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Background: Colorectal cancer is one of the most common malignant tumors
worldwide. A various of neurotransmitter receptors have been found to be
expressed in tumor cells, and the activation of these receptors may promote
tumor growth and metastasis. This study aimed to construct a novel
neurotransmitter receptor-related genes signature to predict the survival,
immune microenvironment, and treatment response of colorectal cancer
patients.

Methods: RNA-seq and clinical data of colorectal cancer from The Cancer
Genome Atlas database and Gene Expression Omnibus were downloaded.
Neurotransmitter receptor-related gene were collected from publicly available
data sources. TheWeightedGeneCoexpression Network Analysis (WGCNA), Least
Absolute Shrinkage and Selection Operator (LASSO) logistic regression, Support
Vector Machine-Recursive Feature Elimination (SVM-RFE), and Random Forest
(RF) algorithms were employed to construct the Neurotransmitter receptor-
related gene prognostic signature. Further analyses, functional enrichment,
CIBERSORTx, The Tumor Immune Single Cell Center (TISCH), survival analysis,
and CellMiner, were performed to analyze immune status and treatment
responses. Quantitative real-time polymerase chain reaction (qRT-PCR) assays
were carried out to confirm the expression levels of prognostic genes.

Results: By combining machine learning algorithm and WGCNA, we identified
CHRNA3, GABRD, GRIK3, and GRIK5 as Neurotransmitter receptor-related
prognostic genes signature. Functional enrichment analyses showed that these
genes were enriched with cellular metabolic-related pathways, such as organic
acid, inorganic acid, and lipid metabolism. CIBERSORTx and Single cell analysis
showed that the high expression of genes were positively correlated with
immunosuppressive cells infiltration, and the genes were mainly expressed in
cancer-associated fibroblasts and endothelial cells. A nomogramwas further built
to predict overall survival (OS). The expression of CHRNA3, GABRD, GRIK3, and
GRIK5 in cancer cells significantly impacted their response to chemotherapy.
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Conclusion: A neurotransmitter receptor-related prognostic gene signature was
developed and validated in the current study, giving novel sights of
neurotransmitter in predicting the prognostic and improving the treatment of CRC.
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Introduction

Colorectal cancer (CRC), encompassing both colon and rectal
malignancies, is prevalent cancer affecting the digestive system,
ranking as a leading cause of cancer-associated mortality and
morbidity globally (Siegel et al., 2020). Despite a stabilized or
decreased incidence in recent decades, attributed to enhanced
screening practices, such as colonoscopic polypectomy, and
alterations in risk factors, including a reduction in smoking and
increased aspirin consumption, the 5-year survival rate remains
unsatisfactory (Edwards et al., 2014; Favoriti et al., 2016; Brenner
and Chen, 2018; Keum and Giovannucci, 2019). The widely utilized
tumor-node-metastasis (TNM) system plays a crucial role in clinical
decision-making for risk assessment and treatment planning.
However, owing to the high molecular heterogeneity of CRC,
patients with seemingly identical clinicopathological features may
exhibit considerable variation in the risk of recurrence and death
(Lin et al., 2021). Thus, the identification of effective methods for
early diagnosis has become a focal point of research endeavors.

Emerging evidence has highlighted the significance of the
nervous system in the pathogenesis of malignancies, with nerves
being identified as a critical component of the tumor
microenvironment (Zahalka and Frenette, 2020). And as
important neural signaling messengers, studies have suggested
that neurotransmitters and their receptors play a crucial role in
tumor proliferation, angiogenesis, and metastasis, contributing to
cancer development. For example, activation of the β2-adrenoceptor
has been shown to promote tumor growth and angiogenesis through
increased expression of vascular endothelial growth factor,
metalloproteases 2, and metalloproteases 9, which further
enhance angiogenic and metastatic processes in ovarian, lung,
and breast cancers (Thaker et al., 2006). Furthermore,
neurotransmitter receptors are widely expressed on the surface of
immune cells and are regulated by their corresponding
neurotransmitters, thus affecting tumor immune responses (Jiang
et al., 2020b; Cervantes-Villagrana et al., 2020).

