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Cell adhesion and migration depend on the assembly and disassembly of adhesive
structures known as focal adhesions. Cells adhere to the extracellular matrix (ECM)
and form these structures via receptors, such as integrins and syndecans, which
initiate signal transduction pathways that bridge the ECM to the cytoskeleton, thus
governing adhesion andmigrationprocesses. Integrins bind to theECMand solubleor
cell surface ligands to form integrin adhesion complexes (IAC), whose composition
depends on the cellular context and cell type. Proteomic analyses of these IACs led to
the curationof the termadhesome,which is a complexmolecular network containing
hundreds of proteins involved in signaling, adhesion, and cell movement. One of the
hallmarks of these IACs is to sense mechanical cues that arise due to ECM rigidity, as
well as the tension exerted by cell-cell interactions, and transduce this force by
modifying the actin cytoskeleton to regulate cell migration. Among the integrin/
syndecan cell surface ligands, we have described Thy-1 (CD90), a GPI-anchored
protein that possesses binding domains for each of these receptors and, upon
engaging them, stimulates cell adhesion and migration. In this review, we examine
what is currently known about adhesomes, revise how mechanical forces have
changed our view on the regulation of cell migration, and, in this context, discuss
how we have contributed to the understanding of signaling mechanisms that control
cell adhesion and migration.
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1 Introduction

Cell migration is essential during homeostatic and pathological
processes in multicellular organisms. Cells can migrate individually
or collectively but their movement is rarely random; thus, migration
is directional and cells move commanded by the myriads of cues that
surround them (Shellard and Mayor, 2020). In addition, cellular
events occurring during migration, such as cell adhesion, polarity,
and mechanical strain, are tightly regulated in a spatiotemporal
fashion by these environmental cues, which include the type,
amount, and properties of the extracellular matrix (ECM)
surrounding the cells (Yamada et al., 2019; Yamada and Sixt,
2019; Doyle et al., 2022). Cells interact with the ECM through
integrin receptors to promote cell migration (Wu et al., 2017).

Integrins are α and β transmembrane heterodimers that bind ECM
proteins, as well as cell receptors and soluble ligands. In humans, at
least 18 α and 8 β subunits have been described, generating
24 heterodimers, which recognize and interact with specific ligands.

Integrin activation relies on conformational changes triggered after
interacting with their ligands (outside-in) and cytoplasmic tail-binding
partners (inside-out) (Huttenlocher and Horwitz, 2011).

The initial engagement of integrins with the ECM forms Nascent
Adhesions (NAs), which are small dot-like structures (~0.25 μm
diameter) composed of around 50 integrin dimers that serve as
platforms for the recruitment and activation of numerous proteins
(Changede et al., 2015; Henning Stumpf et al., 2020). NAs are
transient structures with a short lifetime (~1 min) that primarily
form in the lamellipodium of migrating cells. Even though actin
polymerization is necessary for the formation of NAs, they form and
persist independently of the activity of non-muscle Myosin IIA. NAs
that remain assembled grow to form Focal Contacts (FCs). These
FCs are larger in size (1 μm), localize in the lamellipodium-lamella
interface, and their formation depends on myosin activity. FCs are
transient structures that display a 1–2 min lifetime and then mature
into larger and elongated structures known as Focal Adhesions
(FAs) (Figure 1). FAs exhibit lifetimes of several minutes and a broad

FIGURE 1
A conceptualmap of the adhesome. The integrin adhesome is a protein complex that has been defined through careful evaluation of several proteomic
analyses of IACs. These complexes formed by integrin-ligand interaction lead to FA and SF formation, which are essential structures in cell adhesion and
migration, and play a key role duringmechanotransduction. (A) Themicrophotography shows FAs in green (Vinculin staining, Alexa488), SFs in red (Phalloidin,
Alexa594), and thenucleus in blue (DAPI). (B)Basedon the interactions and functionsof IACs during integrin adhesion and signaling, a consensus integrin
adhesome has been curated into four nodes, which contain: i) ILK–PINCH–Kindlin, ii) FAK–Paxillin, iii) Talin–Vinculin, and iv) α-actinin–Zyxin–VASP. These
protein nodes organize in three interconnected layers: i) the integrin signaling layer (ISL) that contains integrin tails, Paxillin, and FAK; ii) the force transducing
layer (FTL) that includes themechanotransducer proteins Talin and Vinculin, which are the physical link between integrins and the filamentous actin (F-Actin);
and iii) the actin regulatory layer (ARL) that contains actin-regulatory proteins, such as VASP, Zyxin, and α-actinin.
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TABLE 1 General functions, classification, gene name, and binding partner’s examples of proteins forming mature focal adhesions.

Focal adhesions (mature adhesions)

General functions Classification Gene name (binding partner’s number) and
examples*

Kindlin Involved in inside-out activation of integrins (Montanez et al.,
2008; Moser et al., 2008; Ussar et al., 2008; Rognoni et al., 2016)

Cytoskeletal
Adapter
Mechanotransducer

FERMT1 (33): β1, β3, β6 integrin, ILK, Plk1, Migfillin,
Kindlin-2, PI(3,4,5)P3, PI(4,5)P2
FERMT2 (171): β1, β2, β3 integrin, Clathrin, ILK, β-
Catenin, Rac, Sos1, Migfillin, Kindlin-1, Smad3, PI(3,4,5)P3,
PI(4,5)P2

Force on Syndecan-4, together with EGFR, activates Kindlin-2-
integrin, leading to RhoA activation (Chronopoulos et al., 2020)

FERMT3 (58): β1, β2, β3 integrin, RACK1, PI(3,4,5)P3,
PI(4,5)P2

Talin Involved in inside-out activation of integrins (Wolfenson et al.,
2013; Sun et al., 2019)

Cytoskeletal
Adapter
Mechanotransducer

TLN1 (232): β1, β2, β3, β5, β7 integrin, Actin, Paxillin,
Vinculin, Kindlin, DLC1

Links integrins with Actin filaments and participates in assembly
of Actin filaments (Chen et al., 1995; Calderwood and Ginsberg,
2003; Jiang et al., 2003; Klapholz et al., 2015)

TLN2 (44): Rac2, Zyxin

Tensile force applied on Syndecan-4 induces Talin recruitment
(Chronopoulos et al., 2020)

FAK Phosphorylates targets such as Paxillin and cortactin during FA
dynamics (Schaller, 2010; Tomar et al., 2012; Tapial Martinez
et al., 2020; Le Coq et al., 2022)

Tyrosine Kinase
Mechanotransducer

PTK2 (367): αv, β1, β3, β4 integrin, Paxillin, Src, Fyn, Lck,
CAS, Grb2, ROCK1, Talin, Akt

Mechanical strain can activate FAK (Li et al., 1997; Seong et al.,
2013; Bauer et al., 2019)

Thy-1 induces FAK phosphorylation on Y397 (Leyton et al., 2001;
Rege et al., 2006; Kong et al., 2013; Avril et al., 2017)

Syndecan-4 modulates FAK phosphorylation (Wilcox-Adelman
et al., 2002; Valdivia et al., 2020)

Paxillin Links the ECM to the actin cytoskeleton and transduces
mechanical cues (Zaidel-Bar et al., 2007b; Parsons et al., 2010;
Widmaier et al., 2012)

Cytoskeletal scaffold
Actin binding

PXN (368): α4, αv, β1, β3 integrin, Actin, CSK, Fyn, ILK,
PAK, Src, ROCK1, FAK, Talin, VASP

Thy-1 induces the recruitment of paxillin to FAs (Leyton et al.,
2001)
Recruits Syndecan-4 to FAs by binding syndesmos (Denhez et al.,
2002)

Integrins Mechanoreceptors that link the ECM with the cytoskeleton. They
sense tensile force and transduce it into chemical signals to affect
cell function (Hynes, 2002; Campbell and Humphries, 2011;
Widmaier et al., 2012; Kechagia et al., 2019; Kolasangiani et al.,
2022)

Cell adhesion receptors ITGB1 (394): ILK, ICAM, VCAM, FAK, Paxillin, Talin,
Cdc42, Rac1-3, RhoA, B, C, D, F, G, H, J, Q, U, and V,
Kindlin 1–3, α-actinin, Collagen, Fibronectin

They recruit hundreds of proteins to their cytoplasmic domains to
form anchoring points for the cell with their substrate (Zaidel-Bar
et al., 2007a; Winograd-Katz et al., 2014)

ITGB3 (94): ILK, FAK, Akt1, VEGFR2, PECAM1, Thy-1,
Talin, FGFR1, PDGFRA-B, PDK1, Src, Vimentin,
Fibronectin, Vitronectin

They cooperate with Syndecan-4 to form FAs (Couchman and
Woods, 1999; Saoncella et al., 1999; Bass et al., 2007; Araki et al.,
2009; Morgan et al., 2013; Nikmanesh et al., 2019)

ILK (Integrin-
like kinase)

ILK is recruited to β1 and β3 integrin cytoplasmic tails and may
indirectly associate with actin through Parvin and Paxilin
(Fukuda et al., 2009; Choi et al., 2012; Vakaloglou and Zervas,
2012; Widmaier et al., 2012; Elad et al., 2013)

Pseudokinase
Scaffold

ILK (323): β1, β2, β3, α5, αv integrin, Caveolin-1, Paxillin,
Akt1, Cdc42, Rac1, RhoA, F, J, Q, T and V, Csk, Ect2,
Fibronectin

α-Parvin Parvin is part of the ILK signaling axis Cytoskeletal PARVA (76): Actin, ILK, Coronin 1b, Kindlin 1–3, Paxillin,
Rac1-2, RhoQBinds to Actin through CH domains. Associates with actin

filaments (Olski et al., 2001; Legate et al., 2006; Vakaloglou and
Zervas, 2012; Ain and Firdaus, 2022)

PARVB (19): ILK, ARHGEF6, Kindlin3, ParvinA, RhoF

PARVG (49): ILK, Cadherin3

α-actinin Links integrins to the actin cytoskeleton Cytoskeletal
Actin binding
Actin crosslinking

ACTN1 (351): Palladin, FAK, Src, Zyxin, Ect2, ICAM1 and
5, RhoD and F, Talin, VASPNA growth is accompanied by recruitment of α-actinin (Bois

et al., 2006; Gardel et al., 2010; Roca-Cusachs et al., 2013;
Legerstee et al., 2019)
Links Syndecan-4 to the actin cytoskeleton (Greene et al., 2003;
Okina et al., 2012)

(Continued on following page)
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spectrum of sizes (1 μmW x 3–5 μm L) due to their dynamic
maturation process. Actin crosslinking mediated by α-actinin and
Myosin IIA mediates the initial maturation of FAs, which directly
bind to the actomyosin cytoskeleton to transduce cellular strain.
Contractile actin microfilament bundles and Myosin crosslinked by
several proteins form Stress Fibers (SFs) (red staining, Figure 1), which
are involved in cell adhesion, migration, and mechanotransduction.
SF contractility can either help FA maturation or promote their
disassembly (Echtermeyer et al., 2001; Oakes et al., 2012; Burridge
and Guilluy, 2016; Livne and Geiger, 2016).

