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Background: Pediatric gliomas (PGs) are highly aggressive and predominantly
occur in young children. In pediatric gliomas, abnormal expression of Homeobox
(HOX) family genes (HFGs) has been observed and is associated with the
development and progression of the disease. Studies have found that
overexpression or underexpression of certain HOX genes is linked to the
occurrence and prognosis of gliomas. This aberrant expression may contribute
to the dysregulation of important pathological processes such as cell proliferation,
differentiation, and metastasis. This study aimed to propose a novel HOX-related
signature to predict patients’ prognosis and immune infiltrate characteristics
in PGs.

Methods: The data of PGs obtained from publicly available databases were utilized
to reveal the relationship among abnormal expression of HOX family genes
(HFGs), prognosis, tumor immune infiltration, clinical features, and genomic
features in PGs. The HFGs were utilized to identify heterogeneous subtypes
using consensus clustering. Then random forest-supervised classification
algorithm and nearest shrunken centroid algorithm were performed to develop
a prognostic signature in the training set. Finally, the signature was validated in an
internal testing set and an external independent cohort.

Results: Firstly, we identified HFGs significantly differentially expressed in PGs
compared to normal tissues. The individuals with PGs were then divided into two
heterogeneous subtypes (HOX-SI and HOX-SII) based on HFGs expression
profiles. HOX-SII showed higher total mutation counts, lower immune
infiltration, and worse prognosis than HOX-SI. Then, we constructed a HOX-
related gene signature (including HOXA6, HOXC4, HOXC5, HOXC6, and HOXA-
AS3) based on the cluster for subtype prediction utilizing random forest supervised
classification and nearest shrunken centroid algorithm. The signature was
revealed to be an independent prognostic factor for patients with PGs by
multivariable Cox regression analysis.

Conclusion:Our study provides a novel method for the prognosis classification of
PGs. The findings also suggest that the HOX-related signature is a new biomarker
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for the diagnosis and prognosis of patients with PGs, allowing for more accurate
survival prediction.
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1 Introduction

Gliomas are the most common central nervous system (CNS)
tumors in children, accounting for the vast majority of malignant
brain tumors. Pediatric gliomas (PGs) are clinically and biologically
distinct from adult gliomas (AGs) (Ryall et al., 2017). It is crucial to
gain a better understanding of the genetic and molecular
abnormalities underlying the disease for early diagnosis,
appropriate treatment, and improved prognosis in PGs patients.
Most pediatric gliomas present as benign, slow-growing lesions
classified as grade I or II by the WHO classification of CNS
tumors (Louis et al., 2021). These low-grade gliomas (LGGs)
account for approximately 30% of pediatric CNS tumors (Ostrom
et al., 2018). In contrast to adult LGGs, IDH mutations are almost
absent in children, and malignant progression in pediatric LGGs is
sporadic and has excellent overall survival (OS) under current
treatment strategies (Sturm et al., 2017). Surgical excision is the
mainstay of current therapy for LGG, which may be curative
where total resection is possible (Diwanji et al., 2017). However,
there is still a risk of progression or relapse. Moreover, a significant
proportion of gliomas exhibit rapid growth and progression, thus
classified asWHO grade III or IV high-grade gliomas (HGGs) (Sturm
et al., 2017). Pediatric HGGs account for 8%–12% of pediatric CNS
tumors and may manifest across all ages and anatomic CNS
compartments (Funakoshi et al., 2021). Somatic mutations in
histone genes, specifically K27M and G34R/V mutations in H3.3-
andH3.1- coding genes, have been identified as hallmarks of HGGs in
children and young adults. BRAF V600E mutations are found in 5%–
10% of pediatric HGGs (Funakoshi et al., 2021).

The investigation of gene families in tumors is a prominent and
dynamic field of research in cancer studies. Gene families play a
crucial role in various biological processes, including tumorigenesis
and tumor progression. Understanding the involvement of gene
families in cancer provides valuable insights into the molecular
mechanisms underlying tumor development and opens new avenues
for therapeutic interventions. Gene families consist of a group of
genes that share similar sequences or functions. In the context of
cancer, alterations within gene families can have significant
implications for tumor initiation, growth, and response to
treatment. The study of gene families in tumors focuses on
identifying specific gene family members that are dysregulated or
mutated in cancer cells, as well as investigating their functional roles
and interactions within cellular pathways. By unraveling the role of
gene families in cancer, researchers can identify potential
biomarkers for early detection, prognosis, and treatment
response. The dysregulation of gene family members can serve as
diagnostic indicators or therapeutic targets in specific cancer types.
Additionally, understanding the functional implications of gene
family alterations can provide insights into the underlying
molecular processes driving tumor progression, allowing for the
development of more targeted and effective therapies. With the

advancement of multi-omics technologies, it has been revealed that
there is a close relationship between gene families and the
occurrence and development of tumors (Djos et al., 2012;
Papaioannou, 2014; Chen et al., 2020; Wang Y. et al., 2021; Xie
et al., 2022a; Keck et al., 2023).

Homeobox (HOX) genes represent the main subset of the
homeobox family. These genes are evolutionarily highly
conserved and regulate embryonic development and cell
differentiation (Bhatlekar et al., 2018). HOX genes encode
transcription factors that act as master regulators during
embryogenesis processes, including apoptosis, receptor signaling,
motility, and angiogenesis (Contarelli et al., 2020). A total of
39 human HOX family genes (HFGs) were distributed into four
clusters (HOXA, HOXB, HOXC, and HOXD) according to their
chromosomal localization (7p15, 17q21.2, 12q13, and 2q31,
respectively). The HOXC genes encode a highly conserved family
of transcription factors and play an important role inmorphogenesis
or development of neurons (Mendrzyk et al., 2006). Multiple studies
have found that HFGs abnormal expression plays an essential role in
cancer development (Bhatlekar et al., 2018; Li B. et al., 2019).

Most of the 39 HOX genes are aberrantly expressed in solid
tumors, and their expression is frequently altered in cancer, including
lung (Li L. et al., 2019), colon (Bhatlekar et al., 2019; Martinou et al.,
2022), breast (de Bessa Garcia et al., 2020), pancreas (Kuo et al., 2019),
prostate (Hatanaka et al., 2019), and ovarian cancers (Idaikkadar et al.,
2019). Most HOX genes are expressed in the developing vertebrate
central nervous system (CNS), where they play essential functions.
Several studies have found that the expression pattern of HOX genes is
dysregulated in gliomas (Abdel-Fattah et al., 2006; Costa et al., 2010).
Previous studies have indicated that several members of HFGs are
aberrantly expressed in pediatric gliomas. In 2010, Gaspar N, et al.
discovered expression of HOXA9/HOXA10 is regulated by
demethylation mediated by the PI3-kinase pathway. Interestingly,
inhibiting this demethylation process in combination with TMZ
(temozolomide) treatment demonstrated a synergistic effect in a
pediatric glioma cell line of KNS42. Furthermore, the research
revealed that high levels of HOXA9/HOXA10 gene expression were
associated with a shorter survival in paediatric high grade glioma
patient samples (Gaspar et al., 2010). Another research examined the
expression ofHOXD family genes by QPCR in 14 pediatric low-grade
gliomas and found that HOXD1 and HOXD12 were overexpressed in
tumor tissue compared to non-neoplastic tissues, while HOXD3
presented lower expression in grade I glioma. HOXD8, D9, and
D10 were found to be expressed in grade I gliomas, but not in
non-neoplastic tissues. On the other hand, HOXD4, D11, and D13
were not expressed in grade I gliomas (Buccoliero et al., 2009).
However, the HFGs’ role in pediatric gliomas (PGs) remains unclear.