The role of neurotransmitter receptors in CRC is also complex,
as noted in the literature. Li et al. (Li et al., 2021) demonstrated that
the overproduction of 5-hydroxytryptamine overproduction
promotes colitis-associated CRC progression by enhancing
NLRP3 inflammasome activation. In addition, another study
found that atropine and muscarinic receptor 3 blockers reduced
tumor weight, volume, and enhanced antitumor immune
responses by increasing infiltration of CD4+ and CD8+ T cells
and significantly reducing PD-L1 expression in a CRC mouse
model (Kuol et al., 2022). Gamma-Aminobutyric Acid Type B
Receptor (GABABR) also plays a pivotal role in CRC progression.
GABABR1, a central component of GABABR, shows significantly
lower expression in tumor tissues than in non-tumor normal

tissues. It impairs the migration and invasion of CRC cells by
inhibiting EMT and the Hippo/YAP1 pathway (Wang et al., 2021).
However, studies focusing on subtype characterization and risk
signatures based on neurotransmitter receptor-related genes in
CRC remain limited.

Herein, we conducted Weighted Gene Co-Expression Network
Analysis (WGCNA) and machine learning to establish a reliable
signature rooted in neurotransmitter receptor-related genes
(NRGs). And its prognostic utility was systematically evaluated in
CRC patients. Additionally, we revealed the importance of these
gene signatures in the immune microenvironment of CRC. The
associations of antineoplastic drugs with MRS were also explored.
Overall, this study provides a research basis for exploring the
potential pathogenesis of CRC and offers new ideas for treating
this disease.

Material and methods

Data collection

The workflow for this current study is presented in Figure 1.
RNA sequencing and clinical data of 647 CRC cases were obtained
from The Cancer Genome Atlas (TCGA) data portal, along with
51 normal tissue samples (https://portal.gdc.cancer. gov/). The
microarray dataset GSE166555 and GSE74602 was downloaded
from the Gene Expression Omnibus database (GEO, http://www.
ncbi.nlm.nih. gov/geo/). Furthermore, the 114-NRGs list was
obtained from the National Center for Biotechnology
Information, United States National Library of Medicine (https://
www.ncbi. nlm. nih.gov/gene/).

Differentially expressed genes (DEGs)
identification and survival Analysis

The TCGA sample was performed with DEGs analysis using the
limma package (Ritchie et al., 2015). Survival analysis was conducted
with the survivor R package, incorporating age to eliminate the
impact of age on survival time. The results were visualized for
COAD samples using the survminer R package. p-values were
calculated using the Log-rank test.

Weighted gene co-expression network
analysis

The Weighted Gene Co-expression Network Analysis
(WGCNA) method (Langfelder and Horvath, 2008; Li et al.,
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2023)was utilized to identify potential modules related to different
subclusters of the DEGs expression matrix of TCGA. Abnormal
samples were filtered out, and the Pearson correlation coefficient
was calculated to construct the correlation adjacency matrix. Highly
associated modules were selected for subsequent analysis. The
intersection between the highly associated module and
neurotransmitter receptor-related genes was estimated. Seven
genes were present in both groups.

Gene signature screening

Three machine learning algorithms were employed
independently to screen diagnostic genes from the
intersection, including Least Absolute Shrinkage and Selection
Operator (LASSO) logistic regression (Zhao et al., 2020), Support
Vector Machine-Recursive Feature Elimination (SVM-RFE) (Lin
et al., 2012), and Random Forest (RF) (Guo et al., 2020). Genes

FIGURE 1
Schematic diagram of the workflow of the present study.
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that overlapped among these algorithms were considered
diagnostic biomarkers, and their predictive utility was
estimated using ROC curve analysis and the calculation of
AUC values with the pROC package. The reliability and
differential expression of the identified biomarkers were
further confirmed in external testing cohorts. To investigate
the expression of these genes in different stages of CRC
patients, the clinical correlation analysis was utilized between
the expression levels of these genes and CRC clinical

characteristics. And the diagnostic genes were also analyzed
with the PPI network using the STRING database (Chin et al.,
2014).

