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Enhancers are a class of cis-regulatory elements in the genome that instruct the
spatiotemporal transcriptional program. Last decade has witnessed an exploration
of non-coding transcripts pervasively transcribed from active enhancers in diverse
contexts, referred to as enhancer RNAs (eRNAs). Emerging evidence
unequivocally suggests eRNAs are an important layer in transcriptional
regulation. In this mini-review, we summarize the well-established regulatory
models for eRNA actions and highlight the recent insights into the structure and
chemical modifications of eRNAs underlying their functions. We also explore the
potential roles of eRNAs in transcriptional condensates.
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Introduction

Enhancers are distal cis-regulatory elements in the genome that direct spatiotemporal
transcription programs in response to diverse cues (Andersson et al., 2014; Long et al., 2016).
An estimate of over 400,000 putative enhancers in human genome, plus the identification of
disease-associated traits within enhancers, underscores the essence of exploring the
regulatory grammar encrypted within these elements (Consortium, 2012; Long et al.,
2016; Sur and Taipale, 2016; Furlong and Levine, 2018; Schoenfelder and Fraser, 2019).

The advent of state-of-art genomic approaches unveils that the human genome is
pervasively transcribed, yielding a plethora of non-coding RNA (ncRNA) species (Hangauer
et al., 2013). Among them, RNA transcripts emanating from enhancers, dubbed enhancer
RNA (eRNAs), have attracted a particular interest considering their potential roles in
enhancer regulation (De Santa et al., 2010; Kim et al., 2010; Lam et al., 2014; Li et al., 2016;
Sartorelli and Lauberth, 2020; Harrison and Bose, 2022). It is noteworthy that distinct terms,
e.g., eRNAs and enhancer-associated lncRNAs (elncRNAs), appear in the literature to
represent transcripts from enhancer regions (Orom et al., 2010; Marques et al., 2013;
Andersson et al., 2014; Li et al., 2016; Hon et al., 2017; Statello et al., 2021; Mattick et al.,
2023). Strictly, eRNAs are short, bidirectional ones, which are generally non-polyadenylated
and unstable, whereas elncRNAs are usually polyadenylated and have higher stability (Li
et al., 2016; Statello et al., 2021; Mattick et al., 2023). However, concerning gene-activating
mechanisms, elncRNAs and eRNAs share some common themes (Orom et al., 2010; Wang
et al., 2011; Lai et al., 2013; Grossi et al., 2020) and we do not distinguish these different terms
in this mini-review. As an integral component of active enhancers, eRNA transcription
generally correlates with enhancer activation and can serve as an independent marker of
active enhancers (Carullo et al., 2020). Although there isn’t yet a consensus regarding
whether the functions come from the transcription process or eRNA transcripts per se,
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accumulating evidence has shown a subset of eRNAs are pivotal for
the transcription of cognate targets and coined several well-
appreciated themes for eRNA actions.

In this mini-review, we outline current models for eRNA actions
in transcriptional regulation. In addition, we highlight recent
findings concerning eRNAs secondary structure and post-
transcriptional modifications in bestowing diverse functional
features of eRNAs. Finally, we discuss an emerging paradigm of
transcriptional condensates wherein eRNAs partaken and
contribute.

The interplay between eRNAs and protein
partners in transcriptional regulation

The well-appreciated model for enhancer action is that
chromatin loops form between enhancers and cognate promoters
bringing these two elements into physically close proximity, which
involves the participation of cohesin complex, and transcriptional
coactivator Mediator complex (Kagey et al., 2010). Li et al. provided
the first piece of evidence that estrogen-induced eRNAs bind with
SMC3 and RAD21, components of cohesin complex. Depletion of
eRNAs abrogates cohesin increment to enhancers, thus abolishing
enhancer-promoter interactions and target genes activation (Li et al.,
2013). Similarly, Lai et al. (2013) revealed that ncRNA-a interacts

with Mediator subunits and is involved in chromatin looping
between ncRNA-a loci and their regulated promoters. Since then,
further studies identify the direct interactions between eRNAs and
chromatin looping factors [e.g., hnRNPU (Jiao et al., 2018), CTCF
(Xiang et al., 2014), MED1 (Hsieh et al., 2014), MED12 (Tan et al.,
2019)], suggesting modulating chromatin looping is one common
theme underlying eRNA functions (Figure 1A).

