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Estrogen receptor β (ERβ) was discovered more than 20 years ago. However, the
extent and role of ERβ expression in breast cancer remain controversial, especially
in the context of triple-negative breast cancer (TNBC). ERβ exists as multiple
isoforms, and a series of studies has revealed an inconsistent role of ERβ isoforms
in TNBC. Our recent results demonstrated contrasting functions of ERβ1 and
ERβ2/β5 in TNBC. Additional research should be conducted to explore the
functions of individual ERβ isoforms and develop targeted drugs according to
the relevant mechanisms. Consequently, a systematic review of ERβ isoforms is
necessary. In this review, we overview the structure of ERβ isoforms and detail
what is known about the function of ERβ isoforms in normal mammary tissue and
breast cancer. Moreover, this review highlights the divergent features of ERβ
isoforms in TNBC. This review also provides insights into the implications of
targeting ERβ isoforms for clinical treatment. In conclusion, this review provides a
framework delineating the roles and mechanisms of different ERβ isoforms in
TNBC and sheds light on future directions for basic and clinical research.
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1 Introduction

Estrogens are essential for the growth, differentiation, and development of the mammary
gland. They are also factors that can promote breast cancer and contribute to its etiology. The
physiological and pathological effects of estrogens are primarily conveyed through binding
with their receptors. The first estrogen receptor (ER) was identified in 1962 and is now called
ERα (Jensen, 1962). In 1996, Kuiper and colleagues (Kuiper et al., 1996) found a novel ER in
the rat ovary and prostate, termed ERβ. ERβ is encoded by the ESR2 gene, which is located on
chromosome 14q23.2. The full-length human ERβ protein contains 530 amino acids and is
encoded by eight exons (Kuiper et al., 1997). ERβ contains five distinct functional domains
for ligand binding, nuclear localization, and coactivator/corepressor binding (Enmark et al.,
1997). The A/B domain, which is encoded by exon 1, is located at the N-terminus and
contains the ligand-independent activation function 1 (AF1). The C and D regions are
encoded by exons 2, 3, and 4 and contain the DNA-binding domain (DBD) for nuclear
localization and the hinge domain (HD), respectively. The E/F region, encoded by exons 4-8,
is located at the C-terminus and contains the ligand-dependent activation function 2 (AF2)
and ligand-binding domain (LBD). ERβ2, ERβ3, ERβ4, and ERβ5 are naturally truncated
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isoforms of ERβ1 that differ after the first 469 amino acids as a result
of alternative splicing of the last coding exon (exon 8) (Leung et al.,
2006). ERβ6 is an isoform that is truncated in the middle of the
protein (Tonetti et al., 2003; Ishii et al., 2021). The functions of ERβ
isoforms may diverge given differences in their three-dimensional
structures and abilities to bind to ligands and other molecules. In
addition, the function of ERβ may differ among humans, mice, and
rats because different lengths and ligand binging affinities have been
observed for these orthologs (Petersen et al., 1998; O’Brien et al.,
1999; Iwamoto et al., 2003; Donoghue et al., 2017; Schröder et al.,
2022) (Figure 1). The full-length wild-type ERβ1 isoform is typically
referred to as ERβ, unless otherwise stated.

2 ERβ isoforms in normal breast tissue
and TNBC

2.1 Expression of ERβ isoforms in normal
breast tissue and their effects on breast
cancer development

ERβ1 is the predominant ER in normal breast tissue (Leygue
et al., 1998; Speirs et al., 2002), although it is also expressed in the
normal tissues of other organs and in endothelial cells, myoepithelial
cells, and surrounding stromal cells (Förster et al., 2002; Speirs et al.,
2002). An in vivo study showed that the mammary gland develops
and functions normally in ERβ1-knockout mice, indicating that
ERβ1 may not be essential for mammary gland development and
function (Krege et al., 1998; Förster et al., 2002). ERα is known to
mediate cell proliferation during mammary development. However,
some studies have demonstrated that ERβ1 suppresses cell growth,

promotes differentiation during mammary development, and
decreases the risk of ERa-positive breast cancer (Thomas and
Gustafsson, 2011; Dall et al., 2018; Warner et al., 2020).