Functional enrichment analyses

Functional enrichment was performed using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology

FIGURE 2
Identification of DEGs. (A) Differential Gene Expression Volcano Plot, where red indicates upregulation and green represents downregulation. (B)
Neurotransmitter-related gene heatmap.

FIGURE 3
The co-expression modules analysis. (A) The samples were hierarchically clustered, and a clustering dendrogram was used to detect outliers. (B)
Analysis of the scale-free fitting index (left) and average connectivity (right) used for selecting various soft-thresholding powers (β). (C) Clustering
dendrogram of neurotransmitter-related genes; each color below represents a co-expressed genemodule. (D) Scatter plot of keymodules. Each point in
the scatter plot represents a gene. (E) Heatmap describing the correlation between module and neurotransmitter score.
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(GO) analyses with the ClusterProfiler and ggplot2 packages to
interpret the biological effects of the intersection. Moreover, the
prognosis genes was used to perform gene set enrichment analysis
(GSEA) between subtypes through JavaGSEA software and the results
were visualized by the “enrich plot” R package.

Analysis of immune cell infiltration

CIBERSORTwas employed to calculate the immune cell content of
each sample (Wang et al., 2023). We then used the Cor. test function to
calculate the correlation coefficient between gene expression and
immune cells. The correlation between gene expression and immune
cells tested using Spearman’s correlation. Visualization of the results
was performed using the ggpubr R package.

Single cell analysis

The Tumor Immune Single Cell Center (TISCH) (http://tisch.
comp-genomics. org/) was used to study the expression of the
CHRNA3, GABRD, GRIK3, and GRIK5 gene in the tumor
microenvironment as a single cell subset. TISCH is a scRNA-seq
database that provides detailed annotations of cell types within the
TME, allowing for exploring the TME in different cancer types (Sun
et al., 2021).

Construction of the prognostic nomogram

A nomogram was constructed using independent prognostic
factors. Calibration curves were used to evaluate the performance of

FIGURE 4
Identification of intersecting genes and functional enrichment analysis as well as expression of intersecting genes in CRC patients. (A) There are
7 intersecting genes between neurotransmitter-related genes and the blue gene module. (B) Expression of the 7 intersecting genes in colorectal cancer.
(C,D) “GO enrichment analysis and KEGG enrichment analysis of the intersecting genes.
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the nomogram. And decision curve analysis (DCA) was used to
measure the net benefit of the nomogram.

Drug sensitivity analysis

To investigate the relationship between prognosis genes expression
and drug sensitivity, the study downloaded gene expression and drug
sensitivity data from the CellMiner dataset. Drugs without clinical trials
or FDA approval were removed. The correlation coefficient between the
expression of prognosis genes and drug sensitivity was calculated using
the cor. test function in R language, with correlation tests conducted. A
p-value less than 0.05 was considered significant for the correlation
between the target gene and drug sensitivity. A positive correlation
between the expression of prognosis genes and drug sensitivity was
indicated by a correlation coefficient greater than 0.

RNA isolation and RT-qPCR assay

A total of 3 colorectal cancer specimens were obtained from the
hospital specimen bank. And the Institutional Review Board of Sun
Yat-Sen University Cancer Center approved this study (G2022-075-
01). Total RNA was isolated using the RaPure Total RNA Micro Kit
(R4012; Magen, Guangzhou, GD, China) followed by cDNA
synthesis using the HiScript II Q RT SuperMix for qPCR kit
(R223-01; Vazyme, Piscataway, NJ, United States). The qPCR
assay was conducted using ChamQ SYBR qPCR Green Master
Mix (Q311-02; Vazyme). The primers used were listed in
Supplementary Table S2. Protein expression levels of GABRD
were acquired from the HPA database through
immunohistochemistry (IHC) staining and the utilization of
downloaded IHC image data from the HPA database (Sjostedt
et al., 2020).

