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Background: Autophagy is involved in the pathophysiological process of sepsis.
This study was designed to identify autophagy-related key genes in sepsis, analyze
their correlation with immune cell signatures, and search for new diagnostic and
prognostic biomarkers.

Methods: Whole blood RNA datasets GSE65682, GSE134347, and
GSE134358 were downloaded and processed. Differential expression analysis
and weighted gene co-expression network analysis (WGCNA) were used to
identify autophagy-related key genes in sepsis. Then, key genes were analyzed
by functional enrichment, protein-protein interaction (PPI), transcription factor
(TF)-gene and competing endogenous RNA (ceRNA) network analysis.
Subsequently, key genes with diagnostic efficiency and prognostic value were
identified by receiver operating characteristic (ROC) curves and survival analysis
respectively. The signatures of immune cells were estimated using CIBERSORT
algorithm. The correlation between significantly different immune cell signatures
and key genes was assessed by correlation analysis. Finally, key genes with both
diagnostic and prognostic value were verified by RT-qPCR.

Results: 14 autophagy-related key genes were identified and their TF-gene and
ceRNA regulatory networks were constructed. Among the key genes, 11 genes
(ATIC, BCL2, EEF2, EIF2AK3, HSPA8, IKBKB, NLRC4, PARP1, PRKCQ, SH3GLB1, and
WIPI1) had diagnostic efficiency (AUC > 0.90) and 5 genes (CAPN2, IKBKB, PRKCQ,
SH3GLB1 and WIPI1) were associated with survival prognosis (p-value < 0.05).
IKBKB, PRKCQ, SH3GLB1 andWIPI1 had both diagnostic and prognostic value, and
their expression were verified by RT-qPCR. Analysis of immune cell signatures
showed that the abundance of neutrophil, monocyte, M0 macrophage, gamma
delta T cell, activated mast cell and M1 macrophage subtypes increased in the
sepsis group, while the abundance of resting NK cell, resting memory CD4+ T cell,
CD8+ T cell, naive B cell and resting dendritic cell subtypes decreased. Most of the
key genes correlated with the predicted frequencies of CD8+ T cells, resting
memory CD4+ T cells, M1 macrophages and naive B cells.

Conclusion: We identified autophagy-related key genes with diagnostic and
prognostic value in sepsis and discovered associations between key genes and
immune cell signatures. This workmay provide new directions for the discovery of
promising biomarkers for sepsis.
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Introduction

Sepsis refers to the life-threatening organ dysfunction caused by
a dysregulated host response to infection (Singer et al., 2016).
According to conservative estimates, there were 48.9 million
patients with sepsis and 11.0 million sepsis related deaths
worldwide in 2017, representing 19.7% of all global deaths (Rudd
et al., 2020). Due to its high morbidity and mortality, sepsis has
become an important health problem. But sepsis is treatable, and
early intervention can improve treatment outcomes and reduce
mortality (Liu et al., 2017; Rhodes et al., 2017; Seymour et al.,
2017; Evans et al., 2018). Therefore, early diagnosis and prognostic
prediction of sepsis are particularly important.

Autophagy is an evolutionarily conserved biological process
responsible for degrading unwanted cytoplasmic components and
invadingmicroorganisms. It plays a central role in cytoplasmic quality
control, cellular metabolism, innate and adaptive immunity (Deretic,
2021). In sepsis, autophagy has protective effect on heart, kidney, lung
and brain, and has damaging effect on skeletal muscles (Stana et al.,
2017; Sun et al., 2018; Zhuang et al., 2020; Wang et al., 2021b; Chen
et al., 2021). As a complex immune response that changes over time,
the core mechanism of sepsis is dysregulated innate and adaptive
immune responses of the host. The functional status and distribution
of immune cells determine the initiation, development and prognosis
of sepsis. Autophagy plays a protective role in immune cells by
regulating various cellular receptors and signaling pathways in
order to maintain immune homeostasis in sepsis. Enhanced
autophagic activity of neutrophils increases neutrophil extracellular
trap (NET) formation, which is important for maintaining
appropriate neutrophil function during sepsis (Park et al., 2017).
Treatment with lipopolysaccharide (LPS) in autophagy-deficient
macrophages resulted in increased secretion of macrophage
mobility inhibitory factor (MIF) and aggravated inflammation (Lee
et al., 2016). Suppressing the autophagic activity of dendritic cells can
negatively regulate their immune function (Liu et al., 2021). T-cell-
specific mTOR deletion improves cell survival in mice with fatal
fungal sepsis by enhancing autophagy (Wang et al., 2019; Wang et al.,
2021a).