ERβ1, ERβ2, and ERβ5 have been shown to be expressed in
human adult mammary fibroblasts (Palmieri et al., 2004). As lesions
progress from being preinvasive to invasive, ERβ1 protein
expression decreases in the normal breast (Roger et al., 2001;
Shaaban et al., 2003; Skliris et al., 2003). ERβ1 methylation is
higher in BC tissues than in normal tissues, resulting in lower
levels of ERβ1 mRNA (Gao et al., 2016). It is well known that
atypical hyperplasia significantly increases the risk of breast cancer.
In one study assessing the expression of ERβ1 using PPG5/
10 antibody, levels of ERβ1 protein were lower in atypical lobules
than in normal lobules. Further, higher ERβ1 expression was
associated with a two-fold decrease in the risk of breast cancer
subsequent to atypical hyperplasia (p = 0.04), demonstrating the
protective effect of ERβ1 against the cancerous process (Hieken
et al., 2015). Esslimani-Sahla et al. examined the expression of
ERβ2 protein in normal breast and ductal carcinoma in situ
(DCIS). They found that ERβ2 expression was higher in DCIS
than in normal tissue, demonstrating that this may be an early
and critical event in the process of carcinogenesis (Esslimani-Sahla
et al., 2005). ERβ3 is typically expressed in the testis and prostate
tissue (Aschim et al., 2004) but has not been detected in a breast
cancer cell line or tumor sample (Tong et al., 2002). ERβ4 has been
reported to support the transformation of non-cancerous cells to
tumorspheres and to play a role in anchorage-independent growth
of mammary epithelial cells (Faria et al., 2018). ERβ5 is abundantly
expressed in breast tissue (Moore et al., 1998; Poola et al., 2005b) but
may be unable to support tumorigenesis (Faria et al., 2018).

2.2 Expression of ERβ isoforms in TNBC

The positive rate and expression level of ERβ1mRNA is very low
in clinical breast cancer samples, according to our analysis of The
Cancer Genome Atlas (TCGA) data and others’ reports (Andersson
et al., 2017; Yan et al., 2021). The majority of in vitro and in vivo
studies have focused on the mRNA expression of endogenous ERβ
isoforms and studied the effect of ERβ isoforms after knockdown or
exogenous overexpression of ERβ isoforms. According to our recent
study and others’ reports, ERβ2 and ERβ5 are the predominant
isoforms in breast cancer and are widely expressed in different
molecular types of breast cancer (Andersson et al., 2017; Yan et al.,
2021). ERβ3 is not detectable in breast cancer samples or cell lines
(Tong et al., 2002). Our TCGA analysis indicated that ERβ4 mRNA
was detectable in invasive breast cancer but not in a breast cancer cell
line (Yan et al., 2021).

Western blotting (WB) is extensively used for the qualitative
detection of proteins. Immunohistochemistry (IHC) and
immunofluorescence (IF) are widely used to assay the expression
and location of protein in cells and tissue. Sensitivity and specificity
of the primary antibody are the key factors that determine the WB,
IHC, and IF results. There are several commercially available ERβ
antibodies; however, IHC and IF assays of clinical samples and
breast cancer cell lines still produce inconsistent results as to the
actual expression of ERβ isoforms in breast cancer. These conflicting
results are due to the different sensitivities and specificities of ERβ

FIGURE 1
The structure of mouse, rat, and human ERβ1 and other human
ERβ isoforms. Abbreviations: AF-1, activation function 1; HD, hinge
domain; DBD, DNA-binding domain; LBD, ligand-binding domain; AF-
2, activation function 2.
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antibodies. In general, ERβ antibodies can be divided into two
categories based on the ERβ domain targeted. In theory,
antibodies that target the N-terminal or middle domain of ERβ
should recognize all ERβ isoforms. Antibodies that target the
C-terminus of specific isoforms should recognize only those
specific isoforms. There are no consistent results concerning the
efficiency and specificity of ERβ antibodies, although these topics
have been discussed in several reviews (Pavao and Traish, 2001;
Andersson et al., 2017; Nelson et al., 2017).While some authors have
claimed that MDA-MB-231 cells are ERβ1 positive (Austin et al.,
2018), others have reported that they are ERβ1 negative
(Alexandrova et al., 2020a). The mainstream view, based on
recent results, is that endogenous expression of ERβ1 protein is
negative in cell lines. The available cell lines do not express sufficient
endogenous ERβ1 protein to explore its effect in wild type cells
(Alexandrova et al., 2020a). These limitations of ERβ antibodies
continue to restrict progress in ERβ isoform research. The
development of more specific and sensitive antibodies for
different isoforms is fundamental to promoting ERβ isoform
research.