In addition to regulating chromatin looping, eRNAs can directly
intervene with transcription machinery (Figure 1B). Lines of
evidence suggest eRNAs can modulate RNA polymerase II (Pol
II) pause release (Schaukowitch et al., 2014; Zhao et al., 2016; Shi
et al., 2018). Schaukowitch et al. found eRNAs bind to NELF-E, and
decoy this negative elongation factor (NELF) complex away from
immediate early genes, thus promoting Pol II pause release into the
productive elongation stage (Schaukowitch et al., 2014). In another
study, Zhao et al. uncovered that PSA eRNA stimulates transcription
through forming a complex with the positive elongation factor
(P-TEFb) (Zhao et al., 2016). Congruent with these works, the
following studies added more examples demonstrating
interactions between eRNAs and NELF or P-TEFb (Shi et al.,
2018). Besides these direct interactions, our group identified
eRNAs interact with hnRNPL via a CAAA tract and modulate
the appropriate loading of hnRNPL to the target locus (Zhao et al.,
2019). hnRNPL has been shown to interact with KMT3A to regulate
H3K36me3 enrichment (Yuan et al., 2009) and impinge on

FIGURE 1
Established mechanisms underlying eRNA functions in transcriptional regulation. (A) Regulating chromatin looping. eRNAs interact with Cohesin
complex or Mediator to establish and/or stabilize enhancer-promoter looping. (B) Intervening with the transcription machinery. eRNAs promote RNAP II
pause release into productive elongation stage via acting as decoy for NELF and interacting with the P-TEFb. eRNAs also stimulate transcription through
the intermediate hnRNPL. (C) Trapping transcription factors or transcription coactivators. eRNAs enhance the enhancer binding of TF YY1 and
transcription coactivator BRD4 through direct interaction with them. (D) Modulating enhancer chromatin environment. eRNAs interact with CBP,
stimulate its catalytic activity, and increase the deposition of histone acetylation on enhancers. eRNAs also inhibit the catalytic activity of PRC2 by binding
the EZH2 subunit and inhibit repressive H3K27me3 deposition.
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transcription elongation via interacting with P-TEFb components,
CDK9 and CCNT1 (Giraud et al., 2014). In this scenario, hnRNPL
acts as an intermediate to bridge the interaction between eRNAs and
transcription machinery.

Another important paradigm of eRNA functions is that eRNAs
can trap transcription factors and transcription co-activators, and
enhance their binding to local chromatin (Figure 1C). Sigova et al.
showed nascent RNAs transcribed from enhancers and promoters,
through interactions with transcription factor (TF) YY1, increase
YY1 binding to these regulatory elements (Sigova et al., 2015). One
recent study reinforces this idea, showing a broad scope of TFs bind
to RNA through arginine-rich motif (ARM)-like domains and such
interactions contribute to TF association with chromatin (Oksuz
et al., 2022). Deletion of ARM-like domains skews TF nuclear
dynamics: it reduces the immobile and subdiffusive fractions of
TFs while enhancing the diffusing molecules. A positive-feedback
loop is thus proposed that nascent RNA produced from enhancer
(eRNA) or promoter regions can trap dissociating TFs through
RNA-mediated weak interactions, which facilitates TFs rebind to
these regulatory elements and augments the transcription outputs.
Similarly, eRNAs interact directly with BRD4 via its bromodomains
and promote BRD4 binding to acetylated histones, which in turn
maintains enhancers in an active state (Rahnamoun et al., 2018).

Lastly, eRNAs canmodulate chromatin state. Depletion of eRNAs
has been shown to decrease chromatin accessibility at enhancers and
cognate promoters (Mousavi et al., 2013; Tsai et al., 2018). Besides
these, eRNAs can directly interact with chromatin modifiers that
deposit histone acetylation or methylation marks (Figure 1D).
Specifically, Bose et al. demonstrated eRNAs interact with histone
acetyltransferase CBP via its RNAbinding regionwithin the activation
loop of HAT domain (Bose et al., 2017). Such interaction displaces the
activation loop from the catalytic site and enhances CBP binding to its
histone substrate. Similarly, eRNAs can also stimulate p300 catalytic
activity and increaseH3K27 acetylation at enhancers (Hou and Kraus,
2022). In addition to promoting histone acetylation, eRNAs also repel
the PRC2-mediated deposition of the repressive histone modification
H3K27me3 (Ounzain et al., 2015). Consistently, PRC2 binds to
nascent RNA promiscuously at nearly all active genes, which
antagonizes its binding to chromatin and thus alleviates the
deposition of the repressive H3K27me3 mark (Beltran et al., 2016;
Wang et al., 2017).