Given the important role of autophagy in sepsis, we speculate
that the exploration of autophagy-related genes (ARGs) will provide
potential diagnostic and prognostic biomarkers for the treatment of
sepsis. Stunning advances in sequencing technology and
bioinformatics have provided great convenience for the study of
sepsis at the genetic level. Whole blood RNA, which is mainly
derived from blood immune cells, is our first choice due to its easy
accessibility and ability to represent the immune response in sepsis.
Therefore, we conducted a comprehensive bioinformatics analysis to
explore the role of peripheral blood ARGs in sepsis.

In this study, through comprehensive analysis, autophagy-
related key genes in sepsis were identified, and the key genes
with diagnostic efficiency and prognostic value were obtained.
Furthermore, the signatures of immune cells and their correlation
with key genes were clarified. The study may provide new ideas for
further exploring the pathophysiological mechanism, diagnosis and
treatment of sepsis.

Materials and methods

Data collection and processing

All microarray datasets (GSE65682, GSE134347 and GSE134358)
(Scicluna et al., 2015; Scicluna et al., 2018; Scicluna et al., 2020) were
obtained from the GEO database (https://www.ncbi.nlm.nih.gov/geo/).
GSE65682 (685 sepsis patients and 42 healthy controls) that mainly
contained whole blood mRNA data was generated by means of
Affymetrix Human Genome U219 Array (GPL13667). GSE134347
(156 sepsis patients and 83 healthy controls) that mainly contained
whole blood mRNA and lncRNA data was examined by Affymetrix
Human Transcriptome Array 2.0 (GPL17586). The GSE134358
(158 sepsis patients and 82 healthy controls) was a whole blood
miRNA expression profile dataset detected by Affymetrix
Multispecies miRNA-4 Array (GPL21572). Raw data was read into
the R software (version 4.2.0) using the affy or oligo package (Gautier
et al., 2004; Carvalho and Irizarry, 2010). Robust Multi-array Average
(RMA) (Irizarry et al., 2003) was used for background correction and
normalization of the array data. The resultant probe intensities were
filtered using the genefilter package by a 0.5 variance cutoff. The
ComBat method of sva package (Leek et al., 2012) was used to
evaluated and corrected the batch effect. Finally, annotation files
downloaded from Affymetrix official website were used for probe
annotation.

Autophagy-related genes (ARGs) and
differential expression analysis

From The Human Autophagy Database (http://www.autophagy.
lu/index.html), we obtained the list of ARGs containing 222 genes.
According to this gene list, the ARGs in GSE65682 and
GSE134347 were extracted.

Differential expression analysis was performed by limma
package (Ritchie et al., 2015). Adjusted p-value < 0.05 and
|log2 fold change (FC)| > 0.5 was set as the screening threshold.
Volcano plots of the differentially expressed mRNAs, lncRNAs,
miRNAs and ARGs (DEmRNAs, DElncRNAs, DEmiRNAs and
DEARGs) were visualized by ggplot2 package. DEmRNAs and
DEARGs shared by GSE65682 and GSE134347 were visualized
using the VennDiagram package (Chen and Boutros, 2011).

Weighted gene co-expression network
analysis (WGCNA) and identification of
autophagy-related key genes in sepsis

All expressedmRNAs in GSE65682 andGSE134347 were extracted
and analyzed by WGCNA package (Langfelder and Horvath, 2008).
Sample cluster analysis was performed to identify and remove outlier
samples. The appropriate soft threshold (β) was selected to construct the
network by one-stepmethod, and the cluster dendrogramwas drawn to
visualize the modules represented by different colors. Subsequently, the
correlation between groups and modules was calculated by Spearman
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correlation analysis, and the genes of the three modules with the highest
absolute values of correlation coefficients were selected as sepsis-related
genes (SRGs). Finally, the shared SRGs and the shared DEARGs of
GSE65682 and GSE134347 were intersected to obtain the autophagy-
related key genes.

