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Background: Acute kidney injury (AKI) is a common and severe disease, which
poses a global health burden with high morbidity and mortality. In recent years,
ferroptosis has been recognized as being deeply related to Acute kidney injury.
Our aim is to develop a diagnostic signature for Acute kidney injury based on
ferroptosis-related genes (FRGs) through integrated bioinformatics analysis and
machine learning.

Methods: Our previously uploaded mouse Acute kidney injury dataset
GSE192883 and another dataset, GSE153625, were downloaded to identify
commonly expressed differentially expressed genes (coDEGs) through
bioinformatic analysis. The FRGs were then overlapped with the coDEGs to
identify differentially expressed FRGs (deFRGs). Immune cell infiltration was
used to investigate immune cell dysregulation in Acute kidney injury.
Functional enrichment analysis and protein-protein interaction network
analysis were applied to identify candidate hub genes for Acute kidney injury.
Then, receiver operator characteristic curve analysis and machine learning
analysis (Lasso) were used to screen for diagnostic markers in two human
datasets. Finally, these potential biomarkers were validated by quantitative real-
time PCR in an Acute kidney injury model and across multiple datasets.

Results: A total of 885 coDEGs and 33 deFRGs were commonly identified as
differentially expressed in both GSE192883 andGSE153625 datasets. In cluster 1 of
the coDEGs PPI network, we found a group of 20 genes clustered together with
deFRGs, resulting in a total of 48 upregulated hub genes being identified. After
ROC analysis, we discovered that 25 hub genes had an area under the curve (AUC)
greater than 0.7; Lcn2, Plin2, and Atf3 all had AUCs over than this threshold in both
human datasets GSE217427 and GSE139061. Through Lasso analysis, four hub
genes (Lcn2, Atf3, Pir, and Mcm3) were screened for building a nomogram and
evaluating diagnostic value. Finally, the expression of these four genes was

OPEN ACCESS

EDITED BY

Cao Dongwei,
Shanghai University of Traditional
Chinese Medicine, China

REVIEWED BY

Xuezhong Gong,
Shanghai Municipal Hospital of
Traditional Chinese Medicine, China
Anne Caroline Silva Barbosa,
University of Pittsburgh, United States

*CORRESPONDENCE

Jianwen Chen,
ilwincjw2015@126.com

Nianfang Lu,
lunianfang@126.com

†These authors have contributed equally
to this work

RECEIVED 23 April 2023
ACCEPTED 14 July 2023
PUBLISHED 27 July 2023

CITATION

Chen Y, Liu A, Liu H, Cai G, Lu N and
Chen J (2023), Identification and
validation of the diagnostic signature
associated with immune
microenvironment of acute kidney injury
based on ferroptosis-related genes
through integrated bioinformatics
analysis and machine learning.
Front. Cell Dev. Biol. 11:1210714.
doi: 10.3389/fcell.2023.1210714

COPYRIGHT

© 2023 Chen, Liu, Liu, Cai, Lu and Chen.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Original Research
PUBLISHED 27 July 2023
DOI 10.3389/fcell.2023.1210714

https://www.frontiersin.org/articles/10.3389/fcell.2023.1210714/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1210714/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1210714/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1210714/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1210714/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1210714/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1210714/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2023.1210714&domain=pdf&date_stamp=2023-07-27
mailto:ilwincjw2015@126.com
mailto:ilwincjw2015@126.com
mailto:lunianfang@126.com
mailto:lunianfang@126.com
https://doi.org/10.3389/fcell.2023.1210714
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2023.1210714


validated in Acute kidney injury datasets and laboratory investigations, revealing
that they may serve as ideal ferroptosis markers for Acute kidney injury.

Conclusion: Four hub genes (Lcn2, Atf3, Pir, and Mcm3) were identified. After
verification, the signature’s versatility was confirmed and a nomogrammodel based
on these four genes effectively distinguished Acute kidney injury samples. Our
findings provide critical insight into the progression of Acute kidney injury and can
guide individualized diagnosis and treatment.

KEYWORDS

Acute kidney injury, ferroptosis-related genes, immune microenvironment, machine
learning, diagnostic signature

Introduction

Acute kidney injury (AKI) is a common and severe disease that
is associated with a high risk of developing chronic kidney disease
(CKD) and end-stage renal disease (ESRD) (Bellomo et al., 2012).
The incidence of hospital-acquired AKI is approximately up to 20%,
while in the intensive care unit it can be as high as 45% (Kam Tao Li
et al., 2013; Chen et al., 2022). AKI is believed to contribute to
approximately 1.7 million deaths annually and is a global health
burden with high morbidity and mortality (Mehta et al., 2015).
Despite extensive investigation into AKI, therapeutic options remain
limited, and the underlying mechanisms of AKI are largely unclear
(Chen et al., 2020). Therefore, identifying new biomarkers for
kidney dysfunction before the onset of AKI may aid in earlier
detection and be critical in developing new treatments (Huang
et al., 2022).

The main pathology of AKI is the death of renal tubular
epithelial cells. Besides apoptosis, other forms of regulated cell
death such as ferroptosis and pyroptosis have also been
increasingly recognized in recent years (Linkermann et al., 2014).
Ferroptosis is a type of iron-dependent regulated necrosis that
features intracellular iron retention, depletion of reduced
glutathione (GSH), and accumulation of lipid reactive oxygen
species (ROS) dependent on iron levels within the cell itself
(Martin-Sanchez et al., 2017). Excessive accumulation of ROS
activates intracellular oxidative stress, resulting in damage to
proteins, nucleic acids, lipids, and ultimately resulting in the
occurrence of ferroptosis (Feng et al., 2022). In cells undergoing
ferroptosis, shrinking mitochondria are observed, which leads to
increased density of the mitochondrial membrane, rupture or
vanishing of mitochondrial cristae, and a ruptured outer
membrane, whereas the morphology of the nucleus is normal,
and the cell membrane remains intact (Hosohata et al., 2022).
Recently, ferroptosis has been reported to be involved in AKI
(Martin-Sanchez et al., 2017; Feng et al., 2022), and several
interventions have been designed to block different nodes of the
ferroptosis network, including antioxidants, lipid peroxidation
blockade, and iron chelators (Mishima et al., 2020; Jiang et al.,
2021; Xiao et al., 2021; Hosohata et al., 2022). It has been reported
that augmenter of liver regeneration could regulate the development
of ferroptosis through GSH/GPX4; ACSL4 knockout significantly
inhibited the ferroptosis of renal tubular epithelial cells in AKI mice;
and XJB-5-131, a new generation of antioxidant, could specifically
inhibit ferroptosis by inhibiting lipid peroxidation and then alleviate
AKI (Zhao et al., 2020; Feng et al., 2022; Wang et al., 2022). These

results suggested that ferroptosis is deeply related to AKI, and to find
the key ferroptosis-related genes (FRGs) and explore the mechanism
of ferroptosis is of great significance for the development of effective
treatment strategies for AKI.