As mentioned above, caution needs to be taken to discern
whether eRNAs function in a transcript-dependent or
-independent manner. Engreitz et al. (2016) provided compelling
evidence to show regulatory roles of many lncRNA loci stem from
DNA elements or transcription processes, instead of their specific
transcripts. Similar findings have been reported in other works
(Kaikkonen et al., 2013; Anderson et al., 2016; Paralkar et al.,
2016; Winkler et al., 2022). Thus, more rigorous methodologies
are warranted in future studies to distinguish this point (Engreitz
et al., 2016; Joung et al., 2017).

eRNA structures instruct their regulatory
roles

Despite the substantial advances concerning eRNA functions
and mechanisms, their regulatory roles instructed by eRNA

structures are poorly studied. As mentioned above, eRNA can
interact with and activate P-TEFb. Such interaction requires a
TAR RNA-like (TAR-L) motif, whose secondary structure is akin
to the 3′ end of the small nuclear RNA 7SK. AR-eRNA, through
competitive binding with P-TEFb, can help release P-TEFb from the
inhibitory complex (7SK snRNP) and promotes effective
transcription elongation (Zhao et al., 2016). On the contrary,
interactions between eRNAs and NELF may not depend on
structural motifs. Instead, adequate length (>200 nt) and the
presence of unpaired guanosines are indispensable, which enables
simultaneous and allosteric interactions between eRNAs and NELF
subunits -A and -E (Gorbovytska et al., 2022).

The DRReRNA (also known as MUNC) is a well-studied pro-
myogenic eRNA, which is transcribed from an enhancer region of
the myogenic master TF, MyoD (Mousavi et al., 2013; Mueller et al.,
2015). DRReRNA functions in trans to activate Myogenin
transcription through directing cohesin loading at Myogenin
locus (Cichewicz et al., 2018; Tsai et al., 2018). A recent study
employed SHAPE-MaP (2′-hydroxyl acylation analyzed by primer
extension coupled with mutational profiling) chemical probing
approach to decode the secondary structure of DRReRNA and
unraveled multiple structural domains that confer distinct
features of DRReRNA for cohesion binding, genomic interaction,
and gene expression regulation (Przanowska et al., 2022).

In addition to structured features embedded in eRNAs
themselves, accumulating evidence underpins the regulatory code
underlying intermolecular interactions. A prominent example
comes from MALAT1, which interacts with many pre-mRNAs at
active gene loci indirectly through RNA binding protein (RBP)
intermediates (Engreitz et al., 2014; West et al., 2014). Recently, Cai
et al. (2020) developed a novel approach termed RIC-seq (RNA in
situ conformation sequencing), which can map RNA-RNA
interactions in situ in an unbiased manner, and discovered
MALAT1 interaction with highly transcribed nascent RNAs.
Similarly, in this study, researchers also revealed extensive
interactions between eRNAs and promoter upstream antisense
RNAs (uaRNAs), which can be leveraged to infer enhancer-
promoter connections. Intriguingly, modulating such interaction
between eRNAs and uaRNAs influences chromatin looping
(Figure 2A). Specifically, depletion of the super-enhancer-derived
lncRNA CCAT1-5L markedly attenuates the chromatin looping
between its parental CCAT1 locus and MYC locus, and weakens
Pol II deposition at MYC promoter. In this specific scenario, the
interaction relies on the RBP hnRNPK, which can physically interact
with Pol II and form a homodimer. Thus, hnRNPK-mediated
interaction between eRNA-uaRNA pairs may serve as modulator
for enhancer-promoter chromatin interactions and Pol II delivery
from enhancer regions to target promoter regions.