Functional enrichment analysis and protein-
protein interaction (PPI) analysis

The clusterProfiler package (Yu et al., 2012) was used to conduct
Gene Ontology (GO) (Harris et al., 2004) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa et al., 2022) pathway
enrichment analysis of key genes. The enrichment results were
visualized by ggplot2.

PPI network was created using the online STRING database
(http://www.string-db.org/, version 11.5) (Szklarczyk et al., 2021)
with the interaction scores > 0.4, and then analyzed and visualized
by Cytoscape (version 3.9.1) (Shannon et al., 2003). The Cytoscape
plug-in CytoNCA (Tang et al., 2015) was employed to rank nodes
based on betweenness.

Construction of transcription factor (TF)-
gene regulatory network and competing
endogenous RNA (ceRNA) regulatory
network

The autophagy-related key genes were uploaded to the online
platform NetworkAnalyst (https://www.networkanalyst.ca/, version
3.0) (Zhou et al., 2019) and analysed using the TF-gene interactions
modules based on the ENCODE database (https://www.
encodeproject.org/) (Luo et al., 2020) to identify the upstream
TFs. Then the network was visualized by Cytoscape.

The ceRNA theory suggests that lncRNAs can regulate mRNAs
by binding and neutralizing the matched miRNAs. Following
this theory, we constructed the ceRNA regulatory network.
First, we used miRDB (https://www.mirdb.org/) (Chen and
Wang, 2020), miRTarBase (https://mirtarbase.cuhk.edu.cn/
~miRTarBase/miRTarBase_2019/php/index.php) (Huang et al.,
2020) and TargetScan (https://www.targetscan.org/) (Agarwal
et al., 2015) databases to obtain the DEmiRNAs targeting
autophagy-related key genes. Next, the miRNAs matching the
DElncRNAs were obtained using the miRCode database (http://
www.mircode.org/) (Jeggari et al., 2012). Finally, the ceRNA
regulatory network of autophagy-related key genes was obtained
by intersecting the above two results and was visualized by the
ggalluvial package.

Receiver operating characteristic (ROC)
curve analysis

ROC curve analysis was performed using pROC package
(Robin et al., 2011). The diagnostic value of autophagy-related
key genes in sepsis was evaluated by the area under the curve
(AUC). Genes with AUC > 0.90 were considered to have
diagnostic value in sepsis.

Survival analysis

We extracted samples with survival information from
GSE65682 for survival analysis. All samples were grouped based
on the median expression of each key gene. Survival and survminer
packages were used to assess the influence of key genes on 28-day
survival and draw Kaplan-Meier (K-M) survival curves. The genes
associated with 28-day survival (p-value < 0.05) were considered to
have prognostic value in sepsis.

Assessment of immune cell signatures

The array of immune cells was estimated by the CIBERSORT
algorithm based on the leukocyte signature matrix (LM22) at
100 permutations (Newman et al., 2015). Next, we compared the
expression of each immune cell subtype RNA signature between the
sepsis group and the healthy control group to determine which cell
subtypes may be significantly different in their abundance. Finally,
the correlation between autophagy-related key genes and
significantly different immune cell signatures was calculated by
Spearman correlation analysis using the psych package, and the
results were visualized by ggplot2.

Real-time quantitative polymerase chain
reaction (RT-qPCR)

11 healthy controls and 11 sepsis patients, all older than 18 years,
were enrolled in this study. All patients met the diagnostic criteria of
sepsis 3.0 and were admitted to the intensive care unit of
Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University from
September 2022 to October 2022. The clinical characteristics of the
individuals participating in the validation experiment are described
in Supplementary Table S1.