Due to the complex clinical and biological characteristics,
improvements in PGs diagnosis and treatment are urgently
needed. Molecular genetic analysis is essential for adequately
classifying and monitoring biological behavior and clinical
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management of tumors. In this study, we classified PGs into two
distinct subtypes based on the unsupervised consensus clustering of
the HOX family genes (HFGs) transcriptome profiles of 571 PGs
tumor samples. Each HOX-related subtype identified had distinct
molecular features, such as molecular pathways, genomic
alterations, immune checkpoints expression, and differences in
patient survival. Furthermore, candidate drugs and potential
targeted mechanisms were predicted for each PG subtype. We
then explore the key HOX genes that played a crucial role in the
PGs subtypes using random forest-supervised classification and the
nearest shrunken centroid algorithm. Finally, we constructed a
HOX-related signature to determine a PGs classification for
utility in clinical practice.

2 Material and method

2.1 Public datasets preparation and
normalization

Multiple levels of data, including whole-exome sequencing and
mRNA-sequencing, along with complete survival, and clinical
information, were obtained from several publicly available
databases. The data of 486 PGs were downloaded from the
Children’s Brain Tumor Tissue Consortium (CBTTC, https://cbttc.
org/), 85 PGs from the International Cancer Genome Consortium
(ICGC, https://dcc.icgc.org/), 163 PGs from Pediatric Brain Cancer
(CPTAC/CHOP, Cell 2020; https://www.cbioportal.org/), and 53 PGs
from Gene Expression Omnibus (GSE73038). We excluded
510 patients from CBTTC, 88 from ICGC, 55 from CPTAC, and
129 samples from GSE73038 that were not classified as gliomas or
lacked prognostic/expression data, or had patients above 20 years of
age at diagnosis. The detailed clinicopathological characteristics,
including different grades of glioma patients, were summarized in
Supplementary Table S1. The collected data underwent
normalization, and the expression values were transformed using
the logarithm.We used the “sva” algorithm to lessen the impact of the
likely batch effects. The data of normal brain samples were obtained
from the Genotype Tissue-Expression (GTEx) database. Among these
four datasets, CBTTC and ICGC were selected to merge into a PGs
cohort, which was then randomly divided into an training and an
internal testing cohort. The other two datasets (CPTAC and
GSE73038) were combined as an independent external validation
cohort. Additionally, immunohistochemical (IHC) and multiple
immunofluorescence (mIF) information was obtained from the
Human Protein Atlas (HPA) database (https://www.proteinatlas.
org/). In summary, this study involved comprehensive data
collection from multiple sources, including genomic, clinical, and
immunohistochemical information, to create robust cohorts for
analysis and validation purposes.

2.2 Consensus clustering for different HOX-
related subtypes

Since deregulated HOX gene expression has long been
recognized as a driving force in tumorigenesis (Li B. et al., 2019),
a total of 39 HFGs belonging to the four categories previously

described were enrolled in our study (Supplementary Table S2).
We applied an unsupervised clustering algorithm to explore a novel
classification for PGs based on 39 HFGs expression matrix data to
stratify those samples into different gene subtypes using the R
package of ConsensusClusterPlus (Wilkerson and Hayes, 2010).
A sampling of 80% of the data was used for the 1,000 iterations
of the clustering procedure. The proportion of the ambiguous
clustering algorithm, the consensus heatmap, and the relative
change in the area under the cumulative distribution function
(CDF) curve were used to determine the ideal number of
clusters. Kaplan-Meier survival analysis was used to assess the
associations between different clusters and overall survival. The
expression profiles were standardized and principal component
scores (PCA) were calculated. The PCA results were visualized in
three dimensions using the R package “scatterplot3d” (Ligges and
Mächler, 2002).

2.3 Somatic mutation and CNV analysis

Somatic mutation analysis was performed to identify the
significantly mutated genes between different gene clusters using
the R package “maftools” (Mayakonda et al., 2018). Waterfall plots
were generated to display themutation type and frequency of the top
mutated genes in each cluster. The mutation type and frequency of
the top mutated genes in each cluster were displayed by waterfall
plots. The mutation data of 453 samples from PGs cohort are shown
in Supplementary Table S3. We log-transformed the total mutation
number to compare the mutation frequency differences between
clusters and visualized them using R package “ggplot2” (The
Wilcoxon test) (Wickham, 2016). We analyzed the copy number
variations (CNVs) of different subtypes. The mean segment values
were calculated by the log2 (cnv number/2) formula. Segment mean
values > 0.2 was considered as a gain, while a value < -0.2 as a loss.
The circos plots were used to display the CNV summary plots of
each cluster using the R package “RCircos” (Zhang et al., 2013).

2.4 Gene set variation analysis and
functional annotation

The R package “limma” (Ritchie et al., 2015) was utilized to
identify differentially expressed genes (DEGs) between HOX-SI and
HOX-SII subtypes. The screening criteria were p-value <0.01 and |
log2 fold change (FC)| >1. To explore the functional implications of
the DEGs, Gene Ontology (GO) and Kyoto encyclopedia of genes
and genomes (KEGG) data sets in the molecular signature database
(MsigDB) were obtained by the R package “msigdbr” (Version 7.2.
1) (Dolgalev, 2020). Furthermore, single-sample gene set
enrichment analysis (ssGSEA) was performed using the R
package “GSVA” (Hänzelmann et al., 2013) to quantify the
difference in enrichment scores and pathways activity between
the two subtypes in PGs. To further investigate the enrichment
of pathways, the GSEA enrichment analysis was performed using the
GSEA software (Version 4.2.3). Subsequently, the pathway activity
score of ten oncogenic signaling pathways (Sanchez-Vega et al.,
2018) in PGs subtypes was analyzed. The pathway activity score was
calculated based on the method described by Han J et al. (Han et al.,
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2018). These scores were obtained by summing the normalized
expression values of all genes contained in a pathway and then
dividing by the square root of the number of genes of the signaling
pathway. The genes associated with the ten oncogenic signaling
pathways can be found in Supplementary Table S4.