In the present study, we aimed to identify novel diagnostic
ferroptosis-related genes (FRGs) for AKI based on bioinformatics
and machine learning. We analyzed our previously uploaded dataset
GSE192883 (Chen et al., 2022) and another mouse dataset
GSE153625 (Kim et al., 2020) from Gene Expression Omnibus
(GEO) database to determine common differentially expressed
genes (DEGs) and hub FRGs between AKI and Control
specimens. Then, we analyzed their diagnostic value in AKI
using machine learning and receiver operator characteristic
(ROC) curve analysis. Finally, we confirmed our findings based
on GEO datasets using quantitative real-time PCR (qPCR) in our
cohort. Our findings provide novel critical genes involved in the
progression of AKI, which can guide individualized diagnosis and
treatment.

Materials and methods

Data collection

The raw datasets, which include gene expression data for AKI
and Control, were downloaded from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/). Detailed information was presented in
Table 1. In particular, samples in the GSE192883 dataset were
classified into several groups based on ischemia time. For this
study, we classified the ischemia reperfusion injury (IRI) 28 min
and IRI 30min groups as group AKI. Only cortex samples were used
in the GSE217427 dataset.

Identification of DEGs

The linear model for high-throughput data analysis (limma)
(Ritchie et al., 2015) in Bioconductor was applied to find DEGs by
comparing expression value between AKI samples and Control
samples in GSE192883 and GSE153625. Differential expression
was calculated using an empirical Bayes model. The criteria for
the statistically significant difference of DEGs was | log2 fold change
(FC)| ≥ 1 in expression and adjusted p-value (false discovery rate,
FDR) < 0.05. Volcano plot of all DEGs was performed by
ggplot2 package (Ginestet, 2011) in R.
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Weighted gene co-expression network
analysis (WGCNA)

WGCNA was adopted to explore the correlation between genes
(Zhou et al., 2022) and identify important module genes in AKI.
Firstly, the median absolute deviation (MAD) of each gene was
determined, and top 5000 genes with the biggest MAD were
included for next step. Secondly, the DEG expression matrix was
filtered by the goodSamplesGenes function to omit unqualified
genes and samples, and a scale-free co-expression network was
built. Thirdly, adjacency was computed using the co-expression
similarity-derived “soft” thresholding power (β). The adjacency was
then converted into a topological overlap matrix (TOM), and the
gene ratio and dissimilarity were determined. The fourth step was
the detection of modules using hierarchical clustering and a dynamic
tree cut function. Genes with identical expression profiles were
classified into gene modules using average linkage hierarchical
clustering, with a TOM-based dissimilarity metric and a
minimum gene group size (n = 50) for the gene dendrogram.
Fifthly, the dissimilarity of module eigengenes was computed, a
cut line for the module dendrogram was chosen, and several
modules were combined for further investigation. The eigengene
network was finally visualized.

Assessment of immune cell infiltration

The CIBERSORT (Newman et al., 2015), a method using the
principle of linear support vector regression to deconvolute the
expression matrix of 22 immune cell subtypes, was used to
explore the discrepancy in immune cell between AKI and
Control samples (Fan et al., 2022). Subsequently, we screened
out the immune cells that showed significant differences in
infiltration between groups.

Functional enrichment analysis

The “clusterprofiler” R package (Yu et al., 2012) was used to
performGene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) functional enrichment analyses (Yu et al., 2012).
In the GO enrichment analysis, the categories include the cellular
component (CC), the biological process (BP), and the molecular
function (MF) terms, and adjusted p < 0.05 was regarded as
statistically significant differences. In the KEGG pathway

enrichment analysis, enriched pathways were identified with an
adjusted p < 0.05 (J. Chen et al., 2020).

Protein-protein interaction (PPI) network
construction and analysis of modules

Considering that proteins rarely work alone, it is necessary to
study the interactions among proteins. The Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING) is an online
biological resource database (https://cn.string-db.org/) that is
commonly used to identify the interactions between known and
predicted proteins. By searching the STRING database, the PPI
network were selected with a score >0.7, and the PPI network was
visualized by Cytoscape software. Finally, the hub genes were
screened from this PPI network by Molecular Complex Detection
(MCODE) (Bader and Hogue, 2003) and Cyto-Hubba apps (Chin
et al., 2014; Chen et al., 2020).

Identification of differentially expressed
FRGs (deFRGs)

FerrDb V2 is the world’s first database (http://www.zhounan.
org/ferrdb/current/) that dedicates to ferroptosis regulators and
ferroptosis-disease associations (Zhou et al., 2023). A total of
484 regulatory factors including drivers, suppressors and markers
were downloaded from FerrDB V2 database. The commonly
expressed DEGs (coDEGs) in GSE192883 and GSE153625 were
intersected with the genes obtained from FerrDB V2 to obtain
deFRGs. Furthermore, these 33 deFRGs were performed
enrichment analysis and PPI network constructions.

Hub gene selection based on machine
learning algorithms

Machine learning–based algorithms have been widely used in
clinical decision making. Of them, the least absolute shrinkage and
selection operator (Lasso) is one of the most commonly used
algorithms and its clinical efficacy has been demonstrated
previously (Huang et al., 2016; Reichling et al., 2020). Therefore,
we choose Lasso model to select the gene signatures associated with
AKI. The Lasso model is a dimensionality reduction method for
evaluating high dimensional data and was fitted using the

TABLE 1 The information of high throughput sequencing datasets obtained from the GEO database.