FIGURE 5
Identification of the diagnostic biomarkers from the intersecting genes. (A) Ten-fold cross-validation for tuning parameter selection in the LASSO
model. Each curve corresponds to a gene. (B) LASSO coefficient analysis. The vertical solid line represents the standard error of the partial likelihood
deviance. The vertical dotted line is drawn at the optimal λ. (C) Random forest for the relationship between the number of trees and the error rate. The
minimum error was selected as the mtry node value, and the image value approaching stability was selected as the ntree value. (D) Ranking genes
based on their relative importance. (E–F) SVM-RFE algorithm used for feature selection to narrow down the feature set and identify the most predictive
feature genes. (G) The Venn diagram shows the intersection genes among LASSO, random forest, and SVM-RFE algorithms. (H–I) ROC curve to estimate
the diagnostic performance of hub genes.
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Statistical analysis

All data were analyzed and graphed using GraphPad Prism 6.0 and
R software (version 4.0.5). The experimental data were presented as
mean ± s.d. of three independent trials. The Wilcoxon signed-rank test
was used to compare the differences between the two groups. A p-value
less than 0.05 indicated statistical significance, and the significance levels
were set at *p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001.

Results

Differential analysis between normal and
tumor colorectal tissues

The volcano maps for TCGA DEG analysis are shown in
Figure 2A. There was 29 neurotransmitter receptor-related DEGs
in CRC compared with normal tissues, including 10 upregulated and
19 downregulated genes (Figure 2B).

Gene modules derived from WGCNA based
on DEGs expression of TCGA

A co-expression network was constructed based on the DEGs
expression matrix of TCGA (Figure 3A). We calculated a soft
threshold and established a scale-free topology model with a data
selection threshold of 5 (Figure 3B). After weight-based filtering, the
cluster dendrogram was shown in Figure 3C. And the data were

clustered into 17 modules. We then analyzed the correlation among
the neurotransmitter scores of each module and found that the blue
module had the strongest association with neurotransmitter scores
(Figure 3E) (cor = 0.59 and P = 3e-64).

As a result, we selected the blue module as the crucial module for
further analysis. A significant correlation existed between the blue
modules’ MM and gene significance (GS) (Figure 3D). The
intersection between the blue module and neurotransmitter
receptor-related genes was also estimated (Figure 4A). Seven genes
were identified as the candidate genes in both groups, including
CHRNA3, CHRM2, GABRD, GRIK3, GRIK5, GRIN2D, and
HTR1D. Except for GRIN2D, HTR1D, GABRD other genes are
less expressed in tumors than in normal tissues (Figure 4B). In
addition, GO and KEGG pathway analyses were performed on the
candidate genes and revealed that these genes are mainly involved in
the neurotransmitter receptor activity pathway (Figures 4C, D).

Hub gene identification and verification

Using the LASSO regression algorithm, six genes were identified as
potential diagnostic biomarkers from the candidate genes (Figures 5A,
B). RF identified five diagnostic genes (Figures 5C, D). All candidate
genes were identified as potential biomarkers by the SVM-RFE
algorithm (Figures 5E, F). Four genes (CHRNA3, GABRD,
GRIK3 and GRIK5) were then overlapped via a Venn diagram, and
served as robust diagnostic biomarkers (Figure 5G). The efficacy of
these biomarkers was validated using the GSE74602 dataset, which
showed high associated value with an AUC of 0.999 (Figures 5H, I). PPI

FIGURE 6
PPI and survival analysis of hub gene. (A) The GeneMANIA database performed PPI analysis on the diagnostic gene and its 6 interacting genes to
predict correlations among co-localization, shared protein domains, co-expression, predicted and pathways. (B–E) Survival analysis of 4 hub genes.
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analysis was also performed on the hub genes (Figure 6A). Finally, we
explored the relationship between hub genes and clinical features and
found that patients with advanced TNMstages had higher expression of
the identified hub genes (Supplementary Figure S1). And high
expression of CHRNA3, GABRD, and GRIK5 are significantly
associated with poor prognosis (Figures 6B–E).