2.5 Identification of the tumor immune
infiltrating features of PGs

The composition and proportions of 22 different types of tumor-
infiltrating immune cell fractions between subgroups were
conducted using the “CIBERSORT” package (Newman et al.,
2015) in PGs samples. Immune and stromal scores between
subgroups were quantified based on the ESTIMATE algorithm in
the R package “estimate” (Yoshihara et al., 2016) to assess tumor
purity and applied R package “ggplot2” to show scoring differences
between the two subgroups.

2.6 Immunotherapy and drug sensitivity
prediction

Ye et al. summarized 34 immune checkpoint genes (Ye et al.,
2020) in a reported study. However, in our study, the mRNA
expression profile did not include VISTA. Therefore, the
expression levels of 33 immune checkpoints, including well-
known targets such as CTLA4, PD-1, PD-L1, and PD-L2, were
screened to evaluate the sensitivity of immunotherapy between
the two subtypes. The R package “oncoPredict” (Maeser et al.,
2021) was used to predict the therapeutic response as measured
by the half-maximal inhibitory concentration (IC50). The
IC50 value reflects the sensitivity of a particular compound, with
lower values indicating stronger sensitivity.

For further investigation of immunotherapy response, we
downloaded the data of 298 urothelial cancer patients who
received immunotherapy and detailed information about the
response to PD-L1 blockade from the IMvigor210 datasets. Then,
we used the IMvigor210 datasets to analyze the value of the HOX-
related signature classifier in the predicted PD-1 response.

2.7 Development and verification of the
HOX-based classifier via a random forest
supervised classification algorithm

The random forest (RF) algorithm was applied to evaluate the
contributions of 1008 DEGs that identified between HOX-SI and
HOX-SII to clusters in PGs samples. Several iterative steps were
performed, where one-third of the least essential DEGs were discarded
at each step based on their importance score using the R package
“ranger” (Wright and Ziegler, 2015). To ensure model stability, a total
of 1000 decision trees were generated using the RF algorithm. Using a
random forest-supervised classification algorithm, nine DEGs mostly
related to the prognostic classification were selected among the initial
1008 DEGs based on their important permutation score. According to
combinations of the nine DEGs, 511 (29–1) combinations were
obtained. For each combination, a signature was developed using

the nearest shrunken centroid algorithm and Euclidean distance in the
training set. Two centroids, representing “high-risk” and “low-risk”
groups, were created based on themean gene expression profiles of the
DEGs in patients with good prognosis and those with poor prognosis,
respectively. The euclid distances between all samples and the two
centroids were calculated.

Subsequently, a prognostic classifier were developed for all
combinations (N = 29–1 = 511) of 9 HOX-related genes using
the nearest shrunken centroid algorithm. Dic is the Euclid distance
between the mean expression profile of the HOX-related genes
combination and the two centroids. The Euclid distances (Dici)
classify sample i into HOX-SI or HOX-SII. After the analysis, a
signature containing of five HOX-related genes was selected as the
optimal signature. The following formula was used to calculate the
Dici, where n is the number of HOX-related gene signature, Expj is
the gene expression value of the signature genes, and CD is the
centroids of “high-risk” or “low-risk” groups:

Dici �
�������������∑n
j

Exp j − CD( )√√

2.8 Single-cell RNA-seq (scRNA-seq)
analysis

The single-cell RNA-sequencing data of 13 pediatric
medulloblastomas, along with their corresponding clinical
information, were downloaded from the GEO database
(GSE119926). This dataset allows for detailed cell type annotation
at the single-cell level. Based on the R package “Seurat”, the Uniform
Manifold Approximation and Projection (UMAP) plot was used to
visualize the distribution and expression of HOXC4, HOXC5, and
HOXC6 in the 13 pediatric medulloblastoma different cell types and
four molecular subgroups of medulloblastoma.

2.9 Statistical analysis

In this study, all analyseswere conducted byR software (version 4.1.2,
Institute for Statistics andMathematics, Vienna, Austria 4).Wilcoxon test
was conducted for the comparisons between the two groups. The chi-
square test examined the relationships between glioma subgroups and
clinical characteristics. Differences in survival were analyzed by the
Kaplan-Meier method, and significance was determined by the log-
rank test. Univariate and multivariate analysis was done using the
multivariate Cox proportional hazard regression model. All tests were
two-sided, and a p-value of less than 0.05 was considered significant.

3 Results

3.1 Genetic and transcriptional profile of
HFGs in pediatric gliomas

This workflow of our study consists of three main parts. In the
first part, we aim to investigate the specific features of the HFGs in
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PGs. We will analyze the expression patterns, mutation characters,
and their protein network relationship of HFGs in PGs samples
(Figure 1A). In the second part, we classify PGs into two subtypes,
namelyHOX-SI andHOX-SII, based on the expression patterns of the
HFGs. We will explore the clinical characteristics, signaling pathways,
drug sensitivity, gene mutation patterns, and immune
microenvironment differences between these two subtypes. By
understanding the distinct features of each subtype, we aim to
uncover potential prognostic markers and therapeutic targets

specific to each subtype of PGs (Figure 1B). In the third part, we
will construct a diagnostic and prognostic model based on the
differential expression of genes between the HOX SI and HOX SII
subtypes. Using the random forest method, we will identify the key
DEGs that contribute significantly to the classification of subtypes.
Additionally, we employ the Euclidean distance algorithm to develop
a novel HOX-related signature for diagnosing and predicting the
prognosis of PGs patients based on the high or low-risk classification
(Figure 1C). We selected 39 HFGs for analysis, and their detailed

FIGURE 1
Workflow of data analysis in our study. (A)HFGs profiles in pediatric gliomas. We will analyze the expression patterns, mutation characters, and their
protein network relationship of HFGs in PGs samples. (B) Identification of two prognosis subtypes based on consensus clustering.Wewill classify pediatric
gliomas into two subtypes, namely HOX-SI and HOX-SII, based on the expression patterns of the HFGs. We will explore the clinical characteristics,
signaling pathways, drug sensitivity, gene mutation patterns, and immune microenvironment differences between these two subtypes. (C)
Derivation and validation a novel HOX-related signature. We will construct a diagnostic and prognostic model based on the differential expression of
genes between the HOX SI and HOX SII subtypes. Using the random forest method, we identify key DEGs that contribute significantly to the classification
of subtypes. Then, we employ the Euclidean distance algorithm to develop a novel HOX-related signature for diagnosing and predicting the prognosis of
PGs patients based on the high or low-risk classification. HFGs, Homeobox family genes; PGs, pediatric gliomas; Dic, distance; OOB, out-of-bag; OS,
overall survival; AUC, area under curve.
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information can be found in Supplementary Table S2. To reveal the
expression levels of 39HFGs in PGs, we compared their expressions in
tumor and normal tissues. Compared with the normal tissues, most of
the HOX genes showed increased expression in tumor tissues, only
HOXB1 and HOXD1 decreased expression in PGs samples, and the
difference in expression of these HFGs in normal and tumor tissues
was statistically significant except HOXB8 and HOXC12 (Figure 2A).
Since HFGs functions are interconnected (Bhatlekar et al., 2014a), we
constructed a protein-protein interaction (PPI) network to visualize
the relationships among these genes. In PPI, several hub genes were
identified including HOXA5, HOXA6, HOXA7, HOXB4, HOXB5,
HOXB6, HOXB7, HOXC4, HOXC5, HOXC6, and HOXD4
(Figure 2B). These hub genes play important roles in the
interaction network of HFGs. Furthermore, we assessed the
association between HFGs expression and overall survival (OS).
Most HFGs exhibited significant differential transcriptional