Dataset Organism Year AKI sample Control sample Platform

GSE192883 Mus musculus 2022 6 3 GPL28457

GSE153625 Mus musculus 2020 4 8 GPL21103

GSE217427 Homo sapiens 2022 11 11 GPL24676

GSE139061 Homo sapiens 2019 39 9 GPL20301

GSE98622 Mus musculus 2017 9 31 GPL13112

GEO, gene expression omnibus; GSE, gene expression omnibus series; AKI, acute kidney injury.
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“cv.glmnet” function in the R package “glmnet” (Friedman et al.,
2010). Firstly, the ROC curves and the area under the curve (AUC)
were used to evaluate the diagnostic efficacy of 48 upregulated hub
genes in two human datasets (GSE217427 and GSE139061). And
then, Lasso model was applied to analysis the 25 hub genes with
AUC over than 0.7 in either human dataset to obtain the final AKI-
related hub genes.

Construction of the nomogram model

We created a nomogram model to predict AKI using the R
package “rms” (Liu et al., 2021). The diagnostic nomogrammodel of
final 4 hub genes Mcm3, Pir, Atf3, and Lcn2 was constructive in
GSE139061 human dataset. The expression of each gene has a
corresponding point. The “Total Points” reflected the sum of all
the above elements. The ROC curve of the diagnostic nomogram
model was performed in GSE139061 human dataset.

Animals and procedures

C57BL/6 mice (20–25 g) were purchased from the Animal
Center of Chinese PLA General Hospital. All animal procedures
were approved by the Institutional Animal Care and Use Committee
at the Chinese PLA General Hospital and Military Medical College.
The 12 male mice were randomly assigned to three groups: Sham
group (4 mice underwent sham surgery), bIRI-1d group (4 mice
underwent bilateral renal ischemia for 30 min and reperfusion for
1 day), bIRI-7d group (4 mice underwent bilateral renal ischemia for
30 min and reperfusion for 7 days). Renal ischemia and reperfusion
and renal sham surgery were performed as described previously
(Chen et al., 2022), blood and kidney samples were harvested for
further processing.

Histopathological examination and
assessment of kidney injury

A quarter of the kidney was fixed in 4% formaldehyde,
dehydrated, and embedded in paraffin. Tissue sections (4 mm)
were stained with periodic acid–Schiff (PAS). Kidney injury was
assessed by measuring the levels of serum creatinine (SCr) and blood
urea nitrogen (BUN). Blood samples were collected from the vena
cava at the indicated time points, and the serum was separated by
centrifugation at 3,000 rpm for 15 min at 4°C and then sent to the
PLA General Hospital Biochemistry Department to detect SCr
and BUN.

Quantitative real-time PCR (qPCR)

Frozen tissue samples were lysed in TRIzol reagent (Invitrogen,
Carlsbad, CA, United States), and total RNA was extracted
according to the manufacturer’s instructions. The levels of
transcripts were determined by qPCR using TransStartTM Top
Green qPCR SuperMix (AQ131, Transgen, Beijing, China) on an
Applied Biosystems 7500 system PCR cycler (Applied Biosystems,

Foster City, CA, United States). The data were normalized to 18S
expression and further normalized to the Control group. Primers
were obtained from Genomics (BGI Tech, China). All of these
primers are listed in Table 2.

Results

Screening of genes associated with AKI in
GSE192883 dataset

The workflow of the specific analysis is shown in Figure 1.
Firstly, we reanalyzed our previously uploaded dataset GSE192883
(Supplementary Table S1). We combined IRI 28min and IRI 30min
group into AKI group, and performed differential gene analysis on
these 6 AKI samples and 3 Control samples. Figure 2A showed the
principal component analysis (PCA) of these 9 samples, indicating a
good distinction between AKI and the Control group. We got
2946 DEGs, including 1399 upregulated genes and
1547 downregulated genes (Supplementary Table S2). The
volcano plot clearly presented the expression of all genes between
each group, and the top 20 genes with lowest p-values were labeled
(Figure 2B).

Then we performed WGCNA analysis on GSE192883 dataset to
achieve key modules and genes. After determining the weighting
coefficients, the disTOM of 5000 genes was obtained (Figure 2C),
and 7 modules, each module represented by a different color. The
heatmap displayed the relationship between module eigenvalues and
AKI, each column showing the correlation coefficient and the
corresponding p-value (Figure 2D). Red represented positive
correlations, and blue represented negative correlations, and the
darker the color, the larger the correlation coefficient. Figure 2E
displayed the clusters and correlation of module eigengenes.

As we can see, turquoise and blue modules had the greatest
correlation with AKI, and their correlation coefficients were
0.96 and 0.8, respectively. Therefore, we visualized the correlation
between genes in these two modules and AKI (Figures 2F, G), and it
could be seen that most genes of these two modules clustered in the
upper right corner, indicating that the module attributes of these
genes and their correlation with AKI were high.We took the genes of
these two modules as the key genes obtained by WGCNA analysis,
and the total number of genes was 4217 (Supplementary Table S3).
The Venn diagram in Figure 2H illustrated the genes obtained
through both WGCNA and DEGs analyses, revealing a total of
2123 overlapping genes.

Screening of genes associated with AKI in
GSE153625 dataset

In order to obtain more reliable and robust results, we downloaded
another dataset GSE153625 (Supplementary Table S4). Figure 3A
showed the PCA diagram of samples in GSE153625, indicating a
good distinction between AKI and the Control group. We got
2100 DEGs (Supplementary Table S5), including 1035 upregulated
genes and 1065 downregulated genes. The volcano plot clearly
presented the expression of all genes between each group, and the
top 20 genes with lowest p-values were labeled (Figure 3B).
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TABLE 2 Gene specific primers used in our study.