Peripheral blood samples of enrolled patients were collected
within 24 h after admission. Following the manufacturer’s
instructions, RNA was extracted from whole blood using
RNAprep Pure Hi-Blood Kit (DP443, TIANGEN Biotech,
Beijing, China). Then, reverse transcription reaction and RT-
qPCR were performed using PrimeScript™ RT reagent Kit with
gDNA Eraser (RR047, TaKaRa, Dalian, China) and TB Green
Premix Ex Taq™ (RR820, TaKaRa, Dalian, China), respectively.
ACTB was used as the reference gene and the relative expression was
calculated by 2−ΔΔCT Method. Primer sequences are listed in
Supplementary Table S2.

Statistical analysis

Comparison of continuous variables between two groups was
performed in SPSS software (version 24.0). Student’s t-test and
Mann-Whitney U-test were applied to normal and non-normal
distribution data, respectively. The results of the RT-qPCR were
plotted in GraphPad Prism (version 8.0). Other data in this article
were calculated automatically by R software (version 4.2.0) or online
database mentioned above. p-value < 0.05 was considered
statistically significant.
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Results

Differentially expressed mRNAs, lncRNAs,
miRNAs and ARGs in sepsis

The detailed workflow of the overall study is shown in Figure 1.
After data processing, we obtained 11,476 genes in GSE65682,
12,985 genes in GSE134347 and 1,695 genes in GSE134358. By
referring to comprehensive gene annotation and long non-coding
RNA gene annotation (V41) downloaded from GENCODE (https://
www.gencodegenes.org/human/), we obtained 10,626 mRNAs and
75 lncRNAs in GSE65682, 9044 mRNAs and 647 lncRNAs in
GSE134347. Due to the small number of lncRNAs contained in
GSE65682, the lncRNA data of GSE134347 was used for differential
expression analysis. By intersecting mRNAs with the list of ARGs, we
extracted 188 ARGs in GSE65682 and 153 ARGs in GSE134347.
Subsequently, through differential expression analysis between sepsis
group and healthy control group, we obtained 3,514 DEmRNAs and
62 DEARGs in GSE65682, 2,257 DEmRNAs, 76 DElncRNAs and
57 DEARGs in GSE134347, and 150 DEmiRNAs in GSE134358

(Figures 2A–F). In addition, there were 1,571 DEmRNAs and
38 DEARGs shared by GSE65682 and GSE134347 (Figures 2G, H).

WGCNA and screening for autophagy-
related key genes in sepsis

By sample cluster analysis, 10 outlier samples in GSE65682 were
removed, and no obvious outlier samples were found in GSE134347. The
power of β = 12 in GSE65682 (R2 = 0.89, slope = −2.26) and β = 8 in
GSE134347 (R2 = 0.86, slope = −1.28) were selected. Then, the network
was constructed and 16 gene modules with different colors were obtained
in each dataset (Figures 3A, B). Black, turquoise and cyan were the three
modules with the highest absolute values of correlation coefficients in
GSE65682, containing 1,592 SRGs (Figure 3C). Similarly, turquoise, blue
and pink were the three modules with the highest absolute values of
correlation coefficients inGSE134347, containing 5,268 SRGs (Figure 3D).
There were 1,248 SRGs shared byGSE65682 andGSE134347 (Figure 3E).
By intersecting shared SRGs and shared DEARGs, we identified
14 autophagy-related key genes in sepsis (Figure 3F).

FIGURE 1
Flowchart of the overall study. Abbreviations: WGCNA, weighted gene co-expression network analysis; DEARGs, differentially expressed
autophagy-related genes; DEmRNAs, differentially expressed mRNAs; DElncRNAs, differentially expressed lncRNAs; DEmiRNAs, differentially expressed
miRNAs; CeRNA, competing endogenous RNA; PPI, protein-protein interaction; TF, transcription factor; ROC, receiver operating characteristic.
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Functional enrichment and PPI network
analysis of autophagy-related key genes

GO enrichment analysis includes biological processes (BP),
molecular functions (MF) and cellular components (CC). BP
analysis indicated that key genes were mainly involved in regulation
of cellular response to starvation, response to starvation, cellular
response to nutrient levels and cellular response to extracellular
stimulus. CC analysis showed that autophagosome, aggresome and
autophagosome membrane were the top three enriched terms. In MF
analysis, these genes were primarily enriched in cadherin binding,
nuclear estrogen receptor binding and SMAD binding (Figure 4A;
Supplementary Table S3). The results of KEGG analysis primarily
converged on the shigellosis, apoptosis, autophagy-animal and NF-
kappa B signaling pathway (Figure 4B; Supplementary Table S4).