expression between tumor and normal tissues and were
significantly correlated with OS (Supplementary Table S5). This
suggests that HFGs abnormal expression may play a crucial role in
the pathogenesis and progression of PGs. Additionally, we analyzed
somatic alterations of 39 HFGs in PGs cohort. The mutation
frequency of these genes was found to be low, with only 26 out of
453 PGs patients (4.55%) showing HFGs mutations. The landscape of
HFGs mutations in the 26 PGs patients were present in Figure 2C.

3.2 Identification of potential subtypes in
PGs based on HFGs

First, the 39 HFGs expression profile matrix of 571 PGs samples
was generated and normalized by R package “sva.” Then,
unsupervised consensus clustering of the HFGs was performed.

FIGURE 2
Genetic and transcriptional alterations of HFGs in pediatric gliomas (PG). (A) Box plots showed the differences in expression ofHOXA,HOXB,HOXC,
andHOXD genes in normal and tumor tissues respectively. (B) The correlations among 39HFGs. Pink circles indicate a higher degree. Blue circles indicate
a lower degree. Circle size represents the combined score. The higher combined score, the larger circle size. (C) The mutation frequency of 39 HFGs in
453 patients with PGs from the CBTTC + ICGC cohort. Mutation frequency (%) was derived from the number of mutation samples/the total number
of samples (N = 453). *p < 0.05, **p < 0.01; ***p < 0.001.
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The 571 PGs from the PGs cohort were divided into two clusters
(Figure 3A, Supplementary Figure S1A,B): HOX-subtype I (HOX-SI)
and HOX-subtype II (HOX-SII). The PCA showed that HOX-SI and
HOX-SII could be distinguished based on this classification
(Additional file 2: Supplementary Figure S1C). The gene
expression profile and clinicopathological parameters, including
age at diagnosis, gender, tumor stage (WHO I–IV), histology type,
and glioma subtype, are illustrated in a heatmap. The expression level
of HFGs had significantly different between the two clusters. Most
genes showed higher expression levels in HOX-SII (Figure 3B). The
Kaplan-Meier survival analysis indicated that patients in HOX-SI
subgroup showed significantly better OS than those in HOX-SII (p <
0.0001, Figure 3C). These findings indicate that PGs of different
subtypes were correlated with distinct clinical outcomes, with HOX-

SII exhibiting a worse prognosis and clinical features. Moreover,
significant differences were observed in the clinicopathological
characteristics between HOX-SI and HOX-SII. Patients with HOX-
SII tumors were diagnosed at an older age, had a higher proportion of
males, a higher mortality rate, a higher occurrence of ependymoma
andmedulloblastoma, higherWHO grades, and a higher frequency of
HGG compared to those in the HOX-SI group (Figure 3D).

3.3 Somatic mutations and CNVs
characteristic in PGs clusters

The top mutated genes in HOX-SI and HOX-SII are shown
in Figures 4A,B. MUC4, AHNAK2, AHNAK, FLG2, MUC5AC,

FIGURE 3
The clinical values in HOX-regulated gene subgroups in pediatric glioma patients based on consensus clustering. (A) Consensus matrix of PGs
cohorts for K = 2. (B) Heatmap demonstrates the expression levels of HFGs in different subtypes and the distribution of the clinical features. Purple
indicates higher gene expression, and blue indicates lower gene expression. (C) Kaplan-Meier curves showed the OS difference between HOX-SI and
HOX-SII. (D)Comparisons of clinicopathological variables between tumors of the two clusters in the PGs cohort. p< 0.05was considered statistically
significant.
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MUC3A, and MUC17 were the most common alterations in PGs
(Additional file 1: Supplementary Table S6). The CNVs were
analyzed in PGs subtypes. The results showed that the CNVs
between the two subgroups had no significant difference
(Figures 4C,D, Additional file 1: Supplementary Table S7,
Additional file 2; Supplementary Table S1D). Subsequently,
we compare the commonly altered genes in PGs between
HOX-SI and HOX-SII. The mutation frequency of BRAF was
higher in HOX-SI, whereas TP53, EGFR, PTEN, and TERT were
higher in HOX-SII (Figure 4E). Patients with HOX-SII exhibited
a higher total mutation count than HOX-SI (p < 0.001,
Figure 4F).

3.4 Biological properties and molecular
mechanism of the two PGs subtypes

To explore the pathways and molecular mechanisms correlated
to the PGs prognosis classifications, GO- and KEGG-related gene set
variation analysis (GSVA) was performed in the PGs cohort,
including CBTTC and ICGC datasets. The results revealed
tumor-associated DNA damage and cell differentiation-related
signal pathways were significantly enriched in HOX-SII
(Figure 5A, Additional file 1: Supplementary Table S8).
Furthermore, the pathways such as progesterone-mediated oocyte
maturation, cell cycle, DNA replication, oocyte meiosis, mismatch

FIGURE 4
Somatic variations of the two subtypes. (A, B) Waterfall plots showing the top 30 mutated genes of HOX-SI (A) and HOX-SII (B). The genes
highlighted in red are significantly differentially mutated genes between the HOX-SI and HOX-SII groups. (C, D) Circos plots of HOX-SI (C) and HOX-SII
(D) subtypes reveal CNV of chromosomes, with red dots representing gains, blue dots representing losses, and black dots representing no significant
CNA. (E, F)Comparison of the commonly altered genes (E) and total mutation counts (F) between HOX-SI and HOX-SII in PGs. p-value was inferred
from Wilcoxon test.
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repair, and base excision repair pathways were significantly enriched
in HOX-SII (Figure 5B). We further analyzed the activity of ten
oncogenic signaling pathways in PGs subtypes using RNA
expression data. Compared with subtype HOX-SI, HOX-SII
showed higher pathway activity scores, particularly in the MYC
(p < 0.001), PI3K (p = 0.019), and TP53 (p = 0. 002) pathways, but
lower scores of RAS (p < 0.001) pathway (Figure 5C, Additional file
1: Supplementary Table S9).