Gene Forward primer (5′to 3′) Reverse primer (5′to 3′) Product length

Names

18s GTAACCCGTTGAACCCCATT CCATCCAACGGTAGTAGCG 150bp

Lcn2 TTTGTTCCAAGCTCCAGGGC ACTGGTTGTAGTCCGTGGTG 106bp

Atf3 AAATTGCTGCTGCCAAGTGTC CGGTGTCCGTCCATTCTGA 200bp

Pir AGTCGAAGGTTTACACTCGCA AGGACTGCTGTGTGATGTGG 181bp

Mcm3 CCAATCCAGTCTATGGCAGGT CCCTGTATTGGTGCATCCTCA 171bp

FIGURE 1
Flowchart of research design and analyzing process of this study. AKI, acute kidney injury; GEO, gene expression omnibus; GSE, gene expression
omnibus series; DEGs, differentially expressed genes; WGCNA, weighted gene co-expression network analysis; coDEGs, common DEGs; FRGs,
ferroptosis-related genes; deFRGs, differentially expressed FRGs; PPI, protein–protein interaction; GO, gene ontology; KEGG, Kyoto Encyclopedia of
Genes and Genomes; MCODE, molecular complex detection; ROC, receiver operating characteristic; Lasso, least absolute shrinkage and selection
operator; qPCR, quantitative real-time polymerase chain reaction.
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FIGURE 2
Screening of genes associatedwith AKI in GSE192883 dataset. (A) PCA analysis for AKI and Control samples. (B)Volcano plot showing DEGs between
AKI and Control samples. The x-axis represents the log2(FC), and the y-axis represents the -log10 (adjusted p-value). The blue dots represent
downregulated genes, and the red dots represent upregulated genes. (C) The heatmap of gene network visualization and the branches of the
dendrogram correspond to gene modules. (D) The correlation co-efficient and corresponding p-value between groups. (E) The heatmap of the
relationship between eachmodule. (F) The scatter plot of genemembership in turquoisemodule and gene significance in AKI. Most genes are clustered in
the upper right corner, indicating that the genes in thismodule are highly correlatedwith AKI. (G) The scatter plot of genemembership in bluemodule and
gene significance in AKI. (H) The Veen diagram of most significant WGCNA module (turquoise and blue) genes and DEGs. AKI, acute kidney injury; GSE,
gene expression omnibus series; DEGs, differentially expressed genes; WGCNA, weighted gene co-expression network analysis; PCA, principal
component analysis.
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FIGURE 3
Screening of genes associatedwith AKI in GSE153625 dataset. (A) PCA analysis for AKI and Control samples. (B) Volcano plot showing DEGs between
AKI and Control samples. (C) The branches of the dendrogram correspond to gene modules. (D) The correlation co-efficient and corresponding p-value
between groups. (E) The heatmap of the relationship between each module. (F) The scatter plot of gene membership in blue module and gene
significance in AKI. (G) The scatter plot of gene membership in turquoise module and gene significance in AKI. (H) The Veen diagram of most
significant WGCNA module (turquoise and blue) genes and DEGs. AKI, acute kidney injury; GSE, gene expression omnibus series; DEGs, differentially
expressed genes; WGCNA, weighted gene co-expression network analysis; PCA, principal component analysis.
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FIGURE 4
Identification of commonDEGs and hub genes in GSE192883 andGSE153625 datasets. (A) The Veen diagram of DEGs andWGCNAmodule genes in
GSE192883 and GSE153625 datasets. (B) KEGG pathway analysis of the 885 coDEGs. (C–E) GO analysis of the 885 coDEGs, including biological process
(BP), cellular component (CC), and molecular function (MF) respectively. (F) PPI network reveals that coDEGs interact with each other, and the most
significant threemodules are visualized using MCODE plug-in. (G) The column shows the gene nodes degree andMCODE score of 20 hub genes of
MCODE Cluster 1. GSE, gene expression omnibus series; DEGs, differentially expressed genes; WGCNA, weighted gene co-expression network analysis;
PCA, principal component analysis; coDEGs, common DEGs; PPI, protein–protein interaction; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes
and Genomes; MCODE, molecular complex detection.
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Then we performed WGCNA analysis on GSE153625 dataset to
achieve key modules and genes. After determining the weighting
coefficients, the disTOM of 5000 genes was obtained (Figure 3C),

and 5 modules, each module represented by a different color. The
heatmap displayed the relationship between module eigenvalues and
AKI, each column showing the correlation coefficient and the

FIGURE 5
Immune cell infiltration analysis between AKI and Control group of GSE153625 dataset. (A) The heatmap of different immune cells expressed in each
sample. (B) Correlation of 22 immune cell type compositions. (C) The proportion of 22 kinds of immune cells in different samples visualized from the
barplot. (D) Comparison of different kinds of immune cells between AKI and Control groups. AKI, acute kidney injury; GSE, gene expression omnibus
series.
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corresponding p-value (Figure 3D). Figure 3E displayed the clusters
and correlation of module eigengenes. As we can see, turquoise and
blue modules had the greatest correlation with AKI, and their
correlation coefficients were 0.98 and 0.96, respectively.
Therefore, we visualized the correlation between genes in these
two modules and AKI (Figures 3F, G), and it could be seen that most
genes in these two modules clustered in the upper right corner,
indicating that the module attributes of these genes and their
correlation with AKI were high. We took the genes of these two
modules as the key genes obtained by WGCNA analysis, and the
total number of genes was 4249 (Supplementary Table S6).
Figure 3H showed the veen map of genes obtained by WGCNA
analysis and DEGs analysis, and there were 1952 overlapping genes.

Identification of common DEGs and hub
genes in GSE192883 and GSE153625 datasets

Key genes were found in two datasets by limma and WGCNA
analysis, as shown in Figure 4A, after Venn analysis, there were
885 genes expressed in all 4 gene clusters, named as common DEGs
(coDEGs). Enrichment analysis were performed to reveal the role of
the 885 coDEGs in AKI. KEGG pathway analysis (Figure 4B)
showed that, these genes were mainly enriched in Complement
and coagulation cascades, Cell cycle, and TNF signal pathway. GO
analysis revealed that coDEGs in BP were mainly enriched in anion
transport, and fatty acid metabolic process (Figure 4C); The CCwere
mainly enriched in collagen-containing extracellular matrix, and
apical part of cell (Figure 4D); The MF were mainly enriched in
active transmembrane transporter activity, and oxidoreductase
activity (Figure 4E). The PPI network of coDEGs revealed that
coDEGs interact with each other, and the most significant three
modules were visualized using MCODE plug-in (Figure 4F).
Figure 4G showed the gene nodes degree and MCODE score of
20 hub genes of MCODE Cluster 1. These 20 genes Cdc6, Cdk1,
Cdt1, Chek1, Chtf18, Clspn, Dtl, Exo1, Gins2, Lig1, Mcm2, Mcm3,
Mcm4, Mcm5, Ncaph, Pold1, Pole, Rad51, Smc2, and Wdhd1 in
MOCDE 1 were hub genes.