3 The ligand binding affinity of ERβ
isoforms

E2 is the natural ligand of ERα and ERβ. There are several
synthetic agonists similar to E2 that exhibit better binding affinity
with ERβ. The molecular structure of full-length ERβ has 12 helices.
Helices 11 and 12 provide a pocket for the ligand and agonist (Pike
et al., 1999; Aschim et al., 2004). A molecular modeling study
showed that the LBD domain of ERβ1 is very similar to that of
ERα and can form a complete helix 11 and 12 when bound to a
ligand. ERβ2 may form a complete helix 11 but only a truncated
helix 12 because of its shortened C-terminus, which results in a
decreased binding surface for the coregulator (Leung et al., 2006).
ERβ4 and β5 can only form helix 11 and completely lack helix 12.
Ogawa et al. first assayed the binding affinity of E2 for human ERβ
isoforms vs. ERα after overexpression of ERα or ERβ in COS-7 cells.
The radiolabeled E2 assay results showed that ERβ1 could bind with
E2, but its binding affinity was less than that of ERα (Ogawa et al.,
1998a; Ogawa et al., 1998b). As shown in Table 1, human
ERβ2 exhibited weak binding affinity with E2 (Ogawa et al.,

1998b). Poola et al. assayed the binding affinity of E2 with
ERβ4 and ERβ5 in COS-7 cells after transfection with either
isoform. The 3H-labeled estrogen assay indicated that ERβ4 and
ERβ5 could not bind to E2 (Poola et al., 2005a). However, Leung
et al. found that both ERβ4 and ERβ5 could bind with estrogen using
recombinant protein extracted from yeast, but both had lower
binding affinity than ERβ1 (Leung et al., 2006). In addition,
mouse and rat ERβ2 exhibits weak binding affinity with ligands
(Petersen et al., 1998; Zhao et al., 2005). Hence, ERβ1 binds with
ligands, but the ligand binding affinity of other human ERβ isoforms
is quite low or undetectable. The development of specific ligands for
ERβ1 is important for ERβ1 research and potential clinical
treatment. Other ERβ isoforms may act mainly in a ligand-
independent manner because of their weak ability or incapability
to bind to ligands.

4 Prognostic role of ERβ isoforms in
TNBC

Most early studies reported the role of ERβ in TNBC without
discriminating between isoforms. The majority of the clinical data
on ERβ isoforms was analyzed based on the results of IHC or RT-
PCR of ERβ isoforms. The prognostic effect of ERβ protein isoforms
is unclear given the lack of a specific and sensitive antibody (Nelson
et al., 2017; Hawse et al., 2020); furthermore, there is still no standard
cutoff value for determining the positivity of cells for ERβ isoforms.
Some studies have explored the mRNA expression of ERβ isoforms,
but the mRNA expression pattern did not completely overlap with
the expression of the functional protein. In addition, ERβ isoforms
are also expressed in stromal cells (Green et al., 2008), which may
influence the results of RNA analysis. The dominant perception is
that ERβ1 promotes survival in ERα-negative BC (Nakopoulou et al.,
2004; Rosin et al., 2014; Sun et al., 2018; Shalabi et al., 2021),
although some studies have indicated that ERβ1 expression is not
associated with outcomes of patients with TNBC (Heitz et al., 2019;
Takano et al., 2023). High ERβ2 mRNA and nuclear protein
expression have been reported associated with worse outcomes in
ERα-negative breast cancer, especially TNBC (Chantzi et al., 2013;
Yan et al., 2021; Choi et al., 2022). The prognostic effect of ERβ5 has
not been well studied in ERα-negative breast cancer. In our previous
study, we analyzed TCGA clinical data and the mRNA expression of

TABLE 1 Characteristics of studies reporting the binding affinity of ERβ isoforms with ligands.

Species Isoform Ligand Method Cell model Results References

Human ERβcx/
ERβ2

E2,
radiolabeled

Ligand binding
analysis

COS-7 cells with
overexpression of ERβ2

ERβ2 showed little binding affinity with ligand Ogawa et al.
(1998b)

Human ERβ4,5 3H-labeled
estrogen

Ligand binding
analysis

COS-7 cells with
overexpression of ERβ
isoforms

ERβ4 and ERβ5 did not bind to E2 Poola et al.
(2005a)

Human ERβ1,2,4,5 3H-labeled
estrogen

Ligand binding
analysis

HEK293 cells transiently
expressing ERβ isoforms

ERβ1 could bind with E2. ERβ2 did not bind to E2.
ERβ4 and ERβ5 could bind with E2

Leung et al.
(2006)

Mouse ERβ1,2 3H-labeled
estrogen

Ligand binding
analysis

HEK293 cells transiently
expressing ERβ isoforms

ERβ1 could bind with E2. The binding affinity of
estradiol was 14-fold higher for ERβ1 than for ERβ2

Zhao, et al.
(2005)

Rat ERβ2 Tritiated
estradiol

Ligand binding
analysis

293T cell transfected with Rat
ERβ2

ERβ2 showed weak binding affinity for estradiol Petersen et al.
(1998)
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ERβ isoforms, observing that high expression of ERβ5 was not
associated with disease-free survival or overall survival in patients
with TNBC (Yan et al., 2021). In addition to clinical prognostic
studies, studies focused on the underlying mechanisms of ERβ
isoforms may indirectly shed light on the prognostic role of ERβ
isoforms.