3.5 Different immune cell infiltration profiles
in PGs subtypes

Immunity and stromal scores calculated based on the
ESTIMATE were performed to explore the composition of the
tumor microenvironment (TME) in PGs. The immune score (p <
0.001), stromal score (p = 0.010), and ESTIMATEscore (p < 0.001)
were significantly higher in HOX-SI than HOX-SII. This indicates a
higher abundance of immune and stromal cells and a lower
proportion of tumor purity (p < 0.001) in PGs with HOX-SI
tumors than in HOX-SII tumors (Figure 6A). Then, the

abundance of 22 types of tumor-infiltrating immune cells was
evaluated in PGs classifications using CIBERSORT. CD4 memory
resting T cells, M2 Macrophages, and resting mast cells were
identified as the most common immune cells in the TME of PGs.
The majority of tumor-infiltrating immune cells were more
abundant in HOX-SI tumors than in HOX-SII. Several types of
immune cells, including M2 Macrophages, Memory B cells,
Monocytes, and neutrophils, exhibited significantly higher
abundance in HOX-SI. Conversely, plasma cells, activated NK
cells, M0 Macrophages, and activated dendritic cells were more
abundant in HOX-SII (Figure 6B). Among 33 immune checkpoints
(ICs), 18 ICs demonstrated significantly different expression levels
in PGs subtypes. Most ICs showed higher expression levels in HOX-
SI tumors, including CD200 (p = 0.018), CD27 (p = 0.018), CD274
(PDL1, p < 0.001), CD40LG (p = 0.002), CD86 (p < 0.001), CTLA4
(p = 0.038),HAVCR2 (p < 0.001),HLA_DRB1 (p < 0.001), ICOS (p =
0.010), LAIR1 (p < 0.001), LGALS3 (p = 0.019), PDCD1 (PD1, p =
0.073), PDCD1LG2 (PDL2, p = 0.010), and TNFSF9 (p = 0.004)
(Figure 6C). The findings suggest that PGs patients in the HOX-SI
subtype may obtain a better response to immune checkpoint
inhibitors (ICI) administration.

FIGURE 5
Functional annotations of the two PGs subtypes. (A)GO-related and KEGG-related GSVA show the activation status of biological behaviors in HOX-
SI and HOX-SII in PGs. Pink showed upregulated pathways, and blue showed downregulated pathways. (B)Multiple malignant regulatory pathways were
significantly enriched in HOX-SII by GSEA analysis. (C) The differences of ten canonical signaling pathways between two PGs subtypes. GO, Gene
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSVA, gene set variation analysis. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
p< 0.05 was considered statistically significant.
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3.6 Targeted therapeutic sensitivities
prediction

By compiling IC50 values for each sample from the Genomics of
Drug Sensitivity in Cancer database, we used the pRRophetic
algorithm to determine which drugs may be effective for glioma
patients. Subsequently, we analyzed multiple targeted compound
sensitivities in PGs subtypes. Ultimately, ten compounds were
obtained based on significant differences in predicted IC50 values
between the two subtype groups, with the HOX-SI group was more
sensitive to most compounds. The ten drugs that necessitate further
study in PGs, including Zorifertinib (AZD3759), a PI3Kβ inhibitor
(AZD6482), a CDK9 inhibitor (CDK9_5038), two histone deacetylase
inhibitor (Entinostat and Vorinostat), Mcl-1 inhibitor (UMI_77), a
BET inhibitor (I_BT_762), a PAK inhibitor (PAK_5339), and two
MEK inhibitor (PD0325901 and Trametinib). Analysis of drug
sensitivity showed that patients in the HOX-SI group were
predicted to be more sensitive to AZD6482, PD0325901, and

Trametinib compared to those in the HOX-SII group (Figure 7).
In contrast, patients in the HOX-SII group were predicted to be more
sensitive to AZD3759, UMI_77, I_BT_762, Entinostat, Vorinostat,
and PAK_5339 compared to those in the HOX-SI group (Figure 7).

3.7 Derivation of a HOX-related diagnosis
and prognostic signature in PGs

We aimed to screen core genes relevant to PGs subtypes based
on 1008 DEGs (Additional file 1: Supplementary Table S10) between
HOX-SI and HOX-SII to build a clinically applicable classifier that
could conveniently predict the HOX-related prognostic subtypes of
PGs patients. To avoid overfitting and eliminate noise in data,
571 PGs patients in the PGs cohort were randomly divided into
training (n = 380) and testing (n = 191) groups with a 2:1 ratio. The
RF algorithms were used based on the training set. The analysis
details showed in the flow chart in Figure 8A. Nine DEGs mostly

FIGURE 6
Tumor microenvironment features of the two PGs subtypes. (A) Comparisons of tumor immune, stromal, and ESTIMATE scores between two
subtypes in the PGs cohort. (B) Comparison of the infiltration of 22 types of immune cells between two clusters. (C) Distinct expression of 33 immune
checkpoints between HOX-SI and HOX-SII in the PGs. *p < 0.05, **p < 0.01; ***p < 0.001, ****p < 0.0001. p< 0.05 was considered statistically significant.
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related to prognostic/diagnostic classification were chosen from
1008 DEGs based on the important permutation score using the
random forest supervised classification algorithm. The diagnostic
model was subsequently established using the nearest shrunken
centroid algorithm.

We next explored the association between HFGs expression and
the OS of patients with PGs. Ultimately, a HOX-related signature
consisting of HOXA6, HOXC4, HOXC5, HOXC6, and HOXA-AS3
was selected from the training set, considering a balance between
accuracy and the number of HFGs (Figures 8B,C). In this signature,
the ‘low-risk’ and ‘high-risk’ centroids were determined as (0.61, 4.55,
0.74, 1.62, 0.43) and (5.70, 8.02, 4.93, 5.52, 4.46), representing the
average expression level of the five HFGs for the patients with good
and poor prognosis, respectively. The signature was defined as follows:

Dici,1 �
���������������������������������������������������
Exp i

HOXA6 − 0.61( )2 + Exp( i
HOXC4 − 4.55)2 + Exp i

HOXC5 − 0.74( )2√
+ Exp i

HOXC6 − 1.62( )2 + ExpiHOXA−AS3 − 0.43( )2
Dici,2 �

���������������������������������������������������
Exp i

HOXA6 − 5.70( )2 + Exp( i
HOXC4 − 8.02)2 + Exp i

HOXC5 − 4.99( )2√
+ Exp i

HOXC6 − 5.22( )2 + ExpiHOXA−AS3 − 5.52( )2
The Exp i

HOXA6, Exp i
HOXC4, Exp i

HOXC5 Exp i
HOXC6, and

ExpiHOXA−AS3 denoted as the expression level of HOXA6, HOXC4,
HOXC5, HOXC6, and HOXA-AS3 for sample i, respectively. A
patient was classified into the ‘low-risk’ group if Dici,1 < Dici,2
according to the patient’s five hub genes expression values and into
the ‘high-risk’ group if not. The euclidean distances of each sample
are shown in Supplementary Table S11.

