophages (GGN vs SN). Shown are the top 5 upregulated/downregulated transcription factors, respectively.
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contrast with GGN, monocytes in SN are recruited extensively into
the tumor tissue. They are differentiated into macrophages and
dendritic cells, altering the TME and promoting immune evasion,
angiogenesis, and metastatic growth (Olingy et al., 2019). GO and
KEGG pathway analysis findings indicate that monocytes in the SN
are up-regulating neutrophil-related immune response, ribosome,
and antigen processing and presentation pathways (Figure 3D). SN
comprises abundant monocytes and cDCs and demonstrates,
Moreover, both cells were enriched in neutrophil-related immune
response pathways. SN showed stronger immune activity.

Macrophages in SN exhibit stronger
proliferative capacity and inflammatory
response

Macrophages, one of the important components of the
innate immune system, are crucial for normal homeostasis
and disease development and are closely associated with
tumor development (Murray and Wynn, 2011). MPs
comprise abundant macrophages (Figure 3A). We identified
three macrophage subclusters, namely, alveolar-resident
macrophage 1 (Mac1) (PPARG+, FABP4+, MARCO+),
inflammatory cytokine-enriched macrophage 2 (Mac2)
(CCL3+, IL1b+, CXCL8+), and proliferative macrophage 3
(Mac3) (MKI67+, RRM2+, TOP2A+) (Ma et al., 2022)
(Figure 4A). GGN mainly comprised Mac1 (89%), as well as
smaller quantities of Mac2 (5%) and Mac3 (6%). However, SN
primarily comprised Mac1 (41%) and Mac2 (46%) and a smaller
quantity of Mac3 (13%) (Supplementary Figure S3A).

According to the combined analysis of GSVA analysis and
UCell gene set score, Mac1 scored higher in the HALLMARK_
BILE_ACID_METABOLISM pathway; Mac3 scored higher in the
cell cycle regulatory pathways such as HALLMARK_G2M_
CHECKPOINT, CYCLING_SIGNALLING, HALLMARK_E2F_
TARGETS, and HALLMARK_MYC_TARGETS_V1 (Figure 4B;
Supplementary Figure S3A); Mac2 scored high in the
HALLMARK_TNFA_SIGNALLING_VIA_NFKB (Figure 4B;
Supplementary Figure S3B). In addition, Mac2 highly
expressed inflammatory factors such as IL1B, CCL3, CCL4,
CXCL2, and CXCL8 (Supplementary Figure S3C), suggesting a
more severe inflammatory response in SN, which may act
through the TNFA_SIGNALLING_VIA_NFKB pathways.
However, Mac3 highly expressed proliferation-related genes,
such as MKI67, RRM2, and TOP2A (Supplementary Figure
S3C). It might promote tumor-associated macrophage
proliferation and tumor growth by regulating the cell cycle
through the above pathways (Murray and Wynn, 2011).

According to the GO and KEGG enrichment analyses in both
groups, pathways such as neutrophil-related immune response,
ribosome, RNA splicing, RNA catabolic process, and mRNA
catabolic process were upregulated in SN (Supplementary Figure
S4A), pathways such as upregulation of neutrophil-related immune
response, focal adhesion, cell-substrate junction were upregulated in
GGN. No significant KEGG pathway enrichment was observed in
GGN (Supplementary Figure S4B). Increased pro-inflammatory
cytokines and chemokines, such as IL1B, CCL3, CCL4, CXCL2,
and CXCL8, were secreted by macrophages in SN (Supplementary

Figure S4C). These cytokines can promote the occurrence and
development of inflammatory response, so it could be inferred
that TME in SN has a more severe inflammatory response.

The Monocle2 package performed unsupervised trajectory
analysis of macrophage transcriptional changes. It showed that
Mac1 might differentiate into Mac2 and Mac3. Since Mac1 were
mainly expressed in GGN while Mac2,3 were mainly expressed in
SN, More Mac1 might be induced conversing to Mac2 and Mac3 in
SN (Figure 4C). The greatest differentiation potential of
proliferating Mac3 was suggested by CytoTrace analysis
(Figure 4D). In addition, the tumor-associated gene Activating
Transcription Factor 3 (ATF3) was upregulated, and the
oncogene Aldehyde Dehydrogenase 2 (ALDH2) was
downregulated as the trajectory progressed (Supplementary
Figure S4D).

SCENIC analysis revealed significant Early growth response
factor 1 (EGR1) upregulation in SN and Nuclear receptor
subfamily 1 Group H Member 2(NR1H2) in GGN (Figure 4E).
EGR1 regulates cell proliferation, apoptosis, immune cell activation,
and stromal degradation and is closely associated with
tumorigenesis (Li et al., 2019). NR1H2 suppresses inflammatory
genes in macrophages (A-González NCastrillo, 2011), activates liver
X receptors, and inhibits cancer cell growth, including colorectal
cancer (Liang et al., 2019).