In order to study the interactions of key genes, we constructed a
PPI network containing 14 nodes and 12 edges. The size and order of
nodes in the network were determined by betweenness (Figure 4C).

TF-gene regulatory network and ceRNA
regulatory network of autophagy-related
key genes

The TF-gene regulatory network was comprised of 154 nodes and
215 edges. In detail, these nodes were combined by 11 key genes and
143 TFs. Each key gene was regulated by multiple TFs. Among them,
CAPN2 was regulated by 56 TFs and EEF2 was regulated by 45 TFs. In
addition, 52 TFs regulated more than one key gene, among which
ZBTB11 could regulate 5 genes simultaneously (Figure 5A).

FIGURE 2
Differentially expressed mRNAs, lncRNAs, miRNAs and ARGs in sepsis. (A,B) Volcano plots of DEmRNAs and DEARGs in GSE65682. (C) Volcano plot
of DEmiRNAs in GSE134358. (D–F) Volcano plots of DEmRNAs, DEARGs and DElncRNAs in GSE134347. (G) Venn diagram of overlapping DEmRNAs
between GSE65682 and GSE134347. (H) Venn diagram of overlapping DEARGs between GSE65682 and GSE134347.
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In order to understand the regulatory relationships, ceRNA
interaction analysis was performed on the obtained 14 key genes,
150 DEmiRNAs and 76 DElncRNAs. And a ceRNA regulatory
network consisting of 3 key genes, 8 miRNAs and 18 lncRNAs
was constructed. The detailed lncRNA-miRNA-mRNA interaction
relationship was visualized by Sankey diagram (Figure 5B).

Diagnostic value of autophagy-related key
genes for sepsis

Among the 14 key genes identified, the expressions of FKBP1A,
NLRC4, SH3GLB1 and WIPI1 were increased in the sepsis group,
while other key genes were decreased (Figures 6A, B). This result

suggested that the activation of FKBP1A, NLRC4, SH3GLB1 and
WIPI1 and the inactivation of other key genes might indicate the
occurrence of sepsis. Further ROC curve analysis showed that a total
of 11 key genes (ATIC, BCL2, EEF2, EIF2AK3, HSPA8, IKBKB,
NLRC4, PARP1, PRKCQ, SH3GLB1, andWIPI1) had AUCs greater
than 0.90 both in GSE65682 and GSE134347, and these genes were
considered to have diagnostic efficacy for sepsis (Figures 7A, B).

Prognostic value of autophagy-related key
genes for sepsis

We extracted 477 samples with survival information
(363 survivors and 114 nonsurvivors) from GSE65682. Survival

FIGURE 3
Identification of autophagy-related key genes in sepsis. (A,B) Clustering dendrograms and assigned module colors of mRNAs in GSE65682 and
GSE134347. (C,D) Module-trait relationships of GSE65682 and GSE134347. The correlation coefficient and p-value are displayed in the grid of the
heatmap. (E) Venn diagram of overlapping sepsis-related genes (SRGs) between GSE65682 and GSE134347. (F) Identification of autophagy-related key
genes by overlapping shared SRGs and shared DEARGs through Venn diagram.
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analysis suggested that the aberrant expression levels of CAPN2,
IKBKB, PRKCQ, SH3GLB1, andWIPI1 were associated with the 28-
day survival. Moreover, patients with high expression of CAPN2,
IKBKB, PRKCQ, and SH3GLB1 had a higher 28-day survival, while
WIPI1 had an opposite effect (Figures 7C–G). Therefore, these 5 key
genes were considered to have prognostic value for sepsis.