5 Mechanism underlying the roles of
ERβ isoforms in TNBC progression

5.1 Mechanism underlying the role of ERβ1 in
TNBC progression

ERβ1 is predominantly located in the nucleus. Nuclear
ERβ1 forms complexes with other nuclear receptors and potential
nuclear protein partners and binds to the enhancer region of various
transcription factors to regulate gene expression and the cell cycle
(Charn et al., 2010; Zhao et al., 2010). Cytoplasmic ERβ1 may
directly regulate the activity of membrane receptors, downstream
pathways, and cholesterol biosynthesis in a ligand-independent

manner. Mitochondrial ERβ1 is involved in the regulation of
mitochondrial function (Figure 2). Most functions of ERβ1 are
not carried out through ligand binding, although they may be
dependent on the DNA binding domain. Recent research has
indicated that disrupting ERβ1’s direct contact with DNA
eliminates its capacity to control the expression of rapid response
genes and leaves it unable to control TNBC cell growth (Aspros
et al., 2023).

5.1.1 ERβ1 regulates the activation of membrane
receptors and downstream pathways

EGFR is deregulated and acts as an oncogenic factor in TNBC
(Martin et al., 2012). ERK1/2 and AKT are downstream signals of
EGFR. ERβ1 enhances the association of ubiquitin ligase c-Cbl and
EGFR and subsequently induces EGFR degradation, which terminates
EGFR-activated ERK and impedes epithelial–mesenchymal transition
(EMT) in a ligand-independent manner (Thomas et al., 2012). In
addition, ERβ1 directly suppresses the PI3K/AKT/mTOR signaling
pathway, which is responsible for sensitizing TNBC to doxorubicin
treatment (Lei et al., 2020). Insulin-like growth factor II (IGF-II)
mRNA-binding protein 3 (IMP3) enhances the invasion and

FIGURE 2
Schematic representation of ERβ isoforms-activated pathways and their interactions with membrane receptors, nuclear receptors, transcription
factors, and mitochondrial pathway proteins that are involved in the development and progression of triple-negative breast cancer (TNBC).
ERβ1 mediates EGFR degradation and suppresses the activation of downstream EGFR signaling. ERβ1 promotes the transcription of genes that inhibit the
cell cycle and the TGF-β signaling pathway, induces autophagy, and suppresses cholesterol biosynthesis. ERβ1 suppresses the transcription of genes
that promote the cell cycle. Mitochondrial ERβ1 enhances mitochondrial transcription and activates the oxidative phosphorylation (OXPHOS) system to
inhibit TNBC cell growth. ERβ2, 4, and 5 upregulate the HIF-1a pathway and enhance proliferation and drug resistance, opposing the function of ERβ1.
ERβ4 upregulates cancer stem cell (CSC) markers, which are inhibited by ERβ1. Abbreviations: CSTs, cystatins; OXPHOS, oxidative phosphorylation; Ub,
ubiquitin.
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migration of TNBC (Kim et al., 2018). EGFR induces
IMP3 transcription and expression through activation of the ERK
pathway. ERβ1 may indirectly inhibit IMP3 expression by repressing
EGFR, which suppresses the migration and invasion of TNBC
(Samanta et al., 2012). However, Kyriakopoulou et al. have reported
that ERβ mediating EGFR induces aggressiveness and stemness of
TNBC (Kyriakopoulou et al., 2020; Kyriakopoulou et al., 2022).

G protein-coupled estrogen receptor 1 (GPER1), a member of G
protein-coupled receptors (GPCRs), is activated by estradiol, and
GPER1 expression is correlated with increasing aggressiveness of
TNBC (Girgert et al., 2019; Xu et al., 2022). In a recent study, the
anti-invasive effect of ERβ agonists was increased by GPER
suppression (Schmitz et al., 2022); however, ERβ1 did not
directly regulate the expression of GPER mRNA. In ERa-negative
inflammatory BC cells, ERβ1 suppresses cell migration via direct
suppression of GPR141 expression (another GPCR) (Thomas et al.,
2021). Additionally, increased VEGF expression due to increased
GPER expression promotes angiogenesis and cancer progression
(De Francesco et al., 2014). ERβ1 re-expression and activation have
recently been shown to reduce the expression of the VEGF protein,
ultimately inhibiting angiogenesis in TNBC (Salahuddin et al.,
2022).