Cell migration requires the integration and coordination of
specific FA dynamics at the front, center, and rear of the cells.
Migrating cells continuously form and disassemble their adhesions
at the leading edge. FAs mature at the front edge and towards the
side and back of the cells. Then, actin SFs attached to FAs contract
and retract the rear end, and lastly, adhesions at the tail disassemble,
resulting in forward movement. This process of constant assembly/
disassembly of FAs is termed adhesion turnover (Webb et al., 2002).
FA turnover is tightly regulated in a spatiotemporal manner by actin
depolymerization and reorganization (Alexandrova et al., 2008;

Shemesh et al., 2009), microtubule dynamics (Small et al., 2002),
Calpain proteolysis (Franco and Huttenlocher, 2005), integrin
endocytosis (Laukaitis et al., 2001; Broussard et al., 2008; Ezratty
et al., 2009), and mechanical tension (Crowley and Horwitz, 1995;
Wolfenson et al., 2011), among others. Thus, the front-to-rear
polarity that governs cell migration is tightly regulated by many
signaling pathways and feedback mechanisms that control
cytoskeletal and FA dynamics.

Hundreds of proteins have been described within mature FAs.
These proteins constitute “The Cell Adhesome”, composed of many
types of proteins: adhesion receptors, signaling proteins, enzymes
(protein kinases, phosphatases, and proteases), and cytoskeletal,
adapter, and scaffold proteins, which interact with many others,
thus forming large and complex networks (examples and references
in Table 1) (Zaidel-Bar et al., 2007a). When multiple adhesome
components are mutated or dysregulated, these adhesive structures
mediating cell–ECM interactions lead to abnormal migration and
invasion, which have been implicated in pathological conditions,
such as cancer and cardiovascular diseases (Winograd-Katz et al.,
2014; Byron et al., 2015).

TABLE 1 (Continued) General functions, classification, gene name, and binding partner’s examples of proteins forming mature focal adhesions.

Focal adhesions (mature adhesions)

General functions Classification Gene name (binding partner’s number) and
examples*

Vinculin Anchors F-actin to the membrane in cell-cell and cell-ECM
contacts (Parsons et al., 2010; Carisey and Ballestrem, 2011;
Legerstee et al., 2019; Austin et al., 2023)

Cytoskeletal adapter
Actin binding

VCL (283): α4, α5, β1 integrin, α-actinin, Actin, Coronin2B,
FAK, Paxillin, Src, Talin, VASP, Caveolin, VEGFR2,
FGFR1, LPP

Most prominent protein marker of FAs
Concentrates at sites of fast-growing ends of actin filaments

Interacts with α-actinin (Jockusch and Isenberg, 1981; Bois et al.,
2006; Carisey and Ballestrem, 2011; Thievessen et al., 2013)

Thy-1 induces Vinculin recruitment into FAs (Leyton et al., 2001)

Thy-1 reduced expression decreases Vinculin levels (Lee et al.,
2013)
Syndecan-4 stimulation induces Vinculin recruitment to FAs
(Bellin et al., 2009; Cavalheiro et al., 2017)

Zyxin Concentrates in FAs, cell-cell junctions, and actin SFs (Crawford
and Beckerle, 1991; Vasioukhin et al., 2000; Yoshigi et al., 2005;
Hansen and Beckerle, 2006; Sperry et al., 2010; Legerstee et al.,
2019)

Cytoskeletal
Zinc-binding
Adapter

ZYX (322): α-actinin, Actin, ARHGEF 6, 9, 10, 19, and 39,
Ajuba, VASP, ARHGAP 5, 9, 11b, 21, 31, 32, and 36,
Kindlin-2, Paxillin, Talin, Vinculin

Acts as a mechanotransducer and can regulate gene expression
(Yoshigi et al., 2005; Smith et al., 2013; Wang et al., 2019)

Localizing VASP in FAs. Indirectly regulates Actin assembly by
binding VASP (Reinhard et al., 1995; Drees et al., 2000; Fradelizi
et al., 2001)

VASP Promotes actin polymerization by interacting with the profilin:G-
actin complexes and the free barbed ends of F-actin, facilitating
the transfer of monomeric Actin to the barbed end, and
preventing the activity of capping proteins (Huttelmaier et al.,
1998; Bear et al., 2002; Barzik et al., 2005; Hansen and Mullins,
2010)

Cytoskeletal
Actin polymerization
factor

VASP (310): Actin,LPP, Zyxin, Akt1, Cdc42, MRTFA, Grb2,
Vinculin, α-actinin, Kindlin-2, α4 integrin, Palladin, Pard3,
ZO-1 and 2, VCAM1

Myosin II Generates mechanical force. Mechanical strain generated by
Myosin II stimulates FA maturation and eventually, disassembly
(Wakatsuki et al., 2003; Clark et al., 2007; Vicente-Manzanares
et al., 2009; Pasapera et al., 2010)

Cytoskeletal
Actin-based motor
protein

MYH2 (46): α-actinin, IQGAP3, Tropomyosin-1,
Supervillin

Thy-1 increases the levels of MLC phosphorylation on serine 19
(Perez et al., 2021)

(*) Interaction information was obtained from the National Center for Biotechnology Information (NCBI) and the National Library of Medicine (NLM) (https://www.ncbi.nlm.nih.gov/gene).

Interacting partners were identified by affinity capture, co-fractioning, two-hybrid, affinity capture-MS, and proximity label-MS.We show the gene name and the number of interaction partners

(#) described for the human gene, followed by some examples of binding partners that participate in cytoskeletal dynamics. CH: calponin homology, ECM: extracellular matrix, NA: nascent

adhesion, FA: focal adhesion, SF: stress fiber.
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Cells migrate in response to an enormous amount of cues, which
have been separated in diverse categories according to the type of signal
[reviewed in (Shellard and Mayor, 2020; SenGupta et al., 2021)]. The
best described modes of cell migration are chemotaxis (soluble chemical
cues), haptotaxis (immobilized cues), and durotaxis (mechanical cues).
In chemotaxis, soluble chemical ligands bind to membrane receptors
that concentrate at the cell front, thus leading to polarization of signaling
molecules (SenGupta et al., 2021). During haptotaxis, gradients of
immobilized ligands in extracellular sites are detected by molecules
in FAs, promoting signals that are like those triggered by chemical
signals (King et al., 2016). In durotaxis, mechanical forces exerted by
ECMrigidity (Stephens et al., 2008; SenGupta et al., 2021), also known as
stiffness, or pulling forces exerted by cell-cell interaction, transduce
mechanical signals in a process known as mechanotransduction (Rens
and Merks, 2020). Overall, all these signaling pathways, induced by
different cues, translate into modifications of the actin cytoskeleton that
regulate directional cell migration.

ECM proteins are the most typical integrin ligands but not the
only ones. Other ligands include growth factor receptors that regulate
cell proliferation, differentiation, and migration; as well as other cell
surface receptors that mediate cell-cell communication (Brizzi et al.,
2012; LaFoya et al., 2018). The latter category includes the integrin
receptor (ligand) identified by our group, Thy-1, also known as CD90
(Leyton et al., 2001). Thy-1 is a cell adhesion molecule that contains a
single Arg-Gly-Asp (RGD)-like peptide, which binds and activates
different integrins, thus favoring communication between cells. Thy-1
also possesses a heparin-binding domain (HBD), which activates
Syndecan-4, an equally important player of the cell migration
process (Valdivia et al., 2020). Importantly, evidence reported by
our group has contributed to identifying two participants of the
integrin adhesome: Thy-1 as a cellular receptor for integrins
(Leyton et al., 2001; Zaidel-Bar et al., 2007a), and the cell
polarization protein Partition-defective 3 (PAR-3) (Valdivia et al.,
2020). We initially described Thy-1 as the binding partner of integrin
β3 (Leyton et al., 2001), and subsequently, Thy-1 was categorized by
Geiger and collaborators as an associate component of the avb3
integrin adhesome (Zaidel-Bar et al., 2007a), whereas PAR-3 was
reported to interact with Syndecan-4 to control FAK phosphorylation
(Valdivia et al., 2020). Additionally, the interactions between Thy-1
and the mechanoreceptors integrin and Syndecan-4 led us to explore
the effect of force on Thy-1-induced effects (Burgos-Bravo et al., 2020;
Perez et al., 2021), which we discuss in this review.

In this article, we also describe the general structure and
organization of adhesomes, we portray mechanobiology as an
important regulator of adhesion and migration, and finally, we
contrast and discuss how 20 years of our research converged and
helped to elucidate new mechanisms in the context of cell adhesion
and migration mediated by the interaction of Thy-1 with
αvβ3 integrin and Syndecan-4.

2 Adhesomes: a growing list of proteins
participating in adhesion and migration

2.1 The integrin adhesome

The term adhesome was first used by Richard Hynes in 2006 to
describe the cluster of cell-cell and cell-matrix adhesion receptors in

an organism (Whittaker et al., 2006). Benny Geiger and coworkers
then expanded this concept to include the entire network of
structural and signaling proteins that regulate the adhesion of
cells to the ECM (Zaidel-Bar et al., 2007a; Zaidel-Bar and Geiger,
2010; Winograd-Katz et al., 2014). Since the major cell-matrix
adhesion receptors are integrins, the adhesome containing this
type of receptor is currently known as the “integrin adhesome”
and contains cytoskeletal proteins recruited to integrin
cytoplasmatic tails, which mediate integrin signaling functions
(Winograd-Katz et al., 2014; Horton, 2021). Therefore, integrins
and the signaling emanating from these receptors are the central
components of the adhesome.

An integrin adhesome composed of 2,412 proteins was
generated by integrating several integrin adhesion complex (IAC)
proteomes (Chastney et al., 2021). Different biochemical approaches
and rigorous curation of seven available data sets helped define a
consensus integrin adhesome composed of 60 core proteins, such as
Palladin, Vinculin, Paxillin, FAK, Tensin, and VASP (Horton et al.,
2015). Of these 60 proteins, 42 were clustered into four nodes based
on their interactions and previous functional implications in
integrin adhesion and signaling: i) ILK–PINCH–Kindlin, which
links signaling of receptor tyrosine kinases to integrins, ii)
FAK–Paxillin, a node that facilitates FA turnover, iii)
Talin–Vinculin, which provides a link between the FA complex
and the cytoskeleton, and iv) α-actinin–Zyxin–VASP, which
connects SFs to integrins through Vinculin (Horton et al., 2015)
(Figure 1). This core integrin adhesome fulfills central functions of
integrin adhesions: linkage of the ECM to F-actin, regulation of
F-actin organization and dynamics, and signal transduction. The
other 18 proteins did not have reported functions at FAs or
interactions with other adhesome members (Han and de Rooij,
2016).