The receiver operating characteristic (ROC) curve demonstrated
that this classifier was reliable, with an area under curve (AUC) of 0.933
(Figure 8D) in the training set and an AUC of 0.880 (Figure 8F) in the

internal testing set. The prognostic value of the HOX-related signature
was evaluated by log-rank test in both the training and testing sets. In
the training group, patients were divided into a high-risk group (n =
103) or a low-risk group (n = 277) based on the HOX-related signature.
Patients with the high-risk signature exhibited significantly shorter OS
than those with the low-risk signature (median OS: NR vs 50.3 months,
HR:2.218, 95% CI: 1.515-3.245, p < 0.0001, Figure 8E). Similarly, in the
testing, patients were classified as high-risk (n = 49) or low-risk (n =
142) according to their HOX-related signature (median OS: NR vs
86.5 months, HR:1.957, 95% CI: 1.031-3.714, p = 0.036, Figure 8G).

Cox regression analysis was performed to assess the impact of age,
gender, histological type, WHO grade, stage subtype, and the HOX-
related signature. The results from the training set showed that the high-
risk HOX-related signature (HR:1.769, 95% CI: 1.174-2.665, p = 0.006)
and WHO grade (HR: 1.547, 95% CI: 1.233-1.941, p < 0.001) were
significantly correlated with poor OS in PGs patients Supplementary
Table S12. The testing set showed that the HOX-related signature (HR:
2.113, 95%CI: 1.179-3.789, p = 0.012) andWHO grade (HR:1.519, 95%
CI: 1.112-2.076, p = 0.009) were identified as independent prognostic
factors for PGs patients Supplementary Table S12. Thus, the
multivariable Cox regression analysis revealed that the HOX-related
signature had a good predictive ability for PGs patient survival,
independent of other clinical-pathological factors.

3.8 Prediction of the prognostic
performance and immunotherapy response
of the HOX-related signature

To further validate the HOX-related subtype classifier, another
two gliomas datasets (CPTAC and GSE73038) were merged into a

FIGURE 7
The drug sensitivity prediction in HOX-SI and HOX-SII. In AZD6482, PD0325901, and Trametinib, themedian IC50 of HOX-SI was significantly lower
than those of HOX-SII. In AZD3759, UMI_77, I_BT_762, Entinostat, Vorinostat, and PAK_5339, HOX-SII had a significantly lower median IC50 than
HOX-SI. Gene expression and drug sensitivity information of cancer cell lines were obtained from The Genomics of Drug Sensitivity in Cancer (GDSC)
database. IC50, half maximal inhibitory concentration.
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new independent cohort with 231 PGs patients enrolled. Using the
same classifier formula, we calculated the distance value again for each
patient in an independent external validated cohort based on the
expression values of the HOX-related signature genes and their
corresponding survival data. Then we divided the patients into two
subgroups based on the same classifier threshold. The validated cohort
consisted of 41 patients with high risk and 190 patients with low risk.
The Kaplan-Meier curve confirmed that patients in the high-risk
group had a worse OS than those in the low-risk (Figure 9A), which is
consistent with the findings in the PGs cohort, implying that this
HOX-related classifier signature was an independent prognostic
factor in PGs. Additionally, the expression levels of the hub genes
were also found to be increased in the high-risk group of tumors in
this independent external validated cohort (Figure 9B).

To estimate the predictive ability of the HOX signature for
immunotherapy response, 298 patients who received PDL1 blockade
treatment from IMvigor210 were enrolled. The results showed that
patients in the HOX-SII group exhibited poor prognosis
(Supplementary Figure S2A) and a much lower response rate to
immunotherapy compared to those in the HOX-SI group
(Supplementary Figure S2B).

3.9 Validation of the HOX-related signature
genes in single-cell and HPA database

The consensus clustering analysis revealed that the HOX-SII
subtype had a higher proportion of medulloblastoma samples. To

FIGURE 8
Construction of the HOX-related classifier signature. (A) The workflow of identifying the HOX-hub-gene signature in the training set. (B) Expression
heatmap of three core HOX genes and integrated results of HOX-related subtypes and clinical features. Red indicates higher gene expression, and green
indicates lower gene expression. (C) Univariate Cox regression analysis of HOX-related signature genes. Hazard ratio>1 indicates that the gene is a risk
factor, and hazard ratio<1 indicates that the gene is a protective factor. p< 0.05was considered statistically significant. (D, E)ROC curves of the HOX-
related Subtype Classifier in distinguishing two subtypes in the training set. (D) and interval testing set (E). (F, G) Kaplan-MeierOS curves for the two groups
in training (F) and interval testing sets (G). p-value was inferred from the log-rank test.
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explore the relationship between this phenomenon and HOX gene
expression, we downloaded the single-cell data of 13 samples of
pediatric medulloblastoma. The annotation results indicated the
samples mainly consisted of neurons, neuroepithelial cells,
astrocytes, and smooth muscle cells (Supplementary Figure S3A).
Furthermore, the samples were classified into four subtypes of
medulloblastoma, namely SHH, WNT, Group 3, and Group 4
(Supplementary Figure S2B). Then, we explored the expression of
the five HOX-related signature genes. The results showed three
HOXC genes (HOXC4, HOXC5, and HOXC6) mainly expressed in
neurons and neuroepithelial cells. Moreover, these three HOXC
genes are specifically expressed in WNT and Group 3 subtypes of
medulloblastoma (Supplementary Figure S3C). To further
investigate the protein expression of the hub genes, we analyzed
immunohistochemistry (IHC) images from the Human Protein
Atlas (HPA) database. HOXA6 and HOXC5 IHC staining was
weak in the normal brain tissues, while glioma tissue exhibited
strong HOXA6 and HOXC5 IHC staining (Supplementary Figure
S3D). The results from HPA were consistent with PGs cohort.
Additionally, the mIF in HPA revealed that HOXC4, HOXC5,
and HOXC6 proteins were primarily expressed in nucleoplasm in
the glioma cell line U-251MG (Supplementary Figure S3E).