Immune cell signatures and their correlation
with autophagy-related key genes

Based on RNA signatures the abundance of 19 immune cell
subtypes in GSE65682 and 16 subtypes in GSE134347 were
significantly different between the sepsis and healthy control
groups (Figures 8A, B). The directionality of 11 significantly
different subtypes was shared between the two datasets.
Neutrophil, monocyte, M0 macrophage, gamma delta (γδ) T cell,
activated mast cell and M1 macrophage signatures were more
abundant in the sepsis group, while resting NK cell, resting
memory CD4+ T cell, CD8+ T cell, naive B cell and resting
dendritic cell signatures were more abundant in the healthy
control group. Additionally, Spearman correlation analysis
showed that most of the key genes correlated
with the predicted frequencies of CD8+ T cells, resting memory
CD4+ T cells, M1 macrophages and naive B cells (Figures 8C, D).

Validation of selected key genes by RT-qPCR

The four key genes that were identified to have both significant
diagnostic and prognostic value in sepsis (IKBKB, PRKCQ, WIPI1,
and SH3GLB1) were validated by RT-qPCR in whole blood samples
obtained from sepsis patients and healthy controls. The results
showed that IKBKB and PRKCQ were significantly
downregulated in the sepsis group, while SH3GLB1 and
WIPI1 were significantly upregulated (Figures 9A–D). The
expression trend of these four genes between the two groups was
consistent with the results of microarray analysis in GSE65682 and
GSE134347 (Figures 6A, B).

Discussion

Sepsis is the most common cause of death in intensive care
patients, and its pathogenesis has not been fully understood.
Increasing evidence suggests that autophagy plays an important
role in sepsis. To further explore the pathogenesis of sepsis and
search for biomarkers with diagnostic and prognostic value, we
performed a comprehensive bioinformatics analysis of two sepsis
related datasets. Through differential expression analysis and
WGCNA, we obtained 14 autophagy-related key genes.
Functional enrichment analysis further confirmed that these

FIGURE 4
Functional enrichment and PPI network analysis of autophagy-related key genes. (A) Gene Ontology (GO) enrichment analysis results, including
biological process (BP), cellular component (CC), and molecular function (MF). (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis results. (C) PPI network. The nodes are ranked by betweenness. Blue nodes represent downregulated genes and red nodes represent
upregulated genes.
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genes are related to autophagy. We then constructed TF-gene and
ceRNA regulatory networks of key genes to clarify their molecular
regulation mechanisms.

ARGs have been shown to be of great value in the diagnosis and/
or prognostic evaluation of diseases such as cancer, dilated
cardiomyopathy, acute myocardial infarction, diabetic

FIGURE 5
TF-gene regulatory network and ceRNA regulatory network of autophagy-related key genes. (A) Diagram of the regulatory network between TFs
and key genes. Blue nodes represent TFs and orange nodes represent key genes. (B) Sankey diagram of the ceRNA regulatory network. Each rectangle in
the diagram represents a gene, and the height of the rectangle indicates the gene’s connection degree.
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nephropathy, pulmonary hypertension, dermatomyositis, and
rheumatoid arthritis (Du et al., 2020; Tong et al., 2021; Bai et al.,
2022; Fan et al., 2022; Wang et al., 2022; Yang et al., 2022; Zhang
et al., 2022). Therefore, ROC curve and survival analysis were
performed on key genes to explore their diagnostic efficacy and
prognostic value in sepsis. After analysis, we obtained 11 key genes
with diagnostic efficacy and 5 key genes with prognostic value.
Among them, IKBKB, PRKCQ, SH3GLB1 and WIPI1 were key
genes with both diagnostic efficacy and prognostic value.

IKBKB (IKKβ) is a serine kinase that forms the IκB kinase (IKK)
complex together with IKKα and IKKγ. IKK complex
phosphorylates IκBs, an inhibitor of NF-κB, causing dissociation
of the inhibitor and activation of NF-κB. Under different
environmental conditions, activated NF-κB exerts either
promoting or inhibiting effects on autophagy (Djavaheri-Mergny
et al., 2006; Nivon et al., 2009; Jiang et al., 2011). In addition, the IKK
complex has also been found to promote autophagy in an NF-κB
independent manner under the stimulation of physiological and
pharmacological factors (Criollo et al., 2010). On the other hand,
IKKβ activity can also be downregulated by autophagic degradation,
suggesting a complex interplay between autophagy and the IKK/NF-
κB pathway (Qing et al., 2006; Niida et al., 2010). Ellipticine, an
IKKβ inhibitor, was found to have anti-inflammatory properties by
promoting autophagy in LPS-treated bone marrow-derived
macrophages (Chen et al., 2019).