Decades of investigations have revealed that the large
repertoire of FA proteins found in integrin adhesomes
organizes at the nanoscale level in three interconnected layers
or modules (Kanchanawong et al., 2010) running parallel to the
cell membrane, rather than in three independent layers.
Advances in three-dimensional super-resolution fluorescence
microscopy techniques revealed these three distinct
nanolayers, where integrins and actin are vertically separated
by a ~40 nm FA core region consisting of multiple protein-
specific strata: i) the integrin signaling layer (ISL) lies closest
to the adherent membrane (within ~10–20 nm) and contains the
cytoplasmic tails of integrins that interact with the signaling
proteins Paxillin and FAK; ii) the actin-regulatory layer (ARL) is
located approximately 50 nm below the ISL, associates with actin
SFs, and contains actin-modulating proteins, such as Zyxin,
VASP, and α-actinin; and iii) the force transducing layer
(FTL) lies in between the ISL and ARL, and contains Talin
and Vinculin (and possible interactors), which form a physical
link that transmits force between integrins and the actin
cytoskeleton (Kanchanawong et al., 2010; Case and Waterman,
2015; Xia and Kanchanawong, 2017) (Figure 1). Each of these
three nanolayers contains the main proteins found in three of the
four integrin adhesome interaction nodes mentioned above. The
head domain of Talin interacts with the cytoplasmic tail of
integrins, while its C-terminal rod domain binds F-actin, and
these interactions physically link the ISL and ARL (Calderwood
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and Ginsberg, 2003; Yao et al., 2014). On the other hand,
integrins and associated complexes segregate laterally into
nanoclusters with distinct integrin activities and mechanical
properties (Shroff et al., 2007; Spiess et al., 2018). As reported,
the binding of proteins, such as Paxillin, VASP, Zyxin, and
Vinculin, to FAs is dynamically regulated according to FA
orientation (FAs aligned to the long-axis or perpendicular to
the cell edge) and location (FAs close to or away from the cell
edge) (Legerstee et al., 2019). Additionally, the composition of
the nanolayers in FAs is very dynamic, and could constantly
change depending on various factors, such as the cell
microenvironment, ECM stiffness, cell contractility, or
signaling due to phosphorylation/dephosphorylation of many
proteins (Manninen and Varjosalo, 2017; Tang et al., 2018).
These dynamic changes in the organization of FAs and their
components can affect different cellular responses, including cell
adhesion and migration.

2.2 Regulation of adhesomes by protein
domains

Adhesomes are enriched in various protein domains, such as
the Pleckstrin homology (PH) and FERM domains, which target
proteins to the plasma membrane; the Calponin homology (CH)
domain, which binds to F-actin and plays essential roles in
cytoskeletal dynamics and signaling; the Src homology 2 (SH2)
domain, which interacts with phosphorylated tyrosine residues;
and the armadillo (ARM) and LIM domains, which mediate
specific protein-protein binding (Liu and Lauffenburger, 2009).
One of the most important domains found in FA proteins is the
SH2 domain. Tyrosine-specific kinases and phosphatases within
FAs regulate the phosphorylation status of their substrates,
creating docking sites for proteins with SH2 domains (Pawson
et al., 2001). The transient localization of tyrosine-specific kinases
and phosphatases within FAs probably plays a key role in
dynamically controlling the association of other SH2 domain-
containing FA proteins within FAs and thus, regulates the
composition of FAs and FA-mediated signaling. For instance,
FAK signaling results from its autophosphorylation on Tyr-397
(pY397) in response to integrin-mediated adhesion, allowing
interactions with multiple SH2-containing signaling proteins
that bind to this site, including Src, PI3K, Grb7, PLCγ1, and
Nck-2 (Wu et al., 2015). Src is a non-receptor protein tyrosine
kinase that contains an N-myristoylation site, as well as SH3, SH2,
and kinase domains (Kaplan et al., 1994). Once recruited, Src
phosphorylates two FAK-interacting proteins, Crk-associated
substrate (CAS) and Paxillin, which regulate the activation of
Rho-family GTPases controlling cell motility (Hanks et al.,
2003). Among the phosphatases within FAs, the SH2-domain-
containing inositol 5′-phosphatases (SHIPs), SH2-domain-
containing PTP2 (SHP2), and SH2-domain-containing protein
tyrosine phosphatase substrate 1 (SHPS1) have been found to
bear SH2 domains that are required for locating in proximity to
their target proteins. These phosphatases decrease the number of
docking sites for proteins recruited to FAs and inactivate kinases
(Saxton et al., 2000; Sattler et al., 2001). Of note, many other
phosphatases, such as PP2A, SAP1, PTP-PEST, and PTP1B, are

targeted to FAs to regulate adhesion and migration (Larsen et al.,
2003; Frijhoff et al., 2014). In the case of LIM domains, the
biochemical and structural nature of most of the proposed LIM
domain-mediated interactions has not been precisely defined yet.
However, many proteins containing multiple LIM domains are
recruited to FAs under mechanical tension, such as LIMK1 and
LIMK2, which stabilize the actin cytoskeleton by phosphorylating
and inactivating Cofilin (Schiller and Fässler, 2013; Sun and
Alushin, 2022). Therefore, LIM domains were postulated as
tension sensors and localizers, targeting proteins to specific
subcellular locations, such as tensioned or injured F-actin
networks (Schiller et al., 2011; Smith et al., 2013).

These examples of regulation by protein domains present in
many components of the adhesome are helping us to understand the
structural interactions required for the physiological functioning of
FAs at the level of their assembly, mechanosensing, and signal
transduction and how these processes control cell migration
(Ripamonti et al., 2021).

2.3 Regulation of adhesomes by molecular
switches

The interactions between the various adhesome components
regulate two major functions of adhesion sites: first, their role as
“scaffolds”, which allows the physical interaction between the ECM-
bound cell and the cytoskeleton, leading to the assembly of tissues
with a particular structure and mechanical properties; and second,
their “signaling” activity, through which cells can sense the chemical
and mechanical properties of the external environment and respond
accordingly by activating signaling pathways that regulate cell
structure, dynamics, behavior, and fate (Winograd-Katz et al.,
2014). More than half of the links interconnecting different
adhesome components can be switched on or off by signaling
elements, and some of these regulated interaction switches are
conformational switches, GTPase switches, lipid switches,
proteolytic switches, and phosphorylation switches (kinase/
phosphatase balance). During conformational switches, adhesion
proteins can be found in a folded, inactive state, and after binding to
a lipid or a GTPase, being phosphorylated/dephosphorylated, or
suffering mechanical strain, they change conformation into an open,
active state that exposes new binding sites (Zaidel-Bar et al., 2007a).
Integrins are a well-known example of a conformational switch
because they thermodynamically fluctuate between different
conformations. They are kept latent in a low-affinity
conformation by inhibitory molecules. Endogenous inhibitory
proteins like shank-associated RH domain-interacting protein
(SHARPIN) and mammary-derived growth inhibitor (MDGI)
maintain the bent conformation of integrins by binding to the
cytoplasmic tail of the α integrin subunit to inhibit β1 integrin
(Bouvard et al., 2013). Other inhibitory proteins are integrin
cytoplasmic-associated protein-1 (ICAP-1) and Filamin A. ICAP-
1 inactivates β1 integrins, while Filamin A binds to β1, β3, and
β7 integrin cytoplasmic tails, stabilizing their bent conformation
[reviewed by (Bouvard et al., 2013; Pang et al., 2023)]. Integrins then
switch to a high-affinity conformation after interacting with the
ECM. This high-affinity conformation is stabilized by mechanical
forces transduced via Talin and Kindlin. Tensional forces induce
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integrin conformational changes both outside (headpiece extension)
and inside the cell (leg opening) (Puklin-Faucher and Vogel, 2009;
Thinn et al., 2018) and thereby, promote ligand binding and
recruitment of adapter proteins in the cytoplasm to strengthen
the integrin and actomyosin linkage. Therefore, adhesion is
further stabilized by the formation of catch bonds (characterized
by an increase in the lifetime of the bond after increasing the force
applied) and integrin clusters (Askari et al., 2009; Sun et al., 2019;
Kolasangiani et al., 2022). Each of the three adhesome vertical layers
or modules mentioned in Section 2.1 contains mechanosensitive
proteins that can undergo conformational changes or post-
translational modifications under tensile forces, thus leading to
changes in force transduction and/or induction of biochemical
signaling, such as activation of FAK, Src, and Rho family
GTPases (Sun et al., 2016).

The Rho family of small GTPases are also considered molecular
switches that cycle between an “off” state (GDP-bound) and an “on”
state (GTP-bound). Moreover, their activity is regulated by GTPase-
activating proteins (GAPs) that accelerate their intrinsic GTPase
activity through guanine nucleotide exchange factors (GEFs) that
induce the release of GDP to allow their activation, or by guanine
nucleotide dissociation inhibitors (GDIs), which stabilize the
inactive GTPases (Arthur et al., 2002; Burridge and Wennerberg,
2004).

Among the lipid switches, the most studied is the PI(4,5)P2 to
PI(3,4,5)P3 switch catalyzed by PI3K. Phosphoinositides differentially
distribute in migrating cells, where PI(4,5)P2 localizes at the leading
edge and PI(3,4,5)P3 at the rear end. In particular, PI(4,5)P2 has been
related to FA turnover at the leading edge (Ijuin, 2019; Posor et al.,
2022). Additionally, phosphoinositides participate in the
oligomerization of receptors, such as the heparan sulfate
proteoglycan Syndecan-4, an event necessary for the activation of
its downstream signaling (Oh et al., 1997).

Lastly, one of the best-studied examples of a proteolytic switch is
the cysteine protease Calpain. Calpain is activated by increased
calcium concentration and cleaves various proteins of the integrin
adhesome. Calpain is involved in FA turnover at the rear end by
inducing proteolysis of FA proteins, such as Talin, FAK, Paxillin,
and Vinculin (Chan et al., 2010; Cortesio et al., 2011; Ono and
Sorimachi, 2012). Therefore, Calpain could represent a mechanism
for regulating FA turnover, which is important in processes like cell
adhesion, spreading, and migration (Franco et al., 2004; Wells et al.,
2005; Rodriguez-Fernandez et al., 2021).

Overall, processes such as cell adhesion and migration are
cyclically regulated and tightly coordinated by the linked
interconnections occurring within the adhesome, where several of
the proteins involved are switched on and off to maintain the
dynamics of the process.

2.4 Regulation of cell migration by FA
dynamics

FA dynamics or turnover refers to the cyclic assembly and
disassembly of FAs. In migrating cells, FA turnover is precisely
controlled by the coordination of several signaling pathways and the
modulation of tensile forces (Broussard et al., 2008). The initial
assembly of FAs is mediated by actin polymerization and

treadmilling, which occurs either at the edge of the lamellipodium
or at the tip of the invading protrusion. Application ofmechanical stress
by the treadmilling of actin to nearby adhesion molecules (mostly
integrins and associated components, such as Talin, Vinculin, and FAK/
PYK2) then triggers the assembly of functional adhesion structures
(Revach et al., 2020). Integrin engagement, combined with the local
tensile force, is essential and sufficient to activate these
mechanosensitive adhesome components, resulting in the
development and growth of FCs into FAs. The subsequent assembly
and growth of an “adhesion plaque” is enriched with actin-binding
adhesome components (including Talin and Vinculin) and also
augments outward pressure by acting on the leading edge of the
lamellipodium, thus driving cell migration (Revach et al., 2020).
These specific events in FA dynamics occurring in different
subcellular locations create a complex adhesion and migration
machinery that is essential for cellular function.