4 Discussion

HOX family genes can function as both oncogenes and tumor
suppressors. Still, they are generally pro-oncogenic in a more
supportive role, both at the cellular and tumor levels, by driving
cell proliferation, preventing apoptosis, and promoting angiogenesis,
metastasis, and treatment resistance (Contarelli et al., 2020). Increased
expression of HOX proteins has also been associated with poor
prognosis of patients with gliomas, lung, liver, colorectal, head and

neck, and ovarian cancers (Luo et al., 2019). Abnormal expression of
certain members of the HOX family has been linked to cell
proliferation and prognosis in gliomas (Tabuse et al., 2011). In
recent decades, the survival rate of glioma patients has increased
partly with the development of targeted and immunotherapy (Yang
et al., 2022; Xu et al., 2020). While PGs still need accurate biomarkers
for early diagnosis and a more precise prognosis. The HFGs’ role in
pediatric gliomas (PGs) remains unclear. Therefore, a comprehensive
and thorough investigation into the role of HOX family genes in PGs
development is crucial. In this study, we aimed to explore the
expression profile of the HFGs and their association with
prognosis and potential clinical application in PGs.

By employing unsupervised consensus clustering and analyzing
the transcriptome data of 39 HFGs, we identified two distinct
subtypes characterized by differential HFG expression patterns.
These subtypes exhibit associations with different prognoses,
clinicopathological factors, genetic alterations, biological
pathways, and TME characteristics. Notably, this is the first study
to report such findings in the context of PGs. To identify hub genes
within PGs, we utilized the RF algorithm and the nearest shrunken
centroid algorithm. Through this process, we successfully identified
a set of hub genes that are particularly relevant to PGs. Subsequently,
based on these hub genes, we developed a HOX-related gene
signature that is closely associated with the prognosis of PGs
patients. To validate the prognostic value of this signature, we
conducted analyses in both an internal testing set consisting of
191 patients and an independent cohort comprising 231 patients.

Fang L. et al. demonstrated that overexpression of HOXB9
correlated with lymph node metastasis and poor survival in
gliomas (Fang et al., 2014). Additionally, numerous studies have
reported a positive correlation between the overexpression of HFGs
and prognosis in various cancer types (Cantile et al., 2012; Bhatlekar
et al., 2014b; Hur et al., 2014; Chiba et al., 2017). The consensus

FIGURE 9
Validation of the HOX-related classifier signature in an external independent cohort. (A) Kaplan-Meier curves showed the OS difference between
high- and low-risk groups in independent external validated cohort (CPTAC and GSE73038). p-value was inferred from log-rank test. (B) Expression
heatmap of HOX-related signature genes and integrated results of HOX-related subtypes and clinical features. Red indicates higher gene expression, and
green indicates lower gene expression.

Frontiers in Cell and Developmental Biology frontiersin.org13

Zhang et al. 10.3389/fcell.2023.1203650

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1203650


classification system identified ideal distinguishment in predicting
OS in PGs. Specifically, patients belonging to the HOX-SI subtype
exhibited a more favorable prognosis, while those classified as HOX-
SII had worse clinical outcomes. Our findings are consistent with the
majority of results in the literature, which suggests that
overexpression of HFGs predicted a poor prognosis. In contrast,
decreased expression of HFGs is indicative of a favorable prognosis
in PGs.

In this study, we observed that the HOX-SII subtype had higher
proportions of ependymoma, medulloblastoma, and HGG, which
were associated with shorter OS. Ependymomas are the second most
common type of malignant pediatric brain tumor. Forty percent of
cases remain incurable, and the 5-year survival in infants with
ependymomas is only 40%–52% (Gajjar et al., 2014; Sabnis et al.,
2021). Medulloblastoma is the highest degree of intracranial
malignancy of the glioma. In a clinical study of medulloblastoma
in children, the 5-year event-free survival was 55.6%–70.2%, and
overall survival was 66%–80% (Leary et al., 2021). For the WHO
grade, our results show that HGG PGs cases were more likely than
LGG PGs cases to be classified into HOX-SII subtype. Our findings
indicated that HGG PGs cases were more likely to be classified into
the HOX-SII subtype compared to LGG PGs. These results suggest
that the HOX-SII subtype may be associated with more aggressive
tumor characteristics and poorer outcomes in terms of survival.

A higher mutation burden in cancer has been associated with an
increased abundance of neoantigens, which can elicit immune
responses and potentially lead to favorable responses to
immunotherapy in types of cancer (Tran et al., 2017; Roelands
et al., 2020; Huang et al., 2021). Our results showed that MUC4,
AHNAK2, AHNAK, FLG2, MUC5AC, MUC3A, and MUC17 were
the most common alterations in PGs. Additionally, we found that
the HOX-SI subtype had a higher frequency of BRAF mutations,
while TP53 mutations were more prevalent in the HOX-SII subtype.
Interestingly, we also observed that the HOX-SII subtype had a
lower mutation burden compared to the HOX-SI subtype. Our
findings could imply that PGs patients with higher mutation
burdens might have stronger immune infiltration, abundant
immune checkpoint expression, a better prognosis, and strong
antitumor responses to neoantigens.

In the tumor immune microenvironment (TME), the nontumor
cells of stromal and immune cells dilute tumor purity, and a higher
infiltration of immune cells is always associated with low tumor purity
(Yoshihara et al., 2013). In our study, we observed that HOX-SI PGs
showed lower tumor purity, higher immune activity, and more
favorable clinical outcomes compared to the subtype of HOX-SII.
Regarding the composition of the TME, our findings revealed that
T cells, macrophages, and mast cells were the most common immune
infiltrates in PGs. HOX-SI subtype had a higher abundance of most
types of tumor-infiltrating immune cells than HOX-SII, including
CD4 memory resting T cells, monocytes, M2 macrophages, resting
mast cells, and neutrophils. It is worth noting that the M0 type of
macrophage showed a higher composition in HOX-SII compared to
HOX-SI in PGs tumors. Traditionally, naïve macrophages (M0) are
functionally polarized into two subsets: M1 and M2 macrophages
(Locati et al., 2020). However, Tang L et al. found M0 macrophages
could also be polarized to regulatory macrophages (Mregs), which
possess immunosuppressive function (Tan et al., 2022). Hence, the
higher composition of M0 macrophages in HOX-SII may affect the

response to immunotherapy, which needs to be further verified with
experiments.

Expression levels of ICs can serve as predictors of response to ICIs
therapy (Darvin et al., 2018). For the immune checkpoint molecular
analysis, PDL1, PD1, and CTLA4 were higher expressions in HOX-SI,
suggesting that patients with HOX-SI may have a more favorable
response to anti-PD1/PDL1 or anti-CTLA4 therapies. On the other
hand, HOX-SII tumors exhibited lower levels of ICs, indicating that
theymay be less likely to respond to IC inhibitors. This finding increases
the difficulty of ongoing immunotherapy research, especially clinical
studies focusing on immune targets for PGs that are refractory since
more ependymoma, medulloblastoma, and HGG, which are in urgent
need of promising immunotherapies (Jones et al., 2017; Mackay et al.,
2018) were classified as HOX-SII. Further investigation is required to
address the complexities of immunotherapy in PGs and identify
alternative treatment strategies for HOX-SII subtypes.