GSEA analysis

We conducted GSEA analysis to investigate the signaling
pathways associated with hub genes, and the top six pathways
are presented in Figure 7. Our findings revealed that
CHRNA3 was significantly linked to several pathways, including
aminoacyl-tRNA biosynthesis, citric cycle/TCA cycle, glyoxylate
and dicarboxylic acid metabolism, olfactory transduction, and
one-carbon pool by folate (Figure 7A). The expression of
GABRD was significantly associated with pathways related to
glycine, serine, and threonine metabolism, glycosaminoglycan
biosynthesis (chondroitin sulfate), olfactory transduction,
phenylalanine metabolism, prion diseases, and SNARE
interactions in vesicular transport (Figure 7B). The expression of
GRIK3 was significantly correlated with pathways related to DNA
replication, fatty acid metabolism, glyoxylate and dicarboxylic acid
metabolism, linoleic acid metabolism, olfactory transduction, and

prion diseases (Figure 7C). Lastly, the expression of GRIK5 was
significantly linked to pathways related to DNA replication, drug
metabolism (other enzymes), fatty acid metabolism, nucleotide
excision, olfactory transduction, as well as valine, leucine, and
isoleucine degradation (Figure 7D).

Association of hub genes levels with tumor
microenvironment

The Tumor Microenvironment (TME) consists of various
components including endothelial cells, cancer-associated
fibroblasts (CAFs), myofibroblasts, immune cells, and other factors
(Ding et al., 2022). To investigate whether hub gene would be involved
in TME, we observed the correlation of hub genes expression with
stromal cell and immune cell infiltrations (Figure 8A, Supplementary
Figure S2). The results showed that Tregs, naive B cells, and activated
memory CD4+ T cells were positively correlated with all hub genes,
while activated memory CD4+ T cells were negatively correlated.
MacrophagesM0were found to be highly infiltrated in cases with high
expression of CHRNA3, GABRD, and GRIK5. Only GRIK3 was
positively correlated with the infiltration of resting memory CD4+

T cells (Figure 8B). Moreover, we found that CHRNA3, GABRD,
GRIK3, and GRIK5 were also expressed in both endothelial and
stromal cell subpopulations (Figures 9A, B). Notably, CHRNA3,

FIGURE 7
Enrichment analysis of hub genes. (A–D) Functional analysis of the 4 hub genes using GSEA.
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GRIK3, and GRIK5 were highly expressed in fibroblasts compared to
other cell subpopulations. And GABRD had high expression levels in
endothelial cells, suggesting its role in angiogenesis within the TME
(Figures 9C–F).

Establishment of a prognostic nomogram
for colorectal cancer

We developed a novel prognostic nomogram to offer a reliable
and quantifiable method for predicting the progress of colorectal
cancer based on the hub gene. In the nomogram, each hub gene is
assigned a score, calculated bymultiplying the gene’s coefficient with
its expression level. And the total score, determined by summing the
scores of all the hub genes, corresponds to varying risk levels for
patients (Figure 10A). In addition, calibration curves and Harrell’s
concordance index (C-index) showed the nomogram had good
predictive power (Figures 10B, C). Subsequently, Decision curve
analysis elicited that the nomogram provided a significant net

benefit (Figure 10D). Overall, these results indicate that the
nomogram possesses significant predictive value.

Expression of genes with sensitivity of
cancer cells to anti-tumor drugs

We obtained gene expression and drug sensitivity data from
CellMiner and excluded drugs without clinical trials or FDA
approval and calculated the correlation coefficient between hub
genes expression and drug sensitivity (Figure 11). The CHRNA3,
GABRD, GRIK3 and GRIK5 gene are associated with the sensitivity
of certain anti-tumor drugs such as fluphenazine, pimozide,
isotretinoin, and fludarabine. CHRNA3 was identified to increase
the sensitivity of cancer cells to chemotherapeutic agents, such as
chelerythrine, XK-469, and dexamethasone decad, while GABRD
weakened the sensitivity of pimozide and rapamycin. These findings
suggest that the expression levels of hub genes may serve as a
predictor of drug sensitivity for a specific class of drugs.