Besides the RNA structures through RNA-RNA interactions,
eRNAs can form DNA/RNA hybrid structure co-transcriptionally,
termed R-loops. Competing evidence about R-loop functions comes
from individual studies. Watts et al. (2022) found the enhancer RNA
AANCR transcription leads to R-loops formation and in the R-loops
eRNA is enzymatically modified to bear abasic sites, which helps
stabilize R-loops, thus resulting in RNA Pol II pausing. Upon
hypertonic stress, the R-loops are resolved and eRNA is fully
transcribed to activate the target APOE activation. On the
contrary, Tan-Wong et al. (2019) demonstrate that R-loops, often
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found at promoters, enhancers, and terminators, promote antisense
transcription in these regions. More recently, local R-loops
formation between an antisense eRNA PEARL and HS5-1
enhancer region facilitates chromatin looping between distal
enhancers and target promoters (Zhou et al., 2021).

Chemical modifications on eRNAs feed back
on transcription

N6-methyladenosine (m6A) methylation, the most abundant
RNA internal modification, has been shown to deposit on chromatin
associated RNAs, including eRNAs (Louloupi et al., 2018; Xiao S.
et al., 2019; Liu et al., 2020; Xu et al., 2021). Notably, the distribution
of m6A methylation on these transcripts is not restricted to the 3′
end and is proven to regulate chromatin state and transcription
directly (Louloupi et al., 2018; Xiao S. et al., 2019; Liu et al., 2020; Liu
et al., 2021; Xu et al., 2021). Liu et al. found m6A-marked eRNAs,
recognized by the nuclear reader YTHDC1, are subject to
subsequent nuclear degradation by the nuclear exosome targeting
(NEXT) complex. Knockout of the m6A writer Mettl3 increases
carRNAs abundance and promotes downstream transcription in
mouse embryonic stem cells (mESCs). Mechanistically, m6A erasure

upon Mettl3 knockout stabilizes the carRNAs, rendering the
following recruitment of active TFs (e.g., YY1 and CBP/EP300)
and repelling of repressive factors (e.g., PRC2), thus tunes the nearby
active chromatin state and stimulates downstream transcription.

The effects of m6A methylation on nuclear nascent transcripts
and the transcription process could vary depending on different cell
contexts. The recent two findings, on the contrary, show that m6A
modification protects eRNAs from nuclear degradation, enhances
the recruitment of m6A machinery components on enhancers and
promoters, and stimulates effective transcription progress
(Figure 2B) (Lee et al., 2021; Xu et al., 2022). In one study, Xu
et al. (2022) revealed the chromatin binding of m6A
methyltransferase complex (MTC) components METTL3/
METTL14/WTAP locates at active enhancers and in turn
decorates m6A modification on the 5′ end of nascent RNAs,
neighboring to MTC chromatin binding sites. METTL3 depletion
results in a loss of nascent RNAs emanating from enhancers at the
TSS (transcription start site) proximal regions. Mechanistically,
m6A modification recruits m6A reader/binder proteins such as
hnRNPG and YTHDC1 to the nascent RNAs (including eRNAs),
which protects these transcripts from cleavage by the Integrator
complex. Loss of MTC would otherwise promote the recruitment of
INS11 (the endonuclease subunit of the Integrator complex), leading

FIGURE 2
Expanding themes contributing to eRNA function. (A) Inter-molecular eRNA-uaRNA pair modulates enhancer-promoter chromatin interactions. (B)
m6A modifications on eRNAs feed back on transcription. (C) eRNA-mediated regulation in transcriptional condensate formation.

Frontiers in Cell and Developmental Biology frontiersin.org04

Chen et al. 10.3389/fcell.2023.1205540

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1205540


to premature transcription termination. Of note, MTC recruitment
to the promoter is augmented by active transcription elongation
(Akhtar et al., 2021). Thus, m6A modification along with m6A
reader proteins shields nascent eRNAs from premature termination,
and the productive elongation in turn fosters MTC recruitment,
establishing a positive feedback control over the transcription
process.