To find out which genes play a key role in the HOX-related
subtype classification, we screened the hub genes in 39 HFGs
phenotype-based DEGs by RF and the nearest shrunken centroid
algorithm principles. These hub genes were selected to construct a
clinically applicable predictor for the HOX-related subtypes, and their
performance was evaluated using AUC in the training and test sets.
The five genes identified as key players were HOXA6, HOXC4,
HOXC5, HOXC6, and HOXA-AS3. Previous studies have reported
aberrant and overexpression of these genes in various cancer types,
with implications for angiogenesis, metastasis, and treatment
resistance. In colorectal cancer cells, upregulation of HOXA6
promoted cell proliferation, migration, and invasion and inhibited
apoptosis. HOXA6 regulated apoptosis through the Bcl-2 signaling
pathway and regulated migration and invasion through the EMT
process (Wu et al., 2018). In vitro, HOXA6 promoted cell
proliferation, migration, and invasion in lung adenocarcinoma
(LUAD) (Zhang et al., 2018). One study found that the
suppression of HOXA6 expression could reduce invasion tendency
in glioma cell lines of U-118 and U-138 (Guo et al., 2016). The
previous research identified HOXC4 was strongly overexpressed in
pediatric brain tumors, including ependymoma (Mendrzyk et al.,
2006), medulloblastomas, glioblastoma multiforme, and juvenile
pilocytic astrocytomas (Chakravadhanula et al., 2014). HOXC5,
specifically enriched in tumor cells, has been significantly
associated with poor prognosis in clear cell renal cell carcinoma
(ccRCC) (Long et al., 2022). HOXC5 could block angiogenesis and
regulate pro-angiogenic/anti-angiogenic genes. HOXC5 is expressed
in quiescent endothelial cells (EC); its expression is diminished or
absent in active angiogenic EC found in association with breast
tumors (Rhoads et al., 2005). Many long noncoding RNAs
(lncRNAs) have been identified as important cancer regulators.
HOXA-AS3, an important long noncoding RNA (lncRNA), was
found to be activated in lung adenocarcinoma (LAD) and
supported cancer cell progression. Its expression was significantly
higher in LAD tissues and A549 cells, and the knockdown of HOXA-
AS3 inhibited cell proliferation, migration, and invasion.
Furthermore, HOXA-AS3 increased the stability of HOXA6 mRNA
through the formation of an RNA duplex (Zhang et al., 2018).
HOXC6, frequently overexpressed in multiple cancers, including
glioma, was associated with poor prognosis in glioblastoma
patients. Overexpression of HOXC6 in glioma tissues and cell lines
was linked to proliferation, clinical progression, and immune
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infiltrations. HOXC6 might be a key factor in promoting
tumorigenesis and glioma progression by regulating the EMT
signaling pathway and might represent a novel immune
therapeutic target in gliomas (Yu et al., 2021; Arunachalam et al.,
2022; Huang et al., 2022). These findings underscore the significance
of these genes in cancer development and suggest their potential as
therapeutic targets or prognostic indicators in PGs.

Our analysis revealed that the patients classified into the HOX-
SII subtype had a higher rate of medulloblastomas.
Medulloblastomas comprise a biologically heterogeneous group of
embryonal tumors of the cerebellum, which can be subdivided into
four molecular subgroups: WNT, SHH, Group 3, and Group 4. Each
subgroup has a distinct prognosis, biological behavior, and
implications for targeted therapies (Northcott et al., 2019). Based
on the single-cell data of 13 medulloblastomas, we observed that
three HOXC genes (HOXC4, HOXC5, and HOXC6) were expressed
in neurons and neuroepithelial cells, specifically within the WNT
and Group 3 subtypes of medulloblastoma. This finding highlights
the potential involvement of these HOXC genes in the pathogenesis
and molecular characteristics of these particular medulloblastoma
subtypes. Further research is warranted to explore the functional
significance of HOXC genes in medulloblastoma development and
their potential as therapeutic targets in specific subgroups.

To standardize the process of discriminating the subtypes of PGs,
we developed and validated predictive formulas based on the expression
levels of the five hub HOX-related genes. With expression sequencing
data on these five genes, researchers could easily classify a PG into one
subtype using the formulas. This classification enables the prediction of
important clinical information, such as OS, TME characters, and
immunotherapy responsiveness.

In the field of oncology, there has been a growing interest in
developing classifiers that utilize various omics data to improve
tumor classification and prognosis prediction. Bioinformatic
analyses have played a crucial role in exploring and harnessing
the wealth of information available in different omics datasets (Xie
et al., 2022b; Wu et al., 2022; Zhang et al., 2022). These classifiers aid
in better understanding tumor biology and guide personalized
treatment strategies. By leveraging bioinformatic approaches and
utilizing the expression profiles of the five hub HOX-related genes,
our study contributes to the growing body of research focused on
developing comprehensive classifiers for tumor subtyping and
prognosis prediction. These findings enhance our understanding
of PGs and offer potential avenues for targeted therapies and
precision medicine in the future.

As for other diagnostic classification systems, studies mainly
focused on adult gliomas. Wang et al. constructed seven stemness-
related genes risk model to explore the immunotherapy response by
multiplemachine learning algorithms in adult gliomas (Wang Z. et al.,
2021). Cluceru J et al. trained a classifier to evaluate the effects of
training strategy and incorporation of biologically relevant images on
predicting genetic subtypes with deep learning in diffuse gliomas
(Cluceru et al., 2022). Due to the paucity of available published data on
PGs, few diagnostic models for PGs have been reported until now. In
our study, multiple datasets of PGs were integrated to explore the
relationship between HOX genes and PGs. Furthermore, we were the
first to combine utilized RF, the nearest shrunken centroid algorithm,
and euclidean distance to construct a novel diagnostic classifier for
PGs. However, there are some limitations to our study. Since the

number of PGs patients who received immunotherapy is limited,
further research is needed to confirm the association between the
classifier and immunotherapy based on an immunotherapy cohort.
Additionally, while we have validated the predictive performance in
the internal testing set and an independent cohort, more in vivo and
in vitro experimental validation need to be supplemented.

5 In conclusion

This study classified PGs into two subtypes based on HFGs
expression perspective: HFG-low-expression (HOX-SI) and HFG-
high-expression (HOX-SII). HOX-SI subtype showed high HFGs
expression, a favorable prognosis, higher immune infiltration, and
better responsiveness to immunotherapy. And this subtype
comprised more astrocytoma and LGGs. On the other hand, the
HOX-SII subtype demonstrated low HFGs expression, a dismal
clinical outcome, lower immune infiltration, and poorer response to
immunotherapy. And this subtype constituted more ependymoma,
medulloblastoma, and HGGs. Furthermore, an innovative and
clinically applicable PGs HOX-related subtype classifier was
developed. This classifier has the potential to guide future
mechanistic research and serve as a valuable tool for selecting
appropriate therapies based on the predicted response of patients.
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