FIGURE 8
Association of hub genes with immune cell infiltration. (A) Correlation analysis between immune cells and hub genes. (B) Correlation analysis
between GABRD and immune cells, as well as differences in immune cells between high and low gene expression groups.
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Validation of mRNA expressions of
prognostic NRGs

To confirm the significance of neurotransmitter receptor-related
genes in CRC, we analyzed the differential mRNA levels of the four
independent prognostic genes in the normal colorectal tissues and
CRC tissues. Results revealed that, compared to normal tissues, the
expression of CHRNA3, GRIK3, and GRIK5 is decreased in tumor
tissues, while GABRD is highly expressed in tumor tissues,
consistent with our bioinformatics analysis results (Figures
12A–C). Furthermore, we investigated the protein expression of

GABRD through the HPA database. The outcomes revealed elevated
protein levels of GABRD in CRC tissues (Figure 12D).

Discussion

Neurotransmitters are traditionally known as nerve-secreted
substances that modulate excitatory or inhibitory neuronal
functions by binding to specific receptors. And our
understanding of the regulatory role of the neurotransmitter
system in tumor initiation and progression continues to advance.

FIGURE 9
Single cell analysis of hub genes (A) Using the colorectal cancer GSE166555 dataset for study, dimensionality reduction and clustering analysis were
performed. All cells were clustered into 32 clusters. (B) Cell annotation. A total of 13 cell types were identified. (C–F) expression of the 4 hub genes in
single-cell data.
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Neurotransmitters exhibit varying effects on the numerous
functions of cancer cells, endothelial cells, and immune cells
across various human cancer types. The aberrant expression of
neurotransmitter signaling genes in colorectal cancer underscores
the potential of neurotransmitters to enhance tumor growth and
metastasis by stimulating processes such as cell proliferation,
migration, invasion, and angiogenesis. In addition,
neurotransmitters can influence immune cells and endothelial
cells in the tumor microenvironment, fostering inflammation and
contributing to the advancement of tumor growth (Battaglin et al.,
2022). Nevertheless, the precise impact of various neurotransmitter
receptors on colorectal cancer progression remains poorly
understood. Therefore, we have identified a signature consisting
of four genes associated with neurotransmitter receptors: CHRNA3,
GABRD, GRIK3, and GRIK5 to predict prognosis and treatment
response in CRC patients.

In our study, we employed WGCNA analysis and identified
17 modules to help explore the characteristic relationship between
neurotransmitter scores and gene clusters. Additionally, we utilized
machine learning algorithms to enhance the accuracy of biomarker
screening. Three machine learning algorithms (LASSO logistic, SVM-
RFE and RF) were primarily utilized to screen feature variables and
establish the best classification model. As a result, we identified
CHRNA3, GABRD, GRIK3, and GRIK5 as biomarkers by
combining the machine learning algorithm and WGCNA. And
these biomarkers were well-validated in the external validation cohorts.

CHRNA3 is a member of the nicotinic acetylcholine receptor
(nAChRs) gene cluster, which serves as the “gateways” through
which nicotine exerts its effects on the brain (Ware et al., 2012). PPI
analysis reveals that CHRNA3 has a solid physical interaction with
CHRNA5 and CHRNB4. Previous studies have reported that
variations in CHRNA3-A5-B4 are independently and additively
associated with increased cigarette consumption, nicotine
dependence, and lung cancer risk (Chmielowiec et al., 2022).
Despite the absence of evidence on the role of CHRNA3 in CRC
progression, we have identified, for the first time, that high
CHRNA3 expression is associated with poor prognosis in CRC
patients. Gamma-aminobutyric acid (GABA) is the principal
inhibitory neurotransmitter in the adult mammalian central
nervous system. Its receptors, expressed in various tumor tissues,
play a crucial role in regulating tumor cell proliferation and
migration (Joseph et al., 2002; Kanbara et al., 2018; Jiang et al.,
2020a; Zhang et al., 2023). The γ-aminobutyric acid type A receptor
d subunit (GABRD), encoded in the human chromosome
1p36 region, has yet to be fully elucidated regarding its
involvement in cancers (Zhang et al., 2019). Recently, Wu et al.
conducted a study that found enhanced expression of GABRD to be
predictive of poor prognosis in CRC patients (Yan et al., 2020),
consistent with our results. And Huang et al. confirmed that
GABRD receptors indicated by T cells directly inhibit CD8+