In the other study, Lee et al. (2021) employed a high-sensitive
method dubbed methylation-inscribed nascent transcripts
sequencing (MINT-seq) to capture m6A methylome directly on
nascent RNAs. They uncovered m6A is pervasively decorated with
enrichment in the middle of eRNA transcripts and m6A
modification positively correlates with eRNA length and
abundance. In agreement with the canonical “RRACH” motif
identified on mRNAs, “GGACT” motif sequences are identified
with eRNA m6A peaks. Functionally, m6A-modified eRNAs can
stimulate enhancer activation through reader protein
YTHDC1 recruitment. Targeted m6A erasure, genetic and
chemical perturbation of m6A writer and reader impair the
enhancer activation, eRNA transcription, and subsequent target
gene activation. Mechanistically, YTHDC1 can phase-separate
into liquid-like condensates and co-assemble into
BRD4 transcriptional condensates, while m6A-eRNAs presence
augments the size of condensates. Concordantly, either
perturbation of YTHDC1 levels or its condensate formation
ability attenuates BRD4 recruitment to enhancers and
BRD4 condensate formation.

In addition to m6A modification, enrichment of 5-
methylcytosine (m5C) marked eRNAs were found at a set of
enhancers upon metabolic stress (Aguilo et al., 2016). Under this
circumstance, the interaction between PGC-1a and the NOP2/Sun
RNA methyltransferase 7 (NSUN7) is essential in instructing m5C
deposition on eRNAs.

eRNAs and transcriptional condensates

Recent studies have shown liquid-liquid phase separation
(LLPS) occurs at super-enhancers, which compartmentalizes
crowded transcription regulators (e.g., TFs, transcriptional co-
activators, RNA Pol II, and RNA) and promotes the formation of
transcriptional condensates (Hnisz et al., 2017; Boija et al., 2018;
Cho et al., 2018; Sabari et al., 2018; Shrinivas et al., 2019).
Considering the established multivalent interactions between
eRNAs with a myriad of factors (e.g., TFs, chromatin modifiers,
DNA, RNA), eRNAs could potentially play a broad role in the
formation of transcriptional condensates at enhancers (Roden and
Gladfelter, 2021). Nair et al. (2019) recently reported an
indispensable role of eRNA in controlling the assembly of
MegaTrans complex at the ligand-activated enhancers, which
exhibit properties of phase-separated components. Intriguingly,
the complex components include several transcription factors
(e.g., GATA3, ERα, RARA, FOXA1, AP2γ), which harbor
intrinsically disordered regions (IDRs). The authors
demonstrated two of them, GATA3 and ERα, are capable of
liquid phase condensation at enhancers. Depletion of eRNA
affects the diffusion properties of MegaTrans components, thus
abolishing the full assembly of MegaTrans at the cognate enhancer.

Notably, chronic enhancer activation alters the physicochemical
properties of this enhancer RNA-dependent ribonucleoprotein
(eRNP) complex to a more gel-like state. This study provides
compelling evidence showing eRNAs directly contribute to the
formation of phase-separated condensates and enhancer activation.