Evidence has shown that FA disassembly is promoted by the
cleavage of FA proteins in the rear end, protein phosphorylation,
and the dissociation of adapter proteins (Parsons et al., 2000;
Legerstee and Houtsmuller, 2021; Mishra and Manavathi, 2021).
Other modes of FA disassembly involve microtubules, which
traditionally have been considered key to triggering FA turnover,
due to the crosstalk between microtubules and actin. Forces within
FAs may exert feedback on microtubules to complete FA turnover,
and vice versa (Burridge and Guilluy, 2016; Gupta et al., 2016). The
evidence indicates that polymerizing microtubules have a role in the
activation of the Rho family member Rac, which in turn promotes
actin polymerization, membrane protrusion, FA turnover, and
migration (Seetharaman and Etienne-Manneville, 2019). As
reported in astrocytes, acetylated microtubules control the
distribution and dynamics of FAs and the release of GEF-H1
from microtubules to the cytosol, where it activates RhoA-
actomyosin contractility and generates forces to promote
collective migration of astrocytes (Chang et al., 2008;
Seetharaman et al., 2022). Therefore, as for the actin
cytoskeleton, microtubules also play a crucial role in FA dynamics.

Indeed, pioneering live imaging experiments showed that
microtubules use actin SFs as tracks to direct themselves to the
vicinity of FAs (Kaverina et al., 1998). This microtubule guidance
along SFs requires the crosslink protein MACF1/ACF7 to reach FAs
(Wu et al., 2008). Microtubules are then captured and stabilized
around FAs through their interaction with KANK1 and Talin, which
in turn, bind to actin (Rafiq et al., 2019). Microtubules retract and
regrow to contact FAs several times until FAs reach full maturation
(Seetharaman and Etienne-Manneville, 2020). Fully mature FAs are
then “sensed” by microtubules, which deliver autophagosomes to
the FAs, and concomitantly retract (Kenific and Debnath, 2016).
Autophagosomes contain LC3, which recognizes the cargo receptors
NBR1 and c-Cbl that interact with Paxillin when phosphorylated by
Src (Sharifi et al., 2016; Chang et al., 2017). These interactions
activate signaling events involved in the removal of phosphorylated
FA components that may lead to FA disintegration (Sandilands
et al., 2011; Lu et al., 2021). Although the process of autophagy to
selectively engulf FAs is poorly understood, it represents another
mode of FA dynamics regulation requiring the communication of
FAs with microtubules.

Another study in lung microvascular endothelial cells revealed
that manipulation of β3 integrin expression leads to β3 integrin-
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dependent changes in microtubule behavior (Atkinson et al., 2018).
According to these authors, engagement of αvβ3 integrin with
fibronectin (FN) at mature FAs localizes a Rcc2/Anxa2/
Rac1 complex to these sites to actively destabilize microtubules
(perhaps by controlling its exposure to GEFs). Interestingly, when
αvβ3 integrin was not present, the complex associated instead with
α5β1 integrin and exerted the opposite effect on microtubules. This
re-positioning of Rac1 activity means that this small GTPase plays a
role in microtubule-linked endothelial cell migration only when
αvβ3 integrin is not present in mature FAs (Atkinson et al., 2018).

Another group of cytoskeletal elements that interplay with actin
to control FA maturation is septins [see review in (Cavini et al.,
2021)]. Septins are GTP-binding proteins that form oligomeric
complexes, which further assemble into filaments, gauzes, and
rings that interact with the membrane and the cytoskeleton.
Knockdown of SEPT2 or SEPT9 in migrating MDCK cells led to
a higher number of smaller FAs closer to the cell edge (Dolat et al.,
2014). Although assembly and disassembly rates of NAs were the
same as in control cells, the stabilization phase was abolished in
SEPT2 knockdown cells, resulting in short-lived FAs that failed to
mature (Dolat et al., 2014). SEPT2 knockdown in cancer-associated
fibroblasts was also reported to lead to fewer FAs, whereas SEPT2 or
SEPT9 knockdown in murine and human melanoma cells led to a
decrease in FA size (Calvo et al., 2015; Farrugia et al., 2020). How
septins affect FA maturation and, thus the lifetime of FAs is still not
clear since septins are largely excluded from FAs, as shown by
immunostainings in NRK, MDCK, and U2OS cells. The role of
septins in FA stabilization is most likely due to their association with
FA-anchored SFs. The current hypothesis is that septins, through
their actin filament cross-linking activity, maintain the integrity and
organization of SFs, which in turn are required for the stabilization
and maturation of FAs (Livne and Geiger, 2016).

Therefore, the evidence revealed that timely FA turnover and
directed cell migration depend on the interplay between many
molecular factors beyond microtubules (Mavrakis and Juanes,
2023).

2.5 Advances in the understanding of how
integrin adhesomes regulate migration

The main challenges in studying the molecular functionality of
adhesomes have been: i) the molecular heterogeneity of integrin
adhesions within and between different cellular systems, ii) the large
number of adhesome components, iii) the participation of multiple
“functional switches” that can turn adhesome components “on” or
“off”, and iv) the overall dynamic nature and plasticity of the adhesion
system as a whole (Winograd-Katz et al., 2014). To add to this
complexity, the repertoire of ECM components (collectively known
as the “matrisome”), is rather wide and includes over 1,000 “core” and
“associated” components (Naba et al., 2016). Many integrin-associated
proteins and their differential interaction with the plasma membrane
form a puzzle with 200 to 1,000 different pieces, for which there is only
limited structural and biochemical information. Furthermore, many of
these adhesome proteins undergo conformational changes under
tensional stress, thus increasing the intricacy of adhesion sites
(Bachmann et al., 2019). Due to the underlying complexity of the
matrisome and adhesome, it has been historically challenging to

undertake mass spectrometry-based profiling for the characterization
of the ECM and IACs because of the low affinity and transient nature of
the molecular interactions occurring at these sites. Despite these
difficulties, the use of cell-permeant chemical cross-linkers improved
the recovery of IAC proteins bound to either FN-coated microbeads or
plastic dishes (Schiller et al., 2011; Horton et al., 2015). These advances
led to the characterization of IACs from several cell types. Even though
there is a consensus adhesome, the composition and stoichiometry of
the meta-adhesome depend on the cell type being analyzed, the
integrin-receptor repertoire expressed by that cell type, the turnover
of FAs, and the experimental conditions that are used. Recent technical,
methodological, and bioinformatic advances in proteomics have shown
promise in characterizing the matrisome and topology of adhesome
networks in both health and disease (Krasny and Huang, 2021). In
addition, tight communication between the matrisome and adhesome
controls the cytoskeleton and thus, cell migration [for more details, see
(Krasny and Huang, 2021)].

Cell adhesion receptors like Thy-1 form part of the associated
components of the adhesome due to their interaction with α and β
integrin subunits, which are intrinsic adhesome components
(Leyton et al., 2001; Zaidel-Bar et al., 2007a). Our group was the
first to report the presence of a single RGD-like peptide in a
conserved sequence of the human, rat, and mouse Thy-1
polypeptide (Leyton et al., 2001). The tripeptide found in Thy-1
was an RGD-like peptide (RLD), which recognizes the αvβ3 integrin
present in astrocytes (Leyton et al., 2001; Hermosilla et al., 2008).
This association, which reportedly occurs with many other integrins
(Leyton et al., 2019), was recognized as part of the dense connectivity
of the adhesome network (Zaidel-Bar et al., 2007a), and was also
backed up by our findings, reporting that FAs formed due to Thy-1/
integrin binding contain many proteins described in IACs [(see
Section 2.1, and (Leyton et al., 2001)].

We additionally described that Thy-1 induces cell migration in
astrocytes by interacting not only with integrins but also with
Syndecan-4, which plays a known role in cell movement (Avalos
et al., 2009). Using mass spectrometry to identify potential
Syndecan-4-binding partners, we discovered that PAR-3 was one
of the binding proteins, through an interaction dependent on
the carboxy-terminal EFYA sequence present on Syndecan-4.
When PAR-3 expression was reduced, Thy-1-induced cell
migration and FA disassembly were impaired (Valdivia et al.,
2020). PAR-3, a protein that plays a central role in establishing
and maintaining cell polarity in various cell types (Harris, 2017),
was thus defined as a novel adhesome-associated component,
with an essential role in FA disassembly during polarized cell
migration.

3 How mechanobiology has changed
our view on cell migration

Cell migration aids in relevant physiological activities, such as
embryonic development, morphogenesis, and wound healing. Since
living cells are constantly exposed to mechanical stimulation, cell
migration is influenced not only by chemical but also by mechanical
cues (Mierke, 2020; SenGupta et al., 2021). Thus, forces coming from
the extracellular (outside-in) and intracellular (inside-out) environment
can control many cellular responses, including migration.
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Mechanosensitive receptors expressed at the cell surface interact
with the surrounding ECM or receptors on other cells to transduce
force toward the inside of the cell. Integrins are considered the
classical mechanoreceptors. The engagement of integrins with their
ligands induces the formation of FAs and SFs to generate, transmit,
and sense mechanical tension (Baker and Zaman, 2010; Schwartz,
2010; Sun et al., 2016). As previously mentioned, 3D super-
resolution microscopy has defined FA nanoarchitecture,
emphasizing a central force-transduction layer (FTL; see Section
2.1) containing the proteins Talin and Vinculin, which are essential
during mechanotransduction because they undergo conformational
changes after tension [reviewed in (Kanchanawong et al., 2010; Yan
et al., 2015; Haining et al., 2016; Legerstee and Houtsmuller, 2021)].
This intricate FA architecture is tightly and timely controlled. The
initial clustering of integrins sequentially recruits proteins such as
Talin, Paxillin, and lower levels of Vinculin and FAK, to form NAs
that grow into FCs. These FCs are small (< 1 μm2; e.g., 0.11 μm2 in
NIH3T3 cells growing on FN) and unstable since they cannot
sustain the tension of the cytoskeleton. Paradoxically, using a
tension gauge tether probe that binds αvβ3 integrin, Wang and
Ha showed that in epithelial-like cells derived from the ovary (CHO-
K1), a tension of 43 pN was required for the initial cell adhesion
mediated by FCs (< 15 min after seeding), and that 56 pN was
enough to mediate FA and SF formation (~1 h after seeding) (Wang
and Ha, 2013; Austin et al., 2023), supporting the idea that tension is
also necessary for FCs to mature into FAs (< 1 μm2).