Immune cell infiltration analysis between
AKI and control

Many reports have shown that immune changes are prominent
during the occurrence and progression of AKI (Allison, 2018; do
Valle Duraes et al., 2020; Melo Ferreira et al., 2021), so we paied
special attention to the immune infiltration in AKI. We performed
immune infiltration analysis on GSE153625 dataset, Figure 5A
showed the heatmap of different immune cells expressed in each
sample, Figure 5B presented the correlation of 22 kinds of immune
cell type compositions. Figure 5C displayed the proportion of
22 kinds of immune cell type in each sample. Figure 5D
illustrated the comparison of different kinds of immune cells
between AKI and Control groups. These results demonstrated
that AKI mice had a higher level of gamma delta T cells,
CD4 memory resting cells T cells, resting mast cells, and
M2 macrophages. The correlation of 22 types of immune cells
revealed that CD4 memory resting cells T cells were positively

associated with resting mast cells (r = 0.60), and that plasma cells
were positively correlated with monocytes (r = 0.91). In general,
various kinds of immune cells were differentially infiltrated in AKI,
which could serve as the potential regulation point for AKI
treatment.

Identification of deFRGs in AKI

In order to recognize ferroptosis-related genes in AKI,
484 unique FRGs were selected from FerrDb V2 database
(Figure 6A), and they were overlapped with the DEGs and
turquoise of GSE192883 and GSE153625 datasets. The results
showed that there were 33 deFRGs commonly differentially
expressed in both datasets (Figure 6B). Fads2, Dpep1, Cbs, and
Hcar1 were downregulated in both datasets, Snca were upregulated
in GSE192883 while downregulated in GSE153625, and other
deFRGs were upregulated in both datasets (Figures 6C,D). The
role of these 33 deFRGs was explored by functional enrichment
analysis. The top 7 GO items under each classification were shown in
bar charts (Figures 6E–G). The results revealed that these deFRGs
were involved in lipid droplet, cellular response to oxidative stress,
and enzyme inhibitor activity. The KEGG pathway enrichment
analysis indicated significant enrichment of deFRGs in the terms
of Human T cell leukemia virus 1 infection, AGE−RAGE signaling
pathway in diabetic complications, and HIF1 signaling pathway
(Figure 6H). Furthermore, PPI analysis demonstrated interactions
among deFRGs. Cdkn1a, Tert, Jun and Nras were grouped into
MCODE cluster 1 with Jun having the highest MCC score
(Figure 6I).

Screen for diagnostic markers in two human
datasets by machine learning

We combined 20 MCODE cluster 1 genes of coDEGs and
33 deFRGs as hub genes for AKI. Among these 53 hub genes,
there were 48 genes upregulated in both GSE192883 and
GSE153625 datasets (Table 3). We then performed ROC analysis
on these 48 upregulated hub genes in two human datasets
GSE217427 and GSE139061. The results showed that there were
20 hub genes with AUC over than 0.7 in GSE217427 human dataset
(Figure 7A), while there were 8 hub genes with AUC over than 0.7 in
GSE139061 human dataset (Figure 7B). Among these 25 genes with
AUC over than 0.7, LCN2, PLin2, and ATF3 had an AUC over than
0.7 in both two human datasets. Further machine learning analysis
(Lasso analysis) was performed on these 25 hub genes in the
GSE217427 (Figures 7C, D) and GSE139061 human datasets
(Figures 7E, F). Through Lasso analysis, ATF3, CHEK1, ETV4,
LCN2, MCM3, NRAS, PIEZO1, PIR, TERT, and WDHD1 were
identified in GSE217427. In GSE139061 dataset, ATF3, CHTF18,
EGR1, HILPDA, LCN2, MCM3, NQO1, PIR, TIMP1 were screened.
Four hub genes (LCN2, ATF3, PIR, and MCM3) were found in both
datasets. A diagnostic nomogrammodel was constructed using these
final four hub genes from the GSE139061 human dataset to predict
an individual’s risk of developing AKI. In addition, the ROC curve of
the diagnostic nomogram model was depicted in the
GSE139061 human dataset to assess its diagnostic ability
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FIGURE 6
Identification of differentially expressed FRGs in GSE192883 and GSE153625 datasets. (A) The Veen diagram of Ferroptosis-related genes (FRGs) in
FerrDb v2 website. (B) The Veen diagram of 33 differentially expressed FRGs (deFRGs) in GSE192883 and GSE153625 datasets. (C) The expression of
33 deFRGs in GSE192883 dataset. (D) The expression of 33 deFRGs in GSE153625 dataset. (E–G) GO analysis of the 33 deFRGs, including biological
process (BP), cellular component (CC), and molecular function (MF) respectively. (H) KEGG pathway analysis of the 33 deFRGs. (I) PPI network
reveals that deFRGs interact with each other, and the most significant two modules are visualized by using MCODE plug-in. The column shows the MCC
score of top 12 deFRGs. FRGs, ferroptosis-related genes; deFRGs, differentially expressed FRGs; PPI, protein–protein interaction; GO, gene ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes; MCODE, molecular complex detection.
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TABLE 3 The list of 48 hub genes upregulated in both GSE192883 and GSE153625 datasets.