In summary, macrophages in SN exhibited greater proliferative
capacity and inflammatory response than those in GGN.

Significant immune cell enrichment in SN

1,094 T cells were identified based on labeled marker gene
expression (CD3D, CD2, TRBC2) (Figure 1B). SN exhibited
increased T cell enrichment, with decreased enrichment
exhibited by GGN (Figure 1D). T cells were subdivided into
four clusters, which were as follows: CD8 +T effector cell
(CD8Teff), native T cell (NaiveT), proliferating T cell, and
regulatory T cell (Treg). According to the GSVA analysis and
UCell gene set score, proliferating T cells scored higher in
HALLMARK_MITOTIC_SPINDLE, MHC-II_SIGNALING,
and cell cycle regulation pathways, such as CYCLING_
SIGNALLING, HALLMARK_E2F_TARGETS, HALLMARK_
G2M_CHECKPOINT, HALLMARK_MYC_TARGET_v1
(Figures 5A,B). However, CD8Teff scored higher in the T_
CELL_INFLAMED pathway (Figures 5A,B). According to the
pseudotime analysis, proliferating T cells appeared first in the
early stage of the trajectory, and the remaining three clusters were
distributed in the middle and late stages (Figure 5C). In addition,
CytoTrace analysis revealed the greatest differentiation potential
of proliferating T cells (Figure 5D), suggesting that proliferating
T cells promote the development of inflammation and the
formation of TME by regulating the cell cycle.

Based on differential gene expression, the 1,209 plasma cells
identified by the marker genes (JCHAIN, MZB1, IGHG1)
(Figure 1B) were divided into four clusters: PlasmaCells1 (PC1)
(SCGB3A1+, ENAM+, JCHAIN+), PlasmaCells2 (PC2) (CD3G+,
CD52+, CST+), PlasmaCells3 (PC3) (Z93241.1+, NR4A1+,
HSP90AA1+), and PlasmaCells4 (PC4) (EGR1+, IER2+, FOS+)
(Supplementary Figure S5A). Plasma cells were abundantly
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enriched mainly in SN but were minimally expressed in GGN
(Figure 1D). According to the combined analysis of GSVA and
UCell gene set scores, PC2 scored highest in the T_CELL_
INFLAMED and HALLMARK_MITOTIC_SPINDLE pathways

(Supplementary Figures S5B,C). According to the pseudotime
analysis, PC2 and PC4 clusters were distributed across all time
segments, PC1 was primarily distributed in the posterior segment,
and PC3 was primarily distributed in the anterior segment

FIGURE 5
Immune cells play a greater role in SN. (A): Box plots of UCell score for different signaling pathways in T cell subclusters. Two-sided unpaired
Wilcoxon rank-sum test was used for analysis; all differences with p < 0.05 are indicated, *p < 0.05, **p < 0.01, ***p < 0.001, ns non-significance. (B): Heat
map showing the difference in metabolic pathways scored by GSVA of T cell subclusters. (C): Differentiation trajectory of T cells was predicted by
monocle 2. (D): Box plot showing cytotrace scores of macrophage subclusters, ranked from top to bottom by the median value. (E): Differentiation
trajectory of four plasma cell subclusters was predicted by monocle 2.
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FIGURE 6
Intercellular interactions between GGN and SN. (A): Interaction network diagram of cell types between GGN (left) and SN (right), the network node
represents the cell type, the thickness of the network edge represents the total number of ligand and receptor pairs, and the line color represents the
ligand cell type. (B): Bubble plot showing ligand-receptor pairs of cancer cells in GGN and SN. Bubbles are labeled by −log10(P) (size) and average
expression level of ligand–receptor pairs (color). X-axis: cell types of the two groups, Y-axis: ligand-receptor pairs. (C): The expression of FN1 and
SPP1 of macrophages in GGN and SN. (D): Bubble plot showing ligand-receptor pairs of macrophages in GGN and SN. Bubbles are labeled by −log10(P)
(size) and average expression level of ligand–receptor pairs (color). X-axis: cell types of the two groups, Y-axis: ligand-receptor pairs.
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(Figure 5E), suggesting that the other plasma cell subclusters may be
formed by PC1 differentiation, and PC3 may be in the mature
terminal differentiation stage.

In summary, SN significantly enriched immune cells and formed
a complex immune microenvironment.