Based on current findings, we can extrapolate eRNAs play a
broad role in controlling the formation, dissociation, and dynamics
of transcriptional condensates at enhancers and/or cognate
promoters via scaffolding multivalent interactions between
condensate components (Maharana et al., 2018; Henninger et al.,
2021; Quinodoz et al., 2021; Roden and Gladfelter, 2021). First,
eRNAs may have a role in contributing to the formation of
transcriptional condensates. Many eRNAs-interacting protein
partners, as mentioned above, harbor IDRs that are essential in
the induction of phase separation. For example, eRNAs interact with
MED1 and BRD4, the IDRs of which have been demonstrated to
foster super-enhancer formation through phase separation (Cho
et al., 2018; Sabari et al., 2018). eRNAs also interact with P-TEFb and
the recent finding supports the promoting role of CCNT1, a
component of P-TEFb, in phase separation via its histidine-rich
domain, which subsequently compartmentalizes RNA Pol II
C-terminal domain (CTD) into CCNT1 droplets to ensure CTD
hyperphosphorylation and transcription elongation (Lu et al., 2018).
In addition to TFs and co-activators, increasing evidence has shown
RBPs pervasively bind to regulatory elements and mediate the phase
separation (Xiao et al., 2019a; Shao et al., 2022). Shao et al.
discovered one RBP PSPC1 exhibits liquid-like properties and the
presence of RNA augments the PSPC1-mediated transcriptional
condensates that compartmentalize the CTD for enhanced
phosphorylation. The low-complexity sequences (LCS) and RNA
recognition motifs (RRMs) of PSPC1 are the prerequisites for the
synergistic interplay between PSPC1 and RNA, the resultant
PSPC1 chromatin binding and phase separation. Remarkably, the
discovery that chrRBPs tend to co-occupy at regulatory regions,
such as super-enhancers and promoters, provides a chance that
diverse RBPs act collaboratively, in synergy with RNAs from these
regulatory elements, in promoting the formation of transcriptional
condensates. Second, eRNAs may not only engage in the formation
but also regulate the dissociation and composition of transcriptional
condensates. Maharana et al. proposed that RNA concentration
determines distinct phase separation behaviors: higher RNA
concentration impedes phase separation of RBPs in the nucleus,
while lower RNA concentration facilitates aggregation (Maharana
et al., 2018). Consistently, Henninger et al. (2021) recently reported
low levels of RNA generated due to transcription initiation at
regulatory elements, including eRNAs, promote condensate
formation, whereas high production of RNAs during
transcription elongation results in condensate dissolution.
Considering the majority of eRNAs are short, unstable, and lowly
expressed, eRNAs more likely partaken in the formation of
transcriptional condensates. Interestingly, a recent work revealed
nascent RNAs primarily impede the association of diverse categories
of proteins with chromatin, including transcriptional regulators and
chromatin modifiers (Skalska et al., 2021). RNA directly binds to
these factors, and in turn blocks their binding to nucleosomes,
suggesting an antagonistic relationship between their RNA- and
chromosome-binding. Whether these proteins contribute to the
formation of phase-separated condensates awaits further
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investigation. In addition, the phosphorylation status of RNAPII
CTD affects the compartmentalization of RNAPII into distinct
condensates (Guo et al., 2019). As eRNAs are proven to interact
with protein components from different condensates (e.g., Mediator
complex and RBPs involved in RNA processing and splicing), they
are likely to influence the dynamic exchange of RNAPII between
different condensates.

Conclusion

Despite the substantial progress of eRNA studies, much more
efforts are warranted in delineating their functions and underlying
mechanisms, considering the heterogenous nature in terms of their
expression, length, secondary structures, and post-transcriptional
modifications. For instance, our understanding of eRNA structures
is poorly explored. To tackle this situation, more structural studies (e.g.,
SHAPE-MaP) are anticipated to uncover intramolecular secondary
structures crucial for distinct properties of eRNAs. Equally important is
the cataloging a more comprehensive list of eRNA binding partners
(e.g., RBPs). Analyses of such data can provide insights into how eRNAs
interact, and whether common sequencemotifs or structural features of
eRNAs exist conferring the interaction specificity. It will be also
important to further explore the recently identified intermolecular
RNA-RNA interactions and RNA-chromatin interactions, which
present an intriguing possibility that eRNAs potentially participate
in nuclear compartmentalization (Cai et al., 2020; Quinodoz et al.,
2021). Besides, the existence and functions of epitranscriptomic
modifications on eRNAs, such as m6A, m5C, hydroxymethyl
cytosine (5hmC), and methyl-1-adenosine (m1A), need to be
further explored. One trending direction is to demystify the
regulatory feedback from these chemical modifications on nascent
RNAs (including eRNAs) to chromatin and transcription. As
mentioned above, pieces of evidence point to the involvement of
eRNAs in phase-separated transcriptional condensates. Multivalent
interactions mediated by eRNAs, e.g., RNA-RNA, RNA-protein,
RNA-DNA interactions, render them great potential in mediating
phase separation (Figure 2C). Several important questions need to
be addressed in the future. How do eRNAs contribute to the formation
of transcriptional condensates and what features are important (e.g.,
length, motifs, secondary structures, intermolecular RNA-RNA
interactions, and post-transcriptional modifications)? Do eRNAs

regulate the transition from transcription initiation into elongation
condensates? In addition, the linkage is largely unclear between eRNA-
involved transcriptional condensate formation and higher-order 3D
genome organization. Finally, functional investigations are required to
delineate the roles of eRNAs in disease entities (Zhang et al., 2019; Chen
and Liang, 2020) and to dissect how the altered eRNA features favor
disease development. Answers to these questions will provide deeper
insights not only into eRNA functions and regulatory mechanisms but
also into eRNA-centric therapeutic strategies.
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