Gene name GSE192883 GSE153625 Source of hub genes

logFC adj.P.Val WGCNA logFC adj.P.Val WGCNA

Lcn2 5.888 0.000 turquoise 9.722 0.000 turquoise deFGRs

Timp1 5.257 0.000 turquoise 5.435 0.000 turquoise deFGRs

Slc7a11 4.500 0.000 turquoise 3.449 0.009 blue deFGRs

Egr1 4.012 0.000 turquoise 1.967 0.000 blue deFGRs

Gdf15 3.709 0.000 turquoise 3.383 0.000 turquoise deFGRs

Etv4 3.516 0.000 turquoise 2.262 0.000 turquoise deFGRs

Cd44 3.419 0.000 turquoise 2.212 0.000 turquoise deFGRs

Creb5 3.300 0.000 turquoise 2.233 0.005 turquoise deFGRs

Cdc6 3.178 0.004 blue 2.647 0.001 turquoise coDEGs in Cluster 1

Atf3 2.933 0.001 turquoise 3.889 0.000 turquoise deFGRs

Hspb1 2.839 0.000 turquoise 3.174 0.000 turquoise deFGRs

Cdkn1a 2.836 0.000 turquoise 4.192 0.000 turquoise deFGRs

Exo1 2.732 0.019 blue 2.397 0.002 turquoise coDEGs in Cluster 1

Dtl 2.686 0.018 blue 2.755 0.000 blue coDEGs in Cluster 1

Clspn 2.607 0.010 blue 2.310 0.004 turquoise coDEGs in Cluster 1

Plin2 2.604 0.000 turquoise 3.661 0.000 turquoise deFGRs

Gch1 2.404 0.000 turquoise 2.499 0.000 turquoise deFGRs

Hells 2.250 0.010 blue 2.787 0.000 turquoise deFGRs

Chek1 2.186 0.012 blue 2.704 0.000 turquoise coDEGs in Cluster 1

Cdk1 2.169 0.005 blue 1.353 0.000 blue coDEGs in Cluster 1

Rad51 2.124 0.027 blue 1.243 0.001 turquoise coDEGs in Cluster 1

Pir 2.104 0.000 turquoise 2.010 0.000 turquoise deFGRs

Mcm3 2.087 0.010 blue 1.990 0.000 turquoise coDEGs in Cluster 1

Chtf18 1.987 0.012 blue 1.305 0.007 turquoise coDEGs in Cluster 1

Ncaph 1.951 0.008 blue 2.007 0.007 turquoise coDEGs in Cluster 1

Gins2 1.877 0.006 blue 1.963 0.000 turquoise coDEGs in Cluster 1

Ttpa 1.870 0.002 turquoise 1.052 0.002 turquoise deFGRs

Mcm5 1.859 0.018 blue 1.967 0.000 turquoise coDEGs in Cluster 1

Lig1 1.799 0.006 blue 1.352 0.000 turquoise coDEGs in Cluster 1

Chac1 1.795 0.012 turquoise 2.665 0.000 turquoise deFGRs

Jun 1.791 0.000 turquoise 1.771 0.000 blue deFGRs

Mcm4 1.775 0.004 blue 1.475 0.000 turquoise coDEGs in Cluster 1

Acsl4 1.762 0.000 turquoise 2.587 0.000 blue deFGRs

Tert 1.761 0.001 turquoise 2.200 0.001 blue deFGRs

Cdt1 1.675 0.006 blue 1.204 0.000 turquoise coDEGs in Cluster 1

Pole 1.649 0.035 blue 1.321 0.002 turquoise coDEGs in Cluster 1

Wdhd1 1.624 0.003 blue 1.995 0.000 turquoise coDEGs in Cluster 1

(Continued on following page)
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(Figure 7G). The AUC of this model was 1 (Figure 7H), indicating
that this diagnostic nomogram model of LCN2, ATF3, PIR, and
MCM3, can effectively distinguish AKI samples. Therefore, we
hypothesize that these genes are highly potential biomarkers
for AKI.

Validation of 4 key diagnostic signature
genes

To validate the above results and expression patterns of these
four key diagnostic signature genes, we first reanalyzed our
previously uploaded dataset GSE192883 and another AKI dataset
GSE98622 to demonstrate the mRNA expression of these four genes
at different ischemia times and different reperfusion times. We
found that these four genes began to upregulate within 16–18 min of
ischemia, indicating their sensitivity to mild ischemia. The
expression level of severe ischemia was higher in Ischemia
28 min, indicating a positive correlation with the degree of
ischemia (Figure 8A). The results of IRI-AKI with different
reperfusion (Figure 8B) showed that the Atf3 gene began to
express rapidly at 2 h after ischemia, which could predict the
occurrence of AKI early and its expression remained elevated
even after 24 h. The expression of Lcn2 gradually increased at 4 h
after reperfusion, peaked at 24–72 h, and remained elevated at 7d
after reperfusion. The expressions of Pir and Mcm3 began to
increase at 24 h and reached a peak at 24–48 h. These results
indicated that all four genes were highly responsive to AKI with
varying degrees of ischemia and time of reperfusion. Secondly, we
conducted our own bilateral IRI (bIRI) model, as shown in Figures
8C–G, the pathological injury was severe 1 day after bIRI and
persisted for 7 days. The qPCR results (Figures 8H–K)
demonstrated a high level of consistency between RNA-seq data
and qPCR results. Finally, we utilized the Kidney Interactive

Transcriptomics (KIT) online tools (http://humphreyslab.com/
SingleCell/) to identify the expression pattern of these four genes
through single cell sequencing and spatial transcriptomic analysis in
GSE182939 (Dixon et al., 2022) (Figure 8L). The results (Figure 8M-
P) showed that, Atf3 was mainly expressed in proximal tubule
segments 3 to descending thin limp of loop of Henle, with the
highest expression at 4 h after IRI; Lcn2 was mainly expressed in the
descending and ascending thin limp of loop of Henle, as well as
principal cells, with the highest expression at 12 h after IRI;
Mcm3 was mainly expressed in proximal tubule segments 3 to
the descending thin limp of loop of Henle, with the highest
expression at 2d after IRI; Pir was mainly expressed in
urothelium, with the highest expression at 2d after IRI.

Discussion

Although AKI is associated with high morbidity and mortality,
therapeutic options for AKI are still limited, and the underlying
mechanisms of AKI remain largely unclear. Traditional diagnostic
methods such as serum creatinine and urine output may not be
sufficient for early diagnosis (Zhang et al., 2022). Therefore,
identifying new biomarkers before kidney dysfunction occurs
could help detect AKI earlier and play a critical role in
developing new therapies for its treatment (Chen et al., 2022).
Ferroptosis is a form of iron-dependent regulated necrosis
characterized by intracellular iron retention, depletion of reduced
GSH, and accumulation of lipid ROS (Martin-Sanchez et al., 2017).
It mainly affects three metabolic pathways: iron metabolism, lipid
metabolism, and amino acid metabolism. Recently, ferroptosis has
been reported to be involved in AKI (Martin-Sanchez et al., 2017;
Feng et al., 2022).

In the present study, we aimed to identify novel diagnostic FRGs
genes for AKI based on bioinformatics and machine learning. We

TABLE 3 (Continued) The list of 48 hub genes upregulated in both GSE192883 and GSE153625 datasets.