SFs mediate contractility mainly by Myosin II and α-actinin
activity. The tension generated by SFs can directly act on FA
proteins, regulating their function. Some of these proteins form
catch bonds (bond lifetime increases with force), others can form slip
bonds, where the bond lifetime decreases with increasing force, and a
third group can form an ideal bond that is insensitive to mechanical
stress. For instance, selectins and integrins can have a combined
catch-slip bond behavior depending on the intensity of the strain
that they sense. Experiments using force spectroscopy demonstrated
that increasing force first prolonged and then shortened the lifetime
of the bond between P-selectin and its ligand, indicating that a catch-
to-slip bond switch occurs under force application. The mechanical
properties of selectins when binding its ligands are essential for the
adhesion of immune cells to the endothelium, and their subsequent
detachment from the vessel wall when forces become too high due to
blood flow (Sundd et al., 2013; Morikis et al., 2017). Studies using
atomic force microscopy and purified α5β1 integrin showed that a
tensional force between 10 and 30 pN stabilized the α5β1 integrin-
FN interaction lifetime (catch bond); then, when the force was
higher than 30 pN, the lifetime of the interaction decreased (slip
bond) (Kong et al., 2009). Moreover, Daniel Müller and colleagues
also observed a catch-slip transition using live fibroblasts seeded on a
FN fragment; however, this catch-slip switch was observed after
applying a 40 pN force (Strohmeyer et al., 2017). These observations
support the idea that mechanical strain plays a pivotal role in
regulating the binding of cell adhesion molecules, such as
integrins, with their ligands. Most FA proteins switch their bond
behavior when exposed to mechanical forces; therefore, to our
knowledge, no examples of ideal bond formation have been
described so far for FA proteins.

An asymmetrical strain distribution between the front and rear
ends of the cell is crucial for cell migration. Consequently, two

tension levels can be identified during migration: those
corresponding to non-clustered integrins (FCs, 40 pN), and
clustered integrins (FAs, 54 pN). The latter depends on
actomyosin and corresponds to high-tension FAs connected to
SFs (Wang X. et al., 2015). The disassembly of adhesions occurs
at the leading edge on the protrusions during FA turnover and at the
rear end after tail retraction. As discussed in the previous Section 2.4,
FA disassembly is regulated by various factors, including mechanical
tension (Crowley and Horwitz, 1995; Wolfenson et al., 2011). In this
context, mechanical tension generated by Myosin II contraction of
SFs promotes adhesion maturation, but if this tension is released,
FAs disassemble. On the other hand, excessive tension leads to an
abrupt loss of adhesion and cell detachment (Sawada et al., 2006;
Peacock et al., 2007; Vicente-Manzanares et al., 2007; del Rio et al.,
2009; Parsons et al., 2010). Thus, tensional forces are also essential in
regulating the dynamic balance between FA formation and
disassembly required for cell movement.

Tension can also be sensed and transduced by non-integrin
receptors. Some of these receptors can sense shear stress (tangential
force of a fluid on a cell layer), as is the case of mechanosensors
expressed on the surface of endothelial cells in blood vessels (e.g.,
Heg-1 and PECAM-1), and other receptors can bind soluble ligands
to control integrin activity (e.g., CXCR1 and CXCR2) or bind to the
ECM and transduce force. Syndecan-4 has been considered a critical
mechanoreceptor for its capacity to interact with the ECM and the
actin cytoskeleton. Indeed, the interaction of Syndecan-4 with the
HBD of FN induces FA formation (Saoncella et al., 1999; Woods
et al., 2000). Consequently, Syndecan-4 deficiency impairs
contractility and the formation of mature FAs (Longley et al.,
1999; Okina et al., 2012; Cavalheiro et al., 2017). As previously
reported, Syndecan-4 clusters in FAs and indirectly binds to FA
proteins, such as Paxillin and Hic-5 (Denhez et al., 2002). Moreover,
Syndecan-4 has been related to mechanotransduction during shear
stress in endothelial cells by mediating diverse physiological effects,
such as nitric oxide production, cell adhesion, sensing of the
direction of flow, and endothelial cell alignment (Florian et al.,
2003; Moon et al., 2005; Baeyens et al., 2014; Nikmanesh et al., 2019).
Further studies, such as assays performed with electromagnetic
tweezers and elastomeric membranes showed that Syndecan-4
activates mechanotransduction pathways involving ERK
phosphorylation and MAPK signaling (Bellin et al., 2009).
Similarly, the use of magnetic beads to apply 1 nN of tensional
force pulses induced local stiffness, like that produced by integrins
(Guilluy et al., 2011; Chronopoulos et al., 2020). Moreover, a
constant tension of ~200 pN applied to Syndecan-4 for 5 min
induced the recruitment of Talin-1 and Kindlin-2 in an EGFR-
PI3K-dependent manner. RhoA activation timely increased after
constant tension, and this effect was blunted after β1 integrin
signaling was inhibited by blocking the RGD domains of FN
(Chronopoulos et al., 2020). Additional evidence has shown that
Syndecan-4 ectodomains could physically interact with integrins
(e.g., α3β1, α4β1, α6β4, αvβ3, and αvβ5) and receptor tyrosine
kinases (e.g., EGFR, VEGFR2, IGF, and HER2), localize them in
FAs and activate signaling pathways related to cell adhesion and
migration (Wang H. et al., 2015; Rapraeger, 2021). These results
highlight the fact that Syndecan-4 exerts a regulatory and
cooperative effect during integrin-based mechanotransduction.
Therefore, Syndecan-4 acts as a mechanosensor and regulates cell
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adhesion and migration. However, even though Syndecan-4
cooperates with integrins to mediate such effects, it is still
unknown how the signaling pathways downstream of each
receptor converge to potentiate each other.

Although the individual roles of integrins or Syndecan-4 during
ECM-driven mechanotransduction have been broadly studied,
much less is known about how these receptors sense mechanical
cues during cell-cell interactions.

3.1 Integrins and Syndecan-4
mechanotransduction during cell-cell
interactions

Integrins can mediate mechanotransduction during cell-cell
interactions. αLβ2, α4β1, and αvβ3 integrin on the surface of
leukocytes can interact with ICAM, VCAM, and PECAM-1
expressed on endothelial cells, respectively (Staunton et al., 1988;
Elices et al., 1990; Buckley et al., 1996). For instance, ICAM-1
activation through leukocyte binding promotes cytosolic calcium-
mediated myosin activity, leading to endothelial cell contractility.
The resulting tension pulls VE-Cadherin in adherens junctions,
causing gaps that allow leukocyte transmigration [reviewed in
(Schwartz et al., 2021)]. Similarly, αLβ2 (LFA) and αMβ2 integrin in
leukocytes can interact with the endothelial junctional adhesion
proteins JAM-A and JAM-C, respectively, to allow leukocytes to
migrate across the endothelial barrier (Ostermann et al., 2002;
Imhof and Aurrand-Lions, 2004; Wojcikiewicz et al., 2009). The
interaction force between LFA-1 and Mac-1, and their
counterreceptor ligands [ICAMs, JAMs, and receptors for advanced
glycation end products (RAGE)] have been extensively studied using
single-molecule atomic force microscopy (Zhang et al., 2002;
Wojcikiewicz et al., 2006; Yang et al., 2007; Li et al., 2018). In
general terms, the strength of the bond depends on the integrin-
ligand pair and correlates with the effectiveness of leukocyte
adhesion to the endothelium. After attachment, the force is also
transduced into the endothelial cells, affecting their contractility and
disturbing the stability of tight and adherens junctions to mediate the
transmigration of leukocytes through the endothelial layer. Another
example is the interaction of leukocyte MAdCAM-1 expressed in high-
endothelial venules and endothelial cells in the intestine, with α4β7
(LPAM-1) and α4β1 (VLA-4) integrin in myeloid cells. In this case, the
role of MAdCAM-1 is to direct lymphocyte homing by interacting with
integrins (Sun et al., 2014; Murakami et al., 2016). Integrins can also
bind to receptors on the surface of cancer cells to mediate adhesion to
the endothelium. For example, L1CAM on the surface of cancer-stem
cell-like cells interacts with αvβ3 integrin in endothelial cells. This
interaction promotes the activation of αvβ3 integrin and the
phosphorylation of p130Cas and FAK, leading to enhanced
migration towards bFGF (Burgett et al., 2016). Overall, these results
confirm that integrins need to interact with their counterreceptors in
other cells in order to transmit the force that leads to cell migration and
invasion.

Less is known about Syndecan-4 mechanotransduction
during cell-cell interactions. Although there is evidence that
syndecans can interact with receptor tyrosine kinases, the
corresponding ligands of these receptors are believed to
promote this interaction. For example, VEGFA possesses a

highly acidic HBD that allows its binding to the GAG chains
of syndecans with different affinities. The strength of the
VEGFA-syndecan interaction depends on the nature of the 6-
O heparan sulfate chain sulfation, being optimal for Syndecan-2
and very low for Syndecan-1, -3, and -4. Most importantly,
VEFGR2 exclusively co-precipitates with syndecans when
stimulated with VEGFA. This indirect interaction positively
regulates VEGFR2 activity and affects neovascularization and
angiogenesis (Echtermeyer et al., 2001; De Rossi et al., 2014; Corti
et al., 2019; De Rossi et al., 2021).

Similarly, Syndecan-4 has been involvedmore recently in regulating
VE-cadherin function in the endothelium. In this case, Syndecan-4
interaction with VEGFA triggers the internalization of VE-cadherin,
increasing vascular permeability and angiogenesis (De Rossi et al.,
2021). Of note, VEGFR2 can also interact with VE-cadherin to
regulate mechanotransduction (Coon et al., 2015). Surprisingly, the
modulatory effect of Syndecan-4 on this signaling axis has not been
studied in the context of mechanobiology, even though VEGFR2 and
VE-cadherin both exert an individual and combined role during
mechanotransduction in the endothelium (Barry et al., 2015; Coon
et al., 2015; de Castro et al., 2015; Dorland and Huveneers, 2017;
Mahajan et al., 2017; Miller and Sewell-Loftin, 2021).

Another Syndecan-4 receptor is Thy-1. Thy-1 is a unique
counterreceptor possessing an RLD peptide that binds to integrin
receptors, and an HBD, which interacts with Syndecan-4
(Leyton et al., 2019). Thus, Thy-1 is capable of simultaneously
binding and activating integrins and Syndecan-4 to mediate
mechanotransduction. This multi-receptor interaction can
occur during cell-to-cell interactions (in trans) or within the
same cells (in cis) (Figure 2). We now discuss how
mechanobiology has increased the complexity of Thy-1-driven
migration.

3.2 The Thy-1/integrins/Syndecan-4
interaction in trans triggers
mechanotransduction

Through its integrin-binding domain (RLD), Thy-1 binds and
activates specific integrin heterodimers, including αvβ3, αxβ2,
αMβ2, α5β1, and αvβ5 (Saalbach et al., 1999; Leyton et al., 2001;
Avalos et al., 2004; Wetzel et al., 2004; Hermosilla et al., 2008; Fiore
et al., 2015; Zhu et al., 2018). The engagement of Thy-1 with these
integrins has been shown to carry out diverse tension-driven cell
functions, such as adhesion, migration, and cell differentiation. For
example, Thy-1 expressed on activated microvascular endothelial
cells interacts with αvβ3 integrin expressed on melanoma cells to
mediate cancer cell invasion. Consequently, Thy-1 knockout mice
showed reduced metastasis (Saalbach et al., 2002; Saalbach et al.,
2005; Schubert et al., 2013). Moreover, β3 integrin-silenced
melanoma cells injected via the tail vein into a syngeneic mouse
model exhibited almost undetectable lung tumor mass compared to
the wild type cells, in which the tumor mass was 40% of the lung
mass (Brenet et al., 2020). Similarly, Thy-1 in endothelial cells also
mediated the adhesion and extravasation of leukocytes through
αMβ2 (Mac-1) integrin (Wetzel et al., 2004).