T cells by participating in signal regulation (Huang et al., 2022).
Glutamate ionotropic receptor kainate type subunit 3 (GRIK3) and

FIGURE 10
Establishment of the diagnostic nomogram. (A)Create a column chart of integrated hub genes, where each variable corresponds to a score that can
be added together to calculate a total score, to predict the progression of colorectal cancer. (B) Calibration curves were used to estimate the predictive
accuracy of the column chart. (C)Harrell’s concordance index was used as performance metrics. (D)Decision curve analysis shows the clinical benefit of
the nomogram for predicting the progression of colon cancer.
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glutamate receptor ionotropic kainate-5 (GRIK5) are members of
the glutamate kainate receptor family and play crucial roles in the
neuroactive ligand-receptor interaction pathway (Fang et al., 2021;
Minoza et al., 2022). There is compelling evidence suggesting that
GRIK3 participates in cancer progression. For example, GRIK3 was
reported to mediate the function of CircRNA and promote the
proliferation and metastasis of colon cancer cells (Fang et al., 2021).
Xiao et al. found that GRIK3 promotes epithelial-mesenchymal
transition in breast cancer cells by regulating SPDEF/
CDH1 signaling (Xiao et al., 2019). Furthermore, GRIK5 has
been identified as a potential biomarker for melanoma metastatic
progression (Minoza et al., 2022). Although limited research exists
on the relationship between GRIK5 expression and colorectal cancer
(CRC), our study fills this gap by identifying a significant association
between high GRIK5 expression and CRC progression.

Functional enrichments were performed to gain insights into
the biological processes in which these hub genes may be involved.
Our results suggest that these hub genes may play critical roles in
cellular metabolic processes, particularly in organic acid, inorganic
acid, and lipid metabolism. It is well-established that the hostile
tumor microenvironment surrounding cancer cells drives
metabolic changes that impact tumorigenesis and metastatic
potential. Previous studies have validated the prominent status

of lipid metabolism in cancer progression. Moreover, targeting
dysfunctional lipid metabolism has shown promising results as an
approach to impede tumor growth (Bian et al., 2021). Amino acids
also represent a crucial aspect of the tumor microenvironment,
which can significantly affect cancer cell metabolism and overall
tumor development (Stepka et al., 2021). Our findings suggest that
these biomarkers may contribute to the construction of a TME that
favors tumor development. Thus, the current study investigated
the correlation between tumor infiltrating cells and
neurotransmitter receptor-related gene prognostic signatures.
Using the CIBERSORT algorithm, we comprehensively
evaluated the abundance and infiltration of twenty-two immune
cells in COAD patients. The results showed that the high
expression of gene signature groups exhibits elevated levels of
immunosuppressive cells, such as Tregs and macrophages M0, and
low infiltration of anti-tumor cells, including CD4+ and dendritic
cells. Previous studies have demonstrated that the significant
infiltration of M0 macrophages in the tumor microenvironment
may predict poor prognosis (Zheng et al., 2021), while Tregs can
induce immune tolerance and facilitate immune escape and tumor
metastasis (Bauer et al., 2014). These findings are consistent with
our study, supporting that high expression of hub genes with
increased immunosuppressive cell infiltration is associated with

FIGURE 11
Investigating the correlation between 4 hub genes and common anti-cancer drugs using the Cellminer database.
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poor prognosis in COAD patients. The B cell populations in the
TME exhibit significant heterogeneity in surface
immunophenotype and function (Downs-Canner et al., 2022).
Memory B cells are found in higher numbers in tumors than
peripheral blood, accounting for 34% of B cells in tumors
compared to 14% in peripheral blood, regardless of tumor
grade. Interestingly, patients who respond to immune
checkpoint inhibition therapy exhibit increased memory B cells,
CXCR3+ cells, and germinal center-like B cells in the TME
(Helmink et al., 2020). Here, we found a positive association
between hub genes and naive B cells, indicating that the
neurotransmitter receptor-related gene signature may serve as a

predictive marker for the effectiveness of immunotherapy in CRC
patients.