Gene name GSE192883 GSE153625 Source of hub genes

logFC adj.P.Val WGCNA logFC adj.P.Val WGCNA

Pold1 1.605 0.000 blue 1.163 0.000 turquoise coDEGs in Cluster 1

Mcm2 1.544 0.008 blue 1.191 0.000 turquoise coDEGs in Cluster 1

Muc1 1.541 0.002 turquoise 1.951 0.000 blue deFGRs

Hilpda 1.367 0.009 turquoise 1.481 0.001 turquoise deFGRs

Smc2 1.326 0.016 blue 1.228 0.000 turquoise coDEGs in Cluster 1

Tlr4 1.285 0.002 turquoise 1.042 0.004 blue deFGRs

Tmsb4x 1.219 0.002 turquoise 1.018 0.000 turquoise deFGRs

Nqo1 1.148 0.000 turquoise 2.659 0.000 turquoise deFGRs

Nras 1.126 0.000 turquoise 1.133 0.000 blue deFGRs

Piezo1 1.074 0.002 turquoise 1.411 0.000 blue deFGRs

Tgfbr1 1.016 0.020 turquoise 1.265 0.000 blue deFGRs

GSE, gene expression omnibus series; WGCNA, weighted gene co-expression network analysis; coDEGs, common differentially expressed genes; deFRGs, differentially expressed ferroptosis-

related genes; FC, fold change.
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FIGURE 7
Screen for diagnostic markers in two human datasets bymachine Learning. (A) The ROC plot of 20 upregulated hub genes with AUC over than 0.7 in
GSE217427 human dataset. (B) The ROC plot of 8 upregulated hub genes with AUC over than 0.7 in GSE139061 human dataset. (C,D) Lasso analysis of the
25 hub genes with AUC over than 0.7 in GSE217427 human dataset. (E,F) Lasso analysis of the 25 hub genes with AUC over than 0.7 in GS E139061 human
dataset. (G) The diagnostic nomogram model of final 4 hub genes ATF3,LCN2, MCM3, and PIR in GSE139061 human dataset. The red dot and line
represent one of the AKI samples. (H) The ROC curve of the diagnostic nomogram model GSE139061 human dataset, the AUC of this model is 1. AKI,
acute kidney injury; GSE, gene expression omnibus series; ROC, receiver operating characteristic; AUC, area under the curve; Lasso, least absolute
shrinkage and selection operator.
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FIGURE 8
Validation of expression patterns of 4 key diagnostic signature genes. (A) The expression of 4 key diagnostic signature genes in different ischemia
time of AKI in our previously uploaded dataset GSE192883. One-way ANOVA and Dunnett-t test, ns indicates no significant, *p < 0.05, **p < 0.01, ***p <
0.001, compared to 0min group. (B) The expression of 4 key diagnostic signature genes in different reperfusion time of AKI in dataset GSE98622. One-
way ANOVA and Dunnett-t test, ns indicates no significant, *p < 0.05, **p < 0.01, ***p < 0.001, compared to Sham group. (C) The procedure of the
mouse renal pedicle clamping before, during, and after renal ischemia reperfusion surgery. K for kidney, F for curved forcep, C for microvascular
clamp. (D–F) Representative micrographs of PAS staining shows the pathological features of kidney injury at different reperfusion times: Sham group (D),
bIRI-1d group (E), bIRI-7d group (F). Scale bars: 100 μm. The arrow shows the brush border of normal tubule, the asterisk (*) shows the blocked tubule,
and the well sign (#) represents a dilated renal tubule that has completely shed its epithelial cells. (G) The serum creatinine (left) and the blood urine
nitrogen (right) levels in different groups. *p < 0.05, **p < 0.01, ***p < 0.001, compared to Sham group. (H–K) The expression level of Atf3 (H), Lcn2 (I),

(Continued )
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analyzed our previously uploaded dataset GSE192883 (Chen et al.,
2022) and another mouse dataset GSE153625 (Kim et al., 2020) from
GEO database using limma and WGCNA analysis, and identified
885 coDEGs. Enrichment analysis showed that these genes were
mainly enriched in Complement and Coagulation Cascades, Cell
Cycle, and Oxidoreductase Activity. Recent studies have shown that
the complement system is activated in pediatric patients with AKI,
and complement proteins may serve as biomarkers and therapeutic
targets for AKI (Stenson et al., 2023). Our recently study has
reported that EGR1 increased SOX9 expression in renal tubular
epithelial cells by directly binding to the promoter of the Sox9 gene,
thereby promoting proliferation of SOX9+ cells after AKI (Chen
et al., 2022). This indicated that pathways mentioned above were
crucial in the occurrence and development of AKI. Additionally, we
performed a PPI network analysis on 885 coDEGs and identified
20 hub genes using MCODE.

We also performed immune infiltration analysis to identify the
immune changes in AKI. The results showed that AKI mice had a
higher levels of gamma delta T cells (Hochegger et al., 2007),
CD4 memory resting cells T cells (Farooqui et al., 2023), resting
mast cells (van der Elst et al., 2023), and M2 macrophages (Li et al.,
2018; Singbartl et al., 2019). It has been reported that the gamma
delta T cells played a role as mediator cells in the first 72 h of renal
IRI (Hochegger et al., 2007). Observed an increase in CD4 memory
T cells in patients who developed immune checkpoint inhibitor-
related AKI (Farooqui et al., 2023). Mast cells had potential
protective effects on tissue remodeling post-injury (van der Elst
et al., 2023). These immune cells were differentially infiltrated in
AKI, which could serve as a potential regulatory point for AKI
treatment.

In order to recognize differentially expressed ferroptosis-related
genes in AKI, 484 unique FRGs were overlapped with the DEGs and
turquoise of GSE192883 and GSE153625 datasets. As a result,
33 deFRGs were commonly differentially expressed in both
datasets. These deFRGs are involved in lipid droplet formation,
cellular response to oxidative stress, and Human T cell leukemia
virus 1 infection. Numerous studies have reported that lipid droplet
formation and cellular response to oxidative stress are associated
with ferroptosis (Bai et al., 2019; Zou et al., 2019; Xin et al., 2022).
For examples, in renal cancer, MS4A15 regulates anti-ferroptotic
lipid reservoirs to provide a key resistance mechanism that is distinct
from antioxidant and lipid detoxification pathways (Xin et al., 2022).
HIF-2α selectively enriches polyunsaturated lipids, which are the
rate-limiting substrates for lipid peroxidation, by activating the
expression of hypoxia-inducible, lipid droplet-associated protein
(Zou et al., 2019). Further PPI analysis found 20 hub genes
including Cdkn1a, Tert, Jun, Nras, and Jun with the biggest
MCC score.