Pioneer experiments using a biomembrane force probe to study
the mechanical properties of the Thy-1/integrin/Syndecan-4
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trimolecular complex revealed that when Thy-1 binds either an
integrin (Thy-1/α5β1) or Syndecan-4 (Thy-1/Syndecan-4), the
interaction is a classic slip bond. However, the trimolecular bond
showed unique mechanical properties: a slip bond with forces <
20 pN, a catch bond from 20 to 35 pN, and then a second slip bond

after reaching a tension > 35 pN. This mechanical behavior was
described as a “dynamic catch” by the authors, and the proposed
mechanism includes an initial α5β1 integrin/Thy-1 interaction that
bears most of the force, which after reaching a threshold (~15 pN),
produces bond stiffening, shifting force to the already engaged, but

FIGURE 2
Thy-1 mediates mechanotransduction in cis and trans, affecting signaling. (1a) Thy-1 binding to αvβ5 and αvβ6 integrins in cis has an inhibitory effect
during themechanical activation of TGFβ inmyofibroblasts. TGFβ remains dormant by interactingwith the latency-associated peptide (LAP) and the latent
TGFβ binding proteins (LTBPs). The TGFβ/LAP complex binds to integrins, and LTBPs link TGFβ/LAP to the ECM. (1b)Mechanical strain is transduced either
from ECM-bound LTBPs or from integrin-bound LAP. Tension releases TGFβ and allows the activation of TGF receptors. (2) Thy-1 competes with
LAP and ECM for integrin binding, leaving the integrin bent in a low-affinity inactive state in which TGFβ cannot be activated. (3) Thy-1 interaction with
αvβ3 integrin and Syndecan-4 in trans induces the activation of the FAK/Src/RhoA/ROCK signaling pathway, leading to FA and SF formation in astrocytes.
(4a) FCs are small clusters of integrins. (4b) FCs can grow into FAs because of RhoA signaling. (4c) Further tension transmitted by SFs leads to FA
maturation and Kindlin-2 association.
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unstretched Syndecan-4. When force induces the extension of
the Syndecan-4 GAG chains, both α5β1 integrin and Syndecan-4
can bear a full-force load (Fiore et al., 2014). These results show
synergism between integrins and Syndecan-4 during
mechanotransduction in a model of melanoma-endothelial
cell interaction.

Conversely, in the context of neuron-astrocyte interaction, our
group showed a different bond behavior when the trimolecular
complex contained αvβ3 integrin. Using molecular tweezers, we
found that the Thy-1/αvβ3 integrin and Thy-1/Syndecan-4
interactions showed a slip bond, with forces between 10 and
50 pN. In contrast with Fiore’s findings (Fiore et al., 2014), the
Thy-1/αvβ3 integrin/Syndecan-4 complex dissociated faster under
tension, suggesting that the slip bond was maintained (Burgos-
Bravo et al., 2018). Considering that α5β1 integrin was described to
participate in FA maturation and strength, and that αvβ3 integrin
can act as a mechanotransductor to regulate migration (Roca-
Cusachs et al., 2009; Roca-Cusachs et al., 2012; Fiore et al., 2014;
Burgos-Bravo et al., 2018), these reported results allow us to posit a
differential role for Syndecan-4 during Thy-1/integrin bond
formation. When Syndecan-4 is present, the Thy-1/α5β1 integrin
catch bond resists tension to form strong and stable FAs, while the
Thy-1/αvβ3 integrin slip bond is less resistant to tension, allowing
the dynamic regulation of force sensing and mechanotransduction
to facilitate cell migration.

The presence of Syndecan-4 also increased the lifetime of the
Thy-1/αvβ3 integrin binary complex both in the absence of force
and when force was applied. Remarkably, the lifetime of the Thy-1/
αvβ3 integrin interaction was higher in comparison with that of
Thy-1/Syndecan-4 after constant force, suggesting that the
interaction between Thy-1/Syndecan-4 is weaker than that of the
Thy-1/αvβ3 integrin interaction. This can be related to the nature of
the interaction, which is protein-protein for Thy-1/αvβ3 integrin
and protein-GAG for Thy-1/Syndecan-4 (Burgos-Bravo et al., 2020).
However, since in the latter case protein-protein interactions can
also occur, this assumption remains to be assessed.

Single-molecule experiments have added substantial evidence
of the mechanical properties of the Thy-1/integrin/Syndecan-4
trimolecular complex. However, they may not accurately
represent the full view since receptor clustering is important
for FA and SF formation in astrocytes. For instance, although
Thy-1 immobilized on a plate acts as a cell substrate or soluble
recombinant Thy-1-Fc protein can induce weak cell adhesion and
signaling, stimulation with Thy-1-Fc conjugated to Protein
A-sepharose beads successfully stimulates strong cell adhesion,
RhoA activation, SF formation, and migration in astrocytes
(Avalos et al., 2004; Avalos et al., 2009; Kong et al., 2013).
Similarly, co-culture experiments using neuronal cells
expressing Thy-1 on their surface can also stimulate
cytoskeletal changes that lead to astrocyte migration (Kong
et al., 2013), which were also observed after stimulating
astrocytes with EL4 cells, a lymphoma-derived cell line that
expresses high levels of Thy-1 (Leyton et al., 2001). These
observations sustain the idea that multivalent Thy-1
conjugated to beads or Thy-1 present on the surface of other
cells can successfully stimulate strong adhesion, SF formation,
and migration of cells, suggesting that clustering of Thy-1 with its
co-receptors is necessary for an efficient cellular response.

Certainly, as with all GPI-anchored proteins, Thy-1 localizes in
lipid rafts, and its interactions in cis could relocate integrins in lipid
rafts (Barker et al., 2004; Hudon-David et al., 2007; Wang et al.,
2010). Similarly, the aggregation of integrins in nanodomains has
been linked to their activity (Lietha and Izard, 2020). However, it is
still not entirely understood whether integrin clustering is triggered
after ligand binding, leading to outside-in integrin activation, or
whether clustering occurs due to integrin activation. Nevertheless,
experiments performed with RGD peptides suggest that both
possibilities are feasible (Ginsberg et al., 2005; Yu et al., 2011)
and propose that integrin clustering occurs in phases. First, the
initial binding of RGD to integrins leads to the recruitment of more
integrins, Talin, Paxillin, and FAK, by lateral diffusion. Subsequently,
actin polymerization and contractility mediated by Myosin generate
an inward force associated with distant integrin clusters, resulting in
larger FAs and the stimulation of lamellipodium extension (Yu et al.,
2011). Accordingly, our group showed in primary astrocytes that
αvβ3 Integrin overexpression by transfection or TNFα treatment
induces integrin microclusters without triggering integrin
activation, but priming the cells to respond to Thy-1 stimulation
(Lagos-Cabre et al., 2018).

Moreover, in vitro assays using magnets to pull magnetic beads
coated with recombinant Thy-1-Fc have shown that mechanical
strain increases integrin levels at the cell surface, an effect that is
followed by an increase in contractility reflected by elevated
phosphorylation of MLC and an increase in the number and
thickness of SFs (Perez et al., 2021) (Figure 3A).

Our previous work using Thy-1-Fc beads was based on
stimulating cells on the dorsal surface to effectively form FAs
and SFs on the ventral part of the cells (Perez et al., 2021).
However, how exactly does dorsal stimulation transduce the
signals to the interior of the cell to generate an effect on the
ventral surface? We speculate that dorsal engagement of integrins
triggers signaling pathways that involve the activation of small Rho
GTPases. These pathways would then crosstalk with those engaged
by the ventral integrins stimulated by the ECM-cell contacts, thus
enhancing/synergizing the effect, and producing a more robust
cellular response (Figure 3A).

3.3 The Thy-1/integrin/Syndecan-4
interaction in cis regulates
mechanotransduction

Primary fibroblasts expressing Thy-1 (Thy-1+/+) form strong
FAs and SFs and, consequently, are less migratory than fibroblasts
not expressing this protein (Thy-1−/−). Thy-1 expressed on the
surface of lung fibroblasts interacts in cis with αvβ5 integrin,
keeps it in a low-affinity bent conformation, and decreases
its binding to ECM proteins (Zhou et al., 2010). Moreover, the
Thy-1/αvβ3 integrin interaction occurs in lipids rafts, where Fyn and
Src are recruited to FAs. Fyn itself has been described as critical
during mechanosignaling since it activates the RhoA pathway by
reducing Src-induced phosphorylation of p190RhoGAP through the
recruitment of CBP and by directly phosphorylating RhoGEFs
(Guilluy et al., 2011; Fiore et al., 2015).

Additionally, Thy-1 can also regulate mechanotransduction by
modulating the avidity of the mechanoreceptors and modifying the
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composition of the ECM. The mechanics and composition of the
ECM are particularly important during idiopathic pulmonary
fibrosis, where a stiffer ECM is associated with mature fibrosis.
Here, fibroblasts sense mechanical cues and undergo aberrant

activation (Guo et al., 2022). In this context, a stiff FN-rich
provisional ECM promotes FA formation and actomyosin
contractility, leading to fibroblast-induced remodeling of the
ECM, thereby amplifying the profibrotic phenotype.

FIGURE 3
Thy-1 effects onmechanotransduction, cell adhesion, polarity, andmigration. (A) Tension increases the levels of αvβ3 integrin at the cell surface after
pulling magnetic beads coated with recombinant Thy-1-Fc. This effect is followed by an increase in cell contractility, evidenced by the augmented
number and thickness of SFs, and elevated phosphorylation of MLC, probably due to the activation of the FAK/RhoA/ROCK signaling axis, as previously
described. The tension transduced through SFs also induces ECMdeformation. (B) Thy-1 interacts with αvβ3 integrin and Syndecan-4 to stimulate FA
formation (< 15 min). Integrin clustering recruits signaling molecules, such as FAK and PLCγ. PLCγ activity on PIP2 produces DAG and IP3. IP3 activates
Ca++ release from the IP3R in the endoplasmic reticulum. Ca++, together with DAG, activates PKCα, leading to RhoA activation. Alternatively, PKCα can
also be activated by interacting with the variable region of the Syndecan-4 cytoplasmic tail, synergizing RhoA activity. (C) Longer stimulation of
αvβ3 integrin and Syndecan-4 with Thy-1-Fc (< 60 min), induces changes in cell polarity, FA disassembly, and migration. The polarity complex protein
Partitioning defective 3 (PAR-3) binds to the Syndecan-4 cytoplasmic tail to inhibit FAK phosphorylation and activate the RacGEF, Tiam, which further
mediates Rac1 activation. PI3K is also activated after sustained stimulation with Thy-1-Fc in astrocytes, stimulating the activation of Rac1. Moreover, once
Rac1 is active, an inhibitory axis can decrease RhoA activity through p190RhoAGAP. Altogether, this signaling pathway helps the cell disassemble FAs and
migrate in a directional manner. (D) Prolonged Thy-1-Fc stimulation (~16 h) allows the cell to migrate. Ca++ is released from the IP3R at the endoplasmic
reticulum by IP3 produced by PLCγ. FAK/PI3K/Akt activation downstream of integrins induces Rac1 activation and phosphorylation of Connexin43 (Cx43)
channels, which release ATP to the extracellular compartment. ATP activates the P2X7 receptor to mediate Ca++ influx. Bursts of cytoplasmic Ca++

transients, together with active Rac1, stimulate cell migration.
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Consequently, pulmonary fibroblasts secrete FN independently of
Thy-1 expression; however, Thy-1+/+ fibroblasts produce two-to
three-fold more collagen than Thy-1−/− cells, contributing to the
deposition of a softer ECM (Derdak et al., 1992; Abeysinghe et al.,
2005). Moreover, in a model of fibrosis, Fiore et al. showed that
fibrosis-associated fibroblasts lacking Thy-1 expression displayed
elevated activation of αvβ3 integrin, thus leading to enhanced
fibroblast activation, stiffer provisional ECM, and progression of
fibrosis (Fiore et al., 2018).