Stromal cells and endothelial cells are another important
component of TME. Interestingly, in the current study, increased
expression of CHRNA3, GRIK3, and GRIK5 was highly associated
with stromal cells, especially CAFs. CAFs play a critical role in CRC
progression and are instrumental in shaping the tumor-promoting
immune microenvironment (Kobayashi et al., 2022). Additionally,
endothelial cells have been identified as one of the primary sources
of CAFs and play a vital role in promoting tumor metastasis (Yan
et al., 2020). Notably, our results demonstrated that increased
GABRD expression was highly associated with endothelial cells.

FIGURE 12
Validation ofmRNA expressions of prognostic Neurotransmitter Receptor-Related Gene (NRGs). (A–D) ThemRNA expressions of GABRD, CHRNA3,
GRIK3, and GRIK5 in the normal colorectal and CRC tissues. (E,F) Immunohistochemistry of the GABRD in the normal and tumor groups from the HPA
database. Data are shown as means ± SEM of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001.
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Based on the neurotransmitter receptor-related gene prognostic
signatures, a prognostic nomogram was developed. And We have
validated the accuracy of the nomogram through calibration plots
and decision curve analysis, which supports its potential as a
valuable instrument for personalized risk management. We also
utilized the CellMiner database to examine the relationship between
FDA-approved drugs and these four targets. Our analysis of drug
sensitivity revealed that the expression of CHRNA3, GABRD, GRIK3,
and GRIK5 in cancer cells significantly impacted their response to
chemotherapy. Our discoveries could provide novel insights into the
appropriate selection of drugs, offering guidance for forthcoming
studies in oncology. Finally, we performed a simple validation of the
expression of hub genes in CRC tissues and found that, compared to
normal tissues, themRNA levels of CHRNA3, GRIK3, andGRIK5were
decreased. CHRNA3, GRIK3, and GRIK5 are primarily expressed in
connective tissue. Due to the predominance of tumor cells in tumor
tissues, they are downregulated in tumor tissues compared to normal
tissues. Both immunohistochemistry and RT-PCR confirmed the high
expression of GABRD in tumor tissues. Interestingly, among these four
hub genes, three of them exhibit relatively lower expression in colorectal
cancer tissue compared to normal tissue. This observation indeed
presents a complex and multifaceted biological phenomenon. We
suggest that gene function can be independent of expression levels.
The phenomenon of oncogene downregulation in tumor tissues
contradicts common expectations, which generally predict higher
expression levels of cancer genes. We delved into the literature and
found similar instances where gene expression is influenced by various
mechanisms, such as: The B-cell lymphoma 2 (BCL-2) family of
proteins regulates apoptosis in normal cells. In various cancers,
increased expression of BCL-2 protein is associated with enhanced
drug resistance of tumor cells, although in some cases, its expression
may be lower in tumor tissues compared to the surrounding normal
tissues (Adams and Cory, 2007). And Hexokinase 2 (HK2) is involved
in glucose metabolism in normal tissues, while in cancer cells, increased
activity of HK2 is associated with cancer survival and growth, even if its
expression levels are lower than in normal tissues, representing the role
of metabolic reprogramming in tumors (Patra and Hay, 2014). Despite
these genes being less commonly discussed, their existence and
paradoxical behavior in cancer biology are well-documented. To
address the question of why these three genes are expressed at lower
levels in colorectal cancer tissue but are associated with a poorer
prognosis in patients with high expression, further investigations in
proteomics and epigenetics are required.

Though we have identified a significant gene signature in CRC
based on the NRGs, there were some limitations. Firstly, our findings
were based on public databases, and thus, it is crucial to validate
these results in a prospective cohort from our hospital. Additionally,
we need to investigate the functions of the hub genes implicated in
CRC progression using cell lines and/or mouse models.

Conclusion

In our study, we employed several bioinformatics approaches to
identify a 4-gene signature related to neurotransmitter receptors to
evaluate the prognosis of CRC patients. Our results indicated a
significant association between the signature and the clinical features
and immune system of colorectal cancer. Thus, the gene signature in

our study could function as an independent prognostic indicator for
CRC patients.
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