PRKCQ (PKCθ) is one of the PKC family members that is
involved in the activation of AP-1 and NF-κB. It positively regulates
autophagy in mouse skeletal muscle cells under endoplasmic
reticulum (ER) stress and rat hepatic stellate cells under hypoxia

(Madaro et al., 2013; Jin et al., 2016). In infection and sepsis, relevant
studies have suggested that PKCθ mainly plays a pro-inflammatory
role, but its effect on autophagy remains unclear. In mice infected
with salmonella, PKCθ has been proved to promote a potent pro-
inflammatory phenotype of macrophages to exert protective
antimicrobial immunity (Pfeifhofer-Obermair et al., 2016).
Besides, inhibition of PKCθ can inhibit Th17 cell response
through the Notch signaling pathway, thereby alleviating acute
lung injury in mice (Li et al., 2019).

SH3GLB1 (Bif-1) has multiple functions and is involved in
autophagy, apoptosis and mitochondrial function. Under
starvation conditions, Bif-1 has been demonstrated to promote
the activation of PI3KC3 by forming a complex with
Beclin1 through UVRAG. Then PI3KC3 regulates the formation
of Atg9 puncta by mediating Golgi membrane fission to achieve
the biogenesis of autophagosomes (Takahashi et al., 2007;
Takahashi et al., 2011). According to a recent study,
SH3GLB1 has diagnostic significance for pediatric sepsis (Zhang
et al., 2021).

WIPI1 is a member of the human WIPI family and is similar to
yeast Atg18. WIPI1, together with WIPI2, acts as a key effector of
PtdIns3P in the nascent autophagosome to bridge PtdIns3P
production and LC3 lipidation (Proikas-Cezanne et al., 2015;
Almannai et al., 2022). Based on the positive regulation of
autophagy by WIPI1, quantifying the expression of
WIPI1 mRNA or the number of WIPI1 puncta is considered a
reliable method to assess the level of autophagosome formation
(Proikas-Cezanne et al., 2007; Tsuyuki et al., 2014). Consistent with
our findings, in another bioinformatics study on ferroptosis-related

FIGURE 6
Differences in the expression of autophagy-related key genes between control and sepsis groups in GSE65682 and GSE134347. Student’s t-test or
Mann-Whitney U-test were used to compare the differences between the two groups. ****p < 0.0001.
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genes, WIPI1 was found to be elevated in sepsis patients and
correlated with patient outcomes (Zhu et al., 2022).

By analyzing the signatures of immune cell, we identified
11 significantly different immune cell subtypes in sepsis. These
potential differences in immune cell abundance are consistent
with many previous studies. Neutrophils and monocyte-
macrophages are often found to be elevated in sepsis. This
phenomenon is thought to be mainly associated with
inhibition of apoptosis in neutrophils and monocyte-
macrophages. The release of immature neutrophils is also
thought to be involved. Although the numbers of these two
immune cell types do not decrease, there is significant
alteration in cellular function (Vaki et al., 2011; Delano and
Ward, 2016). In addition, mast cells were found to be locally and
systematically activated in a CLP-induced mouse model of septic

peritonitis and TLR4 was shown to mediate LPS-induced mast
cell activation (Supajatura et al., 2001; Seeley et al., 2011). On the
contrary, sepsis leads to the reduction in CD4+ T cells, γδ T cells,
CD8+ T cells, B cells, NK cells and dendritic cells by accelerating
apoptosis. Of course, this reduction in numbers is accompanied
by a decline in cell function (Rimmelé et al., 2016; Cao et al.,
2019). In our study, except for γδ T cells, the changes of other
immune cells were consistent with the findings described above.
γδ T cells are critical responders and cytokine producers in the
early stages of infection (Ferrick et al., 1995). During this period,
γδ T cells increase dramatically in the blood and can be as high as
60% of total T cells (Chien et al., 2014). However, during later
stages of sepsis, circulating γδ T cells are reduced by up to 80%
(Kim and Oldham, 2019). Therefore, we speculate that the
increased γδ T cells in the sepsis group in this study may be

FIGURE 7
Diagnostic and prognostic capabilities of autophagy-related key genes. (A,B) ROC curves of key genes with AUC greater than 0.90 in GSE65682 and
GSE134347. (C–G) Kaplan-Meier (K-M) curves of key genes with significant differences in survival analysis.
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related to the fact that the early expanded cells have not
completely fallen below the normal level.