The inhibitory effect of Thy-1 binding to integrins in cis has
also been associated with the mechanical activation of TGFβ.
The latency-associated peptide (LAP) binds TGFβ, and latent
TGFβ binding proteins (LTBPs) link the TGFβ/LAP complex to
the ECM, keeping a dormant TGFβ pool that can be activated by
mechanical force transduced by αvβ5 and αvβ6 integrins
expressed in myofibroblasts. Tension transmitted either from
ECM-bound LTBPs or from myofibroblast contractility can pull
LAP, release TGFβ, and allow the activation of TGF receptors
(Munger et al., 1998; Annes et al., 2002; Annes et al., 2004;
Wipff et al., 2007). Thy-1 competes with LAP and the ECM for
integrin binding; thus, Thy-1 interaction with αvβ5/
αvβ6 integrins in cis maintains these integrins inactive, and
TGFβ cannot be activated, thus affecting myofibroblast
differentiation and fibrosis progression (Figure 2) (Zhou
et al., 2004; Zhou et al., 2010).

3.4 What we still do not know about Thy-1/
integrin/Syndecan-4 mechanotransduction

Syndecan-4mechanical properties have been broadly studied in the
context of shear stress and ECM-drivenmechanotransduction. To date,
only a few studies have shown the mechanical properties of the Thy-1/
Syndecan-4 and Thy-1/integrins/Syndecan-4 interactions (Fiore et al.,
2015; Burgos-Bravo et al., 2018; Burgos-Bravo et al., 2020; Perez et al.,
2021). Studying the effects of the Thy-1/integrin/Syndecan-
4 trimolecular complex in the context of mechanotransduction is
important since mechanical strain controls many physiological and
pathological functions, such as embryonic development,
morphogenesis, wound healing, cancer, and atherosclerosis.

Even though Syndecan-4 cooperates with integrins during
mechanotransduction, it is still not clear how the signaling between
both receptors synergizes. We posit the possibility of downstream
signaling crosstalk between integrins and Syndecan-4, in which
integrin activation would induce the activation of RhoA and
several kinases, including FAK and PI3K. Similarly, the activation
of Syndecan-4 would also recruit FAK and PKC and further activate
RhoA, increasing the overall response (Figure 3B). Optimal
signaling would occur when both receptors are active since the
loss of either receptor has shown defects in contractility and FA
formation (Saoncella et al., 1999; Bass et al., 2007). Another
possibility is the direct cis interaction between integrins and
Syndecan-4. It is plausible that they influence each other’s
membrane location; therefore, external engagement of either
integrins or Syndecan-4 could favor receptor clustering and
potentiate the initial signaling.

Syndecan-4 could also antagonize integrin signaling. After
sustained Thy-1 stimulation (~30 min), PAR-3 is recruited to the

Syndecan-4 cytoplasmic tail, leading to Rac1 activation through its
GEF, Tiam (Valdivia et al., 2020). Rac1 signaling antagonizes RhoA
activity, prompting the cell to polarize, disassemble FAs, decrease
contractility, and migrate (Figure 3C). In this case, it is still
unknown how Syndecan-4 signaling turns off integrin signaling.
However, it is likely that Rac1 activates p190RhoGAP and induces
RhoA inactivation, as previously described [reviewed in (Lawson
and Burridge, 2014)] (Figure 3C). Thus, the crosstalk between
integrin and syndecan receptors can tightly regulate FA dynamics
and the cytoskeleton changes occurring during cell adhesion and
migration.

Alternatively, Syndecan-4 probably acts as a regulator of the
inside-out activation of integrins. In this scenario, we can
hypothesize that Syndecan-4 engagement could activate certain
signaling pathways, such as PI3K or PKCα, which would then
transduce signals to activate integrins and enhance cellular
contractility. A similar mechanism has already been proposed for
the mechanoreceptor PECAM-1. In this case, shear stress activates
PECAM-1, leading to the PI3K signaling necessary for β1 integrin
activation (Collins et al., 2012). A different scenario has been
described in fibroblasts, where Src-mediated Syndecan-4
phosphorylation on Y180 inactivates Arf6, which regulates integrin
recycling (Morgan et al., 2013). In this case, Syndecan-4
phosphorylation lowers α5β1 integrin recycling to the membrane,
while favoring the passage of αvβ3 integrin from endosomes to the
plasma membrane. This is another type of integrin switch but
mediated by Syndecan-4 signaling, which is crucial for controlling
integrin trafficking and FA dynamics and inducing FA stabilization
and more directional cell migration by inactivating Arf6 (Morgan
et al., 2013).

4 What we have learned from our
studies on cell adhesion and migration

4.1 The discovery of the integrin/Thy-1
interaction in cell adhesion and migration

Our interest in this topic started a little over 20 years ago while
searching for the ligand of the cell adhesion molecule Thy-1.
Research on Thy-1 led to the important discovery that GPI-
anchored glycoproteins could signal intracellularly despite only
crossing the outer leaflet of the plasma membrane and lacking a
transmembrane-spanning domain (Morris, 1992). In addition, Thy-1
was known to modulate neurite outgrowth (Tiveron et al., 1992);
however, this and other potential functions of Thy-1 were uncertain
due to its unidentified ligand.

We were the first group to describe that the RLD tripeptide
found in the Thy-1 sequence recognized the αvβ3 integrin present in
astrocytes (Leyton et al., 2001; Hermosilla et al., 2008). Integrin
ligation by Thy-1 was functional and induced the formation of FAs
in astrocytes, an effect that was precluded when the cells were
stimulated with a Thy-1 fusion protein in which the RLD tripeptide
was mutated to RLE (D18E). Other features of this interaction that
supported a role for the αvβ3 integrin were that the adhesion of
astrocytes to Thy-1 required Mn2+ or Mg2+ but neither Ca2+ nor a
combination of both Ca2+/Mg2+, and that the interaction was
inhibited by anti-β3 but not by anti-β1 integrin antibodies
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(Hermosilla et al., 2008). The FAs formed because the Thy-1-
engaged integrin interaction possessed many proteins described
in IACs (see Section 2.1), including Vinculin, Paxillin, p130Cas,
and FAK (Leyton et al., 2001). Our initial findings reporting
αvβ3 integrin as a Thy-1 receptor were later confirmed in other
cell types, including melanomas and breast cancer cells (Brenet et al.,
2020), fibroblasts (Valdivia et al., 2020), and leukocytes (Wetzel
et al., 2004). The αvβ3 integrin/Thy-1 interaction was additionally
extended to other integrins, such as αxβ2 and αMβ2 in leukocytes
(Choi et al., 2005), and α5β1 in melanoma cells (Fiore et al., 2015)
[reviewed in (Leyton et al., 2019)].

4.2 Focal adhesions induced by the direct
interaction of Thy-1 with integrins/
Syndecan-4

As previously mentioned, FAs are formed andmaintained by the
activation of RhoA, whose activity is also required to form SFs
(Ridley and Hall, 1992). In astrocytes stimulated with Thy-1, we
have shown that integrin clustering, RhoA activation, and enhanced
activity of the RhoA effector, ROCK, are required to promote FA
and SF formation in cells bound to their own secreted matrix
(Avalos et al., 2002; Avalos et al., 2004) (Figure 3B). Thus, this
mechanism for cell contraction seems to be conserved whether
generated by cell-cell [Thy-1/integrin (Avalos et al., 2004;
Hermosilla et al., 2008)] or cell-matrix [integrin/ECM (Berrier
and Yamada, 2007)] interactions.

In our original study, results obtained by competing the Thy-1/
integrin interaction with antibodies, recombinant proteins, or
peptides suggested that a third molecule was involved, since
complete inhibition was never attained (Leyton et al., 2001).
Considering the available information, we hypothesized that
Syndecan-4 could act as a co-receptor for αvβ3 integrin to
respond to Thy-1. This hypothesis was additionally supported by
studies indicating the existence of a direct interaction between Thy-1
and sulfated glycans (Hueber et al., 1992). By using different heparin
dilutions, we demonstrated that Thy-1-stimulated adhesion of
astrocytes involved a Thy-1-HBD interaction, which was required
for Syndecan-4 binding, as demonstrated by silencing Syndecan-4 or
expressing a mutant that lacked its cytoplasmic domain (Avalos
et al., 2009). In addition, treatment of astrocytes with heparitinase
decreased the number of FAs formed, and the observed contacts
were of smaller size (Avalos et al., 2009). Moreover, mutation of the
basic amino acids composing the HBD (REKRK→AEAAA) led to
the production of a recombinant protein that could no longer
stimulate FA formation. Thus, both the integrin-binding domain
(RLD) and the HBD (REKRK) of Thy-1 were necessary to trigger
astrocyte adhesion (Avalos et al., 2009). We additionally
demonstrated that Thy-1-mediated integrin/Syndecan-4
engagement involved the activation of PKCα upstream of the
loading of RhoA with GTP (active state) (Avalos et al., 2009)
(Figure 3B). Because RhoA is associated with cell contraction and
strong cell adhesion, we proposed that Thy-1/integrin interaction
would prevent cell migration. However, we then discovered that
upon sustained stimulation with Thy-1 (24 h), RhoA activity
decreased, whereas that of Rac1 increased, thus leading to
astrocyte migration (Kong et al., 2013).