Cancer cell-associated interactions suggest
different patterns of tumor development
between GGN and SN

The significant differences in the gene expression patterns of
cancer cells between GGN and SN might result in different
interactions between cancer cells and TME. Therefore,
CellphoneDB was used to study cancer cell-specific
interaction pairs in different fractions. According to the
cellular interaction pair network diagram, the number of
intercellular pairs was higher in SN than in GGN, indicating
that cancer cells in SN interact more with other cells
(Figure 6A).

The adhesion-related molecules ADGRE5 and
ICaCM1 were significantly upregulated in GGN
(Supplementary Figure S5D). They interacted with the
corresponding receptor CD55 and SPN (Figure 6B) and
promoted tumor invasion and metastasis through the
adhesion of cancer cells to normal cells (Ksiazek et al., 2010;
Meng et al., 2017). Carcinoembryonic antigen cell adhesion
molecule 5 (CEACAM5)-CEACAM6 interaction was significant
in GGN (Figure 6B). In addition, CEACAM6 might also be
involved in key cellular events such as tumor migration and
invasion in GGN through adhesion (Blumenthal et al., 2005;
Cameron et al., 2012). TNFRSF10 and its receptor have obvious
interaction in GGN (Figure 6B), suggesting inflammation and
apoptosis between cancer cells, cancer cells, and endothelial
cells, and between plasma cells in GGN (Allen and El-Deiry,
2012; Cucolo et al., 2022). CD74 was significantly upregulated
in cancer cells in GGN (Supplementary Figure S5D) and was
strongly associated with APP and COPA in alveolar epithelial
cells, ciliated cells, and endothelial cells (Figure 6B). CD74_APP
and CD74_COPA interactions were less commonly reported.
However, their high enrichment suggests their crucial role in
GGN development and warrants further research.

SN is enriched in integrin-associated complex interactions,
which form complexes with collagen family genes (COL28A1,
COL1A1, COL17A1) and human laminin γ1 (LAMC1)
(Figure 6B). Integrins, the typical adhesion molecules in cancer
cells, bind to collagen to promote the occurrence and development
of tumors. Different collagen types can bind to various integrins in
multiple signaling pathways in cancer cells (Xu et al., 2019). For
example, LKB1 is involved in the HIF/LOX pathway through
collagen type IV and β1 integrins resulting in enhanced lung
cancer cell proliferation and invasiveness (Gao et al., 2010).
Integrin α2β1 mediates the adhesion of lung cancer cells to type
IV collagen, enhances cancer cell proliferation, and promotes the
metastasis of lung cancer cells to the liver (Burnier et al., 2011). In
addition, synergistic effects of integrins with LAMC1 promote cell
migration and invasion, regulate cell adhesion and motility to
promote tumor progression, and are associated with poor

prognosis (Zacapala-Gómez et al., 2020). In a word, cell adhesion
plays an important role in SN.

In summary, our data suggested that complex interactions
existed between cancer cells and cells of various compositions.
And there were significant differences between GGN and SN.

The interaction characteristics of
macrophages between two groups reflect
changes in the immune environment

Macrophage subclusters differed in their functional distribution and
the cellular interactions between SN and GGN. Fibronectin 1 (FN1),
which is highly expressed by GGNmacrophages (Figure 6C), could form
complexes with integrin subunits of other cells (FN1_α2β1 complex,
FN1_α3β1 complex, FN1_α4β1 complex, FN1_α5β1 complex)
(Figure 6D), which promoted cancer cell migration through adhesion
(Huaman and Ogunwobi, 2020). Secreted phosphoprotein 1 (SPP1),
highly expressed in SN, interacted significantly with CD44, PTGER4, and
α4β1 (Figures 6C,D). SPP1, a multifunctional secretory acidic
glycoprotein highly expressed in lung cancer, mediates macrophage
polarisation and tumor immune evasion (Hu et al., 2005; Zhang et al.,
2017). A tight association betweenNeuropilin 2 (NRP2) andVEGFAand
SEMA3C was observed in SN. NRP2 regulates lymphatic vessel growth
and promotes tumor metastasis to the lymphatic pathways (Raimondi
and Ruhrberg, 2013). SN comprises extensive cell adhesion-related
interactions like HGF_CD44 (Xu et al., 2021). In contrast with GGN,
CCL4 and CCL3 interact significantly with their receptors in SN
(CCL4L2_VSIR, CCL4_CCR5, CCL3L1_DPP4, CCL3L1_CCR1,
CCL3_CCR5, CCL3_CCR1) (Figure 6D). The CC chemokines,
CCL4 and CCL3, act alone or together by regulating the tumor
immune microenvironment to promote tumor progression (Mukaida
et al., 2020; Ntanasis-Stathopoulos et al., 2020). TNF-related interactions
such as TNF_VSIR (Shapouri-Moghaddam et al., 2018) and CD74_MIF
interactions are enriched in SN (Su et al., 2017), exhibiting more
inflammation-related tumor features. Complex interactions exist
between macrophages and cells of various compositions, significantly
different between GGN and SN.