Then, we analyzed the diagnostic value of 48 upregulated hub
genes in AKI based on ROC analysis and machine learning. Among
them, 25 genes had an AUC greater than 0.7, and LCN2, PLIN2, and
ATF3 had an AUC greater than 0.7 in both two human datasets.
Using Lasso analysis, four hub genes (LCN2, ATF3, PIR, and
MCM3) were identified in both human datasets. Through
validation in the human dataset GSE217427, a diagnostic
nomogram model constructed using these final four hub genes
was able to effectively distinguish AKI samples. Finally, the
expression of LCN2, ATF3, PIR, and MCM3 was validated in
AKI datasets and laboratory investigations. These four genes may
serve as ideal markers for ferroptosis in AKI. Our findings provide
novel insights into critical genes involved in the progression of AKI,
which can guide individualized diagnosis and treatment.

Lcn2 also named as neutrophil gelatinase associated lipoprotein
(NGAL), was reported closely associated with AKI by several
experimental and clinical studies (Cowland and Borregaard, 1997;
Schmidt-Ott et al., 2006). Lcn2 was expressed at low levels in kidney
under normal conditions, while increased significantly within 2–6 h after
AKI (Koyner et al., 2010; Delcroix et al., 2013). Lcn2 level was closely
associated with the severity of kidney injury, and more accurate for
predicting AKI development than creatinine (Jahaj et al., 2021). Chui
et al. demonstrated that the AUC of Lcn2 was over 0.73 to detect AKI at
3 days before AKI onset (Chui et al., 2020). In our study, the AUCs of
Lcn2 were 0.81 and 0.7 in human datasets GSE217427 and GSE139061.

Atf3, the full name is activation transcription factor 3, is a member
of the ATF/CREB subfamily of the basic-region leucine zipper family.
Atf3 signaling pathway acted as protective role in attenuating
inflammation and ischemia reperfusion induced tubular cell death
and nephrotoxicity (Cheng and Lin, 2011). Atf3 was reported plays
an important role in cell ferroptosis, knockdown of Atf3 could
significantly increase the levels of SLC7A11, GPX4 and increased the
cell viability (Wang et al., 2021). Integration of spatial and single-cell
transcriptomics analysis found that Atf3 was acted as a chemotactic
factor in S3 injured proximal tubular cells, whichmay be responsible for
neutrophil chemotaxis (Melo Ferreira et al., 2021). In conclusion,
Atf3 plays an important role in renal protection, and may serve as a
potential novel diagnostic and therapeutic molecules in AKI.

Pir, the full name is Pirin, is a nonheme iron (Fe) binding nuclear
protein, plays an important role in mediating ferroptosis resistance in
human pancreatic cancer cells (Hu et al., 2021). Pir has been shown to
modulate the binding affinity between p65 homodimeric NF-κB and κB
DNA. Binding of the Fe(III) form of Pirin to the p65-DNA complex
significantly alters both the conformational dynamics of the DNA and
the interactions between p65 and the DNA (Barman and Hamelberg,
2016). Orzaez et al. (Orzaez et al., 2001) reported that Pir can stabilize
the formation of quaternary complexes between Bcl-3, the anti-
apoptotic transcription factor NF-κB and its DNA target sequences

FIGURE 8 (Continued)
Mcm3 (J), and Pir (K). The expression level of all four genes are highly consistent between RNA-seq data and qPCR results. One-way ANOVA and
Dunnett-t test, ns indicates no significant, *p < 0.05, **p < 0.01, ***p < 0.001, compared to Sham group. (L) Single cell sequencing and spatial
transcriptomics analysis of acute kidney injury in mouse (GSE182939). Podocytes (Pod), proximal tubule segments 1-3 (PTS1-3), descending and
ascending thin limp of loop of Henle (DTL, TAL), distal convoluted tubule (DCT), principal cells (PC1-2), intercalated cells (IC), urothelium (Uro),
fibroblasts (Fib), Immune cells (Immune). (M–P) Single cell sequencing and spatial transcriptomics showing the expression of the four key genes inmouse
IRI. The highest gene expression time point is selected to present in the figure. AKI, acute kidney injury; GSE, gene expression omnibus series; bIRI,
bilateral ischemia reperfusion injury; qPCR, quantitative real-time polymerase chain reaction.
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in vitro. Licciulli reported that Pir was required for terminal myeloid
maturation, and its downregulation may contribute to the
differentiation arrest associated with acute myeloid leukemia
(Licciulli et al., 2010). However, its role in kidney has not yet been
reported. Thus, the regulatory role of Pir in AKI needs to be further
investigated in functional and mechanistic studies.

Minichromosome maintenance (MCM) proteins are DNA-
dependent ATPases that bind to replication origins and restrict
DNA synthesis to a single round of DNA replication. They can
reflect the cell cycle status due to their stable state during the cell
cycle and proteolysis in quiescent cells (G0). Onemember of this family,
Mcm3, is reportedly active in most cancers (Ha et al., 2004; Söling et al.,
2005). Mcm3 was reported regulates the assembly and activity of
MCM2-7 complex by phosphorylated at Ser-112 by Cdk1, can
directly combine with cyclin D1 and participate in the regulation of
cell proliferation, and had a strong pro-apoptotic effect (Ji et al., 2017).
However, the role of Mcm3 in kidney has not yet been reported. It is
important to note that further clarification is required for these four
genes regarding their involvement in ferroptosis and AKI.

This research also has some limitations. Firstly, the research was
mainly conducted based on online public databases; more external
human data is needed to verify our model. Secondly, we mainly
focused on ferroptosis-related genes, and there may be more precise
genes that were underestimated. Finally, it is necessary to establish
cell models and animal models to further study the mechanism of
these hub genes in AKI.

Conclusion

In summary, our study systematically discovered three candidate
hub genes associated with ferroptosis (Lcn2, Atf3, and Pir) and one
coDEG (Mcm3). We also provided a nomogram for diagnosing AKI
through various bioinformatics analyses and machine learning
algorithms. The versatility of the signature was proven through
internal verification, demonstrating its suitability for clinical use.
Additionally, we identified dysregulated immune cell proportions in
AKI. Our study has provided valuable information on potential
ferroptosis-related genes as diagnostic candidates for AKI patients.
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