4.3 Signaling mechanisms involved in
Thy-1-induced astrocyte migration

PKCα is a calcium- and DAG-dependent enzyme; therefore, we
next studied signalingmechanisms that could account for changes in
these second messengers. Over the years, we have been able to
decipher, in part, the puzzle of the signal transduction pathways
involved in Thy-1/integrin-induced astrocyte adhesion and
migration. The elucidated sequence of events includes the
activation of FAK/Src/PI3K/PLCγ and hydrolysis of PIP2 to
generate DAG and IP3, which activates the IP3R and induces
intracellular calcium increase (Kong et al., 2013). Most recently,
we have shown that AKT, activated downstream of PI3K,
phosphorylates and opens the hemichannel Connexin43,
releasing ATP (Perez-Nunez et al., 2023) (Figure 3D). The
opening of Connexin43 is accompanied by
Pannexin1 hemichannel activation, and both hemichannels
release ATP to the extracellular compartment, thereby leading to
the activation of the purinergic receptor P2X7R and allowing
calcium entry (Henriquez et al., 2011; Alvarez et al., 2016)
(Figure 3D). This functional link between integrins and P2X7R
in the context of cell migration was a novel finding exhibited by the
DITNC1 astrocyte cell line but later, was also found in breast cancer
and melanoma cells (Brenet et al., 2020).

Remarkably, the signaling events described in the
DITNC1 astrocyte cell line in response to Thy-1 were not
observed in primary astrocytes unless these cells were treated
with inflammatory cytokines (Lagos-Cabre et al., 2017). TNF-
treated primary astrocytes showed increased levels of reactivity
markers, such as GFAP, iNOS, and Connexin43. To our surprise,
astrocytes responded to Thy-1 stimulation only when they were
reactive (TNF-treated). The response comprised morphological
features associated with in vivo reactivity, such as hypertrophy, a
fibroblast-like phenotype, and increased cell migration (Lagos-
Cabre et al., 2017). The molecular mechanisms triggered by Thy-1
in these reactive astrocytes were similar to those reported for
the DITNC1 cell line, and the inflammatory signals were
necessary to increase the levels of both αvβ3 integrin and
Syndecan-4 (Lagos-Cabre et al., 2017; Palacios et al., 2023).
Importantly, the increase in αvβ3 integrin levels occurred in a
NFkB-dependent manner (Lagos-Cabre et al., 2017; Palacios
et al., 2023).

Most importantly, αvβ3 integrin appeared in large membrane
patches in immunofluorescence microscopy assays, suggesting
that TNF prompted the cells to respond more effectively to Thy-1
by increasing the surface levels of this integrin and inducing the
formation of αvβ3 integrin microclusters (Lagos-Cabre et al.,
2018). Astrocytes overexpressing β3 integrin exhibited
spontaneous microclusters in the absence of TNF treatment
and responded to Thy-1 without any prior pro-inflammatory
exposure (Lagos-Cabre et al., 2017). These results were
intriguing, and further analysis indicated that the sole
overexpression of this integrin was sufficient to turn the
astrocytes into reactive ones and prompt their migration in
response to Thy-1 stimulation (Lagos-Cabre et al., 2017;
Lagos-Cabre et al., 2018).

Another central question that interested us was: How does
the ATP that travels through open hemichannels reach the
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juxtamembrane localization to be released by the cells? Based on
the reported evidence and our results indicating that exocytosis
was not involved in ATP release [Brefeldin A did not affect Thy-
1-induced ATP release (Alvarez et al., 2016)], we hypothesized
that the release of ATP required calcium uptake by mitochondria
and re-localization of these organelles to the cell cortex via
microtubule-dependent transport. Before we were able to test
this assumption with our astrocyte cell line, different researchers
showed that migrating cells transfer the mitochondria to the
leading edge over the microtubules in order to drive ATP
production and provide energy demands where needed
(Cunniff et al., 2016). These results were confirmed in cancer
and mesothelial cells, as well as fibroblasts, and therefore, we
anticipated that astrocytes probably use a similar mechanism to
provide the local ATP production required for its release,
although this has not been demonstrated yet using astrocytes.
ATP could then be released through hemichannels, for example,
via the opening of Connexin43 phosphorylated by active AKT
(Perez-Nunez et al., 2023).

The role of Syndecan-4 on astrocyte migration was also
intriguing, and therefore, we studied its role by generating a
Thy-1 fusion protein mutated in the HBD (Thy-1(AEAAA)-Fc).
We learned that this mutated protein does not promote astrocyte
migration (24 h), despite inducing ATP release, although in lower
amounts (40%), and in a delayed manner (15 min instead of
10 min), compared to ATP release induced by the wild type
protein Thy-1(RLD)-Fc (Alvarez et al., 2016). On the contrary,
the Thy-1 fusion protein mutated in its integrin-binding domain
(Thy-1(RLE)-Fc) did not induce cell migration, nor elicited any
ATP release. However, Thy-1(RLE)-Fc induced astrocyte
migration when added with a threshold amount of BzATP (a
non-hydrolyzable ATP analogue added at a concentration three
orders of magnitude lower than that required to induce
migration). Our results suggested that Thy-1-engaged
αvβ3 integrin led to ATP release, whereas Thy-1-ligated
Syndecan-4 was likely involved in the regulation of the
kinetics, as well as the threshold amount of ATP released by
astrocytes required to induce cell migration (Alvarez et al., 2016).
These results led us to propose a sequential activation: integrins
first, followed by Syndecan-4, which would then be in charge of
inducing a feed-forward loop to maintain the cycle of protein
activation required for cells to move.

In agreement with the idea of Syndecan-4 being a regulator of
the αvβ3 integrin/Thy-1 interaction, we then reported that
Syndecan-4 forms a ternary complex with Thy-1 and
αvβ3 integrin, increasing the lifetime of the Thy-1/
αvβ3 integrin bond even when exposed to force, as would
occur with mechanical signals coming from the ECM or cell-
to-cell contacts (Burgos-Bravo et al., 2018). Importantly, the use
of optical tweezers allowed us to demonstrate that at a single
molecule level, the Thy-1/αvβ3 integrin bond dissociated faster
by force application (Burgos-Bravo et al., 2018). However, when
Syndecan-4 was present, bond stabilization of the bimolecular
Thy-1/integrin interaction accelerated the biological functions
exerted by αvβ3 integrin (Burgos-Bravo et al., 2018). We
provided additional validation of these findings by
simultaneously applying chemical and mechanical stimulation
to astrocytes and found that the kinetics of astrocyte adhesion

and contraction were accelerated by adding a mechanical force to
Thy-1 stimulation (Perez et al., 2021). Considering these results,
we proposed that Syndecan-4 leads to structural changes in
αvβ3 integrin, allowing it to interact more efficiently with
Thy-1, thus inducing integrin clustering and activation, and a
faster cellular response.

An additional piece of the signaling puzzle was added after we
discovered that upon Thy-1 binding, Syndecan-4 interacted with
PAR-3, a protein that had not been associated with the pathways
that determine whether a cell migrates or not. In one of our recent
reports (Valdivia et al., 2020), we described that after Thy-1
stimulation, PAR-3 interaction with the Syndecan-4 intracellular
tail is required for the disassembly of FAs through FAK
dephosphorylation and the activation of Tiam1 and Rac1
(Figure 3C). This report is relevant because it is the first one
to describe PAR-3 as an adhesome-associated component
involved in the polarized migration of astrocytes and
fibroblasts through the regulation of FA dynamics (Valdivia
et al., 2020).

Therefore, Thy-1 signaling triggered in astrocytes by binding to
its partners, αvβ3 integrin and Syndecan-4, is an intricate network
regulated by chemical (Thy-1) and mechanical (force) cues
(Figure 3A) that requires a threshold level of receptors, which are
controlled in part, by inflammatory signals.

5 Concluding remarks and clinical
relevance

In this review, we summarized studies related to adhesion
receptors, their signaling mechanisms and how the complex
networks they form are regulated by the ECM; we also
described the mechanical forces generated by the ECM, and
the interactions with other cells. The main adhesion receptors
are integrins and Syndecan-4, which are also mechanosensors
and thus, translate the mechanical cues to the cytoskeleton and
change the cellular responses. Integrins and the hundreds of
proteins that are recruited to cell adhesion points, which change
from NAs to FCs, and then to FAs and mature FAs, are the main
components of the adhesome, a structure that has become
relevant due to the control it exerts on cell adhesion and
migration.

Cell adhesion and migration are cyclic and dynamic
processes highly regulated by the intricate interconnections
that occur within the adhesome. Many proteins that form
part of the adhesome are activated/inactivated, switched on/
off, or phosphorylated/dephosphorylated, and these events are
constantly occurring within the complex to maintain the
dynamics and cyclicity of these processes. During FA
dynamics, the cytoskeleton also plays a key role; both actin
filaments and microtubules contribute to regulate FA
maturation and disassembly to maintain the cyclic machinery
that controls cell migration. In the past years, much has been
learned about the composition of the adhesome and the
turnover of FAs; however, how much of this knowledge
could be applied to living organisms is still a matter of
debate. The current availability of 3D culturing techniques,
organoids, organs on a chip, etc., will be key to solving this
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discussion. Similarly, the comparative analysis of adhesomes
present in normal versus tumoral and metastatic cells can help
identify the components of the adhesome that are
differentially expressed in diverse stages of cancer, which
could lead to the development of targeted therapies (Sauzay
et al., 2019; Brenet et al., 2020; Keller-Pinter et al., 2021;
Bergonzini et al., 2022).

Mechanobiology has certainly added complexity to how we
initially pictured cell migration. Mechanical strain is tightly
regulated at the level of substrate stiffness, mechanoreceptor
abundance, the readiness of mechanotransducers to signal, and
ECM remodeling. Our results have shown that the interaction
between Thy-1 and integrins/Syndecan-4 in trans can regulate
FA and SF formation, enhancing the complexity of integrin-
mediated mechanotransduction.

Acute or chronic inflammation is a hallmark ofmany pathological
conditions, such as cancer, wound healing, autoimmune diseases, and
arteriosclerosis. Different pathophysiological processes are positively
or negatively affected by mechanical forces. Of relevance, Thy-1,
integrins, and Syndecan-4 expression can be stimulated by
inflammatory molecules, which may play an important role in
regulating conditions of clinical relevance, such as wound healing
[reviewed in (Perez et al., 2022b)]. Accordingly, our group and others
have shown that Thy-1 and Syndecan-4 promote skin wound healing
(Echtermeyer et al., 2001; Araki et al., 2009; Bass et al., 2011; Brooks
et al., 2012; Vuong et al., 2015; Das et al., 2016; Perez et al., 2022a). In
particular, we demonstrated that Thy-1 increases the healing rate by
increasing skin perfusion. However, further experiments are necessary
to determine if the interaction between Thy-1, Syndecan-4, and
integrins is relevant during wound remodeling and scarring, where
mechanical forces play a pivotal role.

Cell migration is necessary but requires to be tightly
regulated. If occurring in an uncontrolled manner, cell
migration is detrimental, as occurs during cancer metastasis,
autoimmune diseases, or fibrosis. The interaction of Thy-1 with
integrins in cis plays an essential role in inhibiting TGFβ
signaling and fibrosis. Indeed, in an in vivo model of lung
fibrosis, the administration of soluble Thy-1 therapeutically
inhibits integrin-mediated fibrosis (Phuan et al., 2019). Our
discoveries have contributed to developing transcendental pre-
clinical research, and we expect that these studies can soon

translate into therapeutics for curing or improving the
outcome of many clinical conditions related to cell adhesion
and migration.
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