Discussion

GGN is an inert pathological subtype of LUAD with slow
progression. GGN is less malignant than SN. Therefore, patients with
GGN have a better prognosis than those with SN. Additionally, the
clinical treatment strategies differ (Mao et al., 2019; Zhang et al., 2020).
The present study comprehensively characterizes cellular profiles and
transcriptomics in GGN and SN samples. It is revealed that the distinct
cellular features and TMEs of the cell subtypes differ when the dynamic
changes in their composition, expression of themolecular signatures, and
intercellular interactions are compared. These findings help us
understand lung cancer onset and progression mechanisms.

Cancer cells have the greatest heterogeneity compared with other
cell types. Nevertheless, the proportion of cancer cells was similar in
both groups. However, the higher CNV values of cancer cells in SN
comparedwith cancer cells in GGN indicated a higher variability, which
is consistent with the findings reported by Lu et al. (2020). Thismight be
owing to the higher tumor mutational load in SN than in GGN (Chen
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et al., 2021). In GGN, the cancer cells comprise one major subcluster.
However, SN comprises multiple tumor subclusters. In addition, GGN
cancer cells expressed AT2-associated genes, suggesting they may be
derived from AT2 cells.

Compared with GGN, SN upregulated genes promote cell
proliferation and migration like EGR1 and TRPS1, and downregulated
oncogenes likeNR1H2andETS2. In cancer cell analysis, ribosome-related
pathways were significantly enriched in GGN. Ribosomes are important
organelles for protein synthesis. In addition to performing protein
translation, ribosomes co-regulate cancer cell growth and proliferation
through the RAS/RAF/MEK/ERK, MYC, and PI3K/AKT/mTOR
pathways (Woods et al., 2015). However, in macrophage analysis,
ribosome-related pathways were more enriched in SN than in GGN,
which might be associated with inflammation in lung cancer. Several
studies have reported that tumors, including lung cancer, are strongly
associated with inflammation, and upregulation of the ribosome
biogenesis rate might be involved in tumor transformation in tissues
affected by chronic inflammation, upregulation of rRNA transcription
results in increased MDM2-mediated degradation of P53 proteasome,
which reduces P53 expression and promotes tumorigenesis (Donati et al.,
2011). Cell cycle regulation-related pathways in SN are significantly
enriched in cancer cells, macrophages, and T cells. The G2M_
checkpoint pathway plays a crucial role in various human tumors
(Evan and Vousden, 2001) and regulates cell growth and apoptosis in
ovarian cancer (Zaffaroni et al., 2001) and colon cancer (Yang et al., 2018).
E2F_targets (De Meyer et al., 2009) and MYC_targets_V1 (Stine et al.,
2015) also involve tumor therapy, drug resistance, immune evasion, and
progression. Tumor-associated macrophages are involved in the cell cycle
regulation of cancer cells through M2 polarisation (Yoshikawa et al.,
2012). The above pathways might be involved in SN development.
Considering that immune cells, such as T and plasma cells, are mainly
enriched in SN, gene expression of cancer cells and macrophages and
pathway analysis suggested a more severe inflammatory response in SN
than GGN. Therefore, it is speculated that the inflammatory response is a
differentiating factor between GGN and SN.

The present study confirmed region-specific cellular
interactions. Significant intercellular interactions between the
two groups were screened for analysis. Integrins exerted
adhesion interactions in both groups. However, certain
differences were observed. In GGN, macrophages interacted
with other cells via FN1 and integrin subunit pairing. However,
in SN, cancer cells interact with other cells through a complex
formed by collagen family genes, LAMC1, and integrin
subunits. A clear association of CD44, PTGER4, and α4β1 in
SN macrophages, plasma cells, cancer cells, and T cells was
observed with upregulated SPP1 in macrophages. The activated
interaction pairs were associated with macrophage polarisation
and tumor immune evasion (Zhang et al., 2017). Inflammation-
associated cellular interaction pairs were observed in both
groups. However, the interactions were more pronounced in
SN. Thus, SN and GGN exhibit similar but distinct specific
interactions.

Our study has certain limitations. We could only partially
describe all cell types, subtypes, and phenotypes in one report.
Therefore, only certain key observations were reported herein,
and further studies at a more comprehensive and deeper level
need to be conducted.

Conclusion

In summary, the complex cellular and ecosystem processes in
patients with lung cancer were characterized by the scRNA-seq
technique, and GGN and SN exhibited similar but different specific
TME. Macrophages might also contribute to the differences between SN
and GGN in addition to cancer cells. In general, this study contributes to
the understanding of LUAD and the discovery of new therapeutic targets.
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