Further correlation analysis showed that CD8+ T cell, resting
memory CD4+ T cell, M1 macrophage and naive B cell signatures
were associated with most key genes. Thus, we speculate that the
abundance of these four types of immune cells in sepsis may be
regulated by autophagy. T cell autophagy has been demonstrated
to reduce apoptosis and improve immunosuppression in sepsis
(Oami et al., 2017). Enhanced autophagy facilitates inhibition of
M1-like macrophage polarization and alleviation of
inflammation (Xu et al., 2020). In addition, autophagy has

been shown to be involved in the early stages of B cells
development (Clarke and Simon, 2019), and sepsis has been
proved to induce peripheral naive B cells reduction (Suzuki
et al., 2016), but whether autophagy is involved in this
reduction remains unclear.

The expression of autophagy-related key genes in circulating
cells was significantly altered in patients with sepsis, some of which
were associated with the diagnosis, prognosis and immune cell
signatures in sepsis. Therefore, key genes and autophagy process
may participate in the pathophysiological process of sepsis by
regulating circulating immune cells.

FIGURE 8
Immune cell signatures and their correlation with autophagy-related key genes. (A,B) Differences in immune cell abundance between control and
sepsis groups in GSE65682 and GSE134347. Student’s t-test or Mann-Whitney U-test were used to compare the two groups. **p < 0.01, ***p < 0.001,
****p < 0.0001. (C,D) Correlation heatmaps of key genes and significantly different immune cell signatures in GSE65682 and GSE134347.
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Similar to our conclusions, two other papers have also
confirmed the importance of ARGs in sepsis. Di et al. (2023)
obtained hub ARGs with diagnostic value in sepsis through
WGCNA, Cytoscape and ROC analysis, and identified their
correlation with differentially infiltrated immune cells. Chen
et al. (2022) used machine learning algorithms to identify hub
ARGs based on survival outcomes and constructed an ARG
classifier for early diagnosis, prognosis, and predicting
immune microenvironment features in sepsis. Compared with
the above studies, our advantages are reflected in the survival
analysis based on survival time, the ceRNA network constructed
based on sequencing results, and the TF-gene regulatory network
based on prediction. And through our study, the importance of
ARGs in sepsis has been further confirmed.

Although our study comprehensively analyzed the potential
roles of peripheral blood ARGs in diagnosis, prognosis and
immune cell signatures in sepsis. However, there are still some
unavoidable limitations. Firstly, the datasets we analyzed were
downloaded from the GEO, so detailed clinical data was not
available. Secondly, due to the small number of clinical samples
we collected, the diagnostic efficiency and prognostic value of the
key genes have not been validated. Thirdly, because of the wide array
of infectious agents and the diversity of severity and stage of sepsis,
the key genes identified may not be representative of all forms of
sepsis. Finally, Limited by the current data, the diagnostic and
prognostic value of key genes in sepsis has not been compared
with other diseases to clarify their specificity. Therefore, collecting
more clinical specimens, constructing our own dataset and
conducting more in-depth and comprehensive analysis will
become one of our future research directions.

Conclusion

This study shed light on the potential roles of peripheral blood
ARGs in sepsis. Firstly, we identified 11 key genes with diagnostic
efficiency and 5 key genes with prognostic value. Subsequently, we
obtained and verified 4 genes including IKBKB, PRKCQ,WIPI1 and

SH3GLB1, which had both diagnostic and prognostic value. Finally,
the abundance of CD8+ T cells, resting memory CD4+ T cells,
M1 macrophages and naive B cells were found to correlate with
the expression levels of most key genes. These findings may facilitate
the development of promising biomarkers for sepsis. More
importantly, it reveals the important role of autophagy in the
pathogenesis of sepsis and provides a strong impetus for more
in-depth study.
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