The TGFβ signaling pathway plays a critical role during the
progression of TNBC (Welm, 2008; Drabsch and Ten Dijke, 2011).
Matrix metalloproteinase 13 (MMP-13) promotes tumor invasion
and metastasis by mediating the degradation of the epithelial
basement membrane and extracellular matrix (Zhang et al.,
2008). The chemokine CXCL8 mediates the progression of breast
cancer (Mishra et al., 2021). Downregulation of ERβ1 activates
TGFβR, subsequently inducing the transcription of MMP-13 and
CXCL8. Cystatins are secreted proteins that inhibit the TGFβ
pathway. Reese et al. reported that overexpression or ligand-
induced activation of ERβ1 inhibits TNBC invasion and
migration by inducing cystatin expression and suppressing the
TGFβ pathway (Reese et al., 2018). Our recent study showed that
overexpression of ERβ1 suppresses the metastasis and invasion of
TNBC cells by upregulating the expression of cystatins in both
ligand-dependent and ligand-independent manners, and by
increasing E-cadherin transcription in a ligand-dependent
manner (Yan et al., 2021). Our in vivo results further indicated
that ERβ1 suppressed both primary tumor growth and metastasis,
which was accompanied by a reduction in EMT markers and breast
cancer stem cell markers (Dey et al., 2022).

5.1.2 ERβ1 interacts with nuclear receptors and
transcription factors

The androgen receptor (AR), a member of the nuclear receptor
superfamily, is a strong driver of proliferation in prostate cancer.
ERβ1 exerts a tumor-suppressive effect by negatively regulating the
expression and activity of AR in prostate cancer (Chaurasiya et al.,
2020). Approximately 10%–43% of patients with TNBC are AR
positive (Ogawa et al., 2008; Niemeier et al., 2010). Activation of AR
enhances the progression of TNBC. Anti-androgen treatment (AR
antagonist) is currently being developed for AR + TNBC but is only
beneficial for some specific patients (Gucalp et al., 2013; Bonnefoi
et al., 2016). The PI3K/AKT pathway is highly activated in AR +
TNBC, which is responsible for anti-androgen resistance (Coussy
et al., 2020). ERβ1 suppresses AR-mediated cell proliferation by

directly heterodimerizing with AR or indirectly suppressing the
PI3K/AKT pathways in a ligand-independent manner, which
reverses anti-androgen treatment resistance in AR-positive MDA-
MB-453 TNBC cells (Anestis et al., 2019). The migration-
suppressing effect of ERβ1 was also reported to be mediated by
suppressing ZEB1 in AR + TNBC (Song et al., 2017).

EZH2, a transcription factor, is associated with advanced tumor
stage, increased mortality, and can promote TNBC progression
(Chien et al., 2018; Gan et al., 2018). EZH2 activates gene
expression and functions as a coactivator of oncogenic NFκB/
p65 signaling in TNBC. Ligand-activated ERβ1 can suppress
TNBC growth by acting as a molecular switch for the oncogenic
effect of EZH2 and repurposes EZH2 to impart anti-cancer effects
(Aspros et al., 2022). On the other hand, ERβ1 can physically
associate with NFκB protein and exert anti-tumor effects by
inhibiting NFκB signaling in a ligand-independent manner
(Aspros et al., 2019).

CDKN1A, p21, and CDH1, three cell cycle inhibitors, have
been reported to be upregulated by E2-induced ERβ1 activation
(Shanle et al., 2013). In addition, ERβ1 may act as a tumor
suppressor, blocking the cell cycle by downregulating other cell
cycle-promoting genes including cyclin H, cyclin B, and CDK1
(Reese et al., 2017). Wild-type p53 is a cell cycle checkpoint protein
and may inhibit oncogene-mediated proliferation (Eliyahu et al.,
1989; Kuerbitz et al., 1992). p53 is another target of ERβ in TNBC,
and the mutant status of p53 determines the effect of ERβ (Bado
et al., 2016). The majority of breast cancer cases and cell lines
contain p53 mutations. Mutant p53 mediates the survival and
promotes the proliferation of breast cancer cells (Lim et al., 2009;
Arjonen et al., 2014). ERβ1 has been shown to downregulate p53.
In p53-mutated breast cancer, ERβ1 inhibits the proliferative and
migratory activity of TNBC cells by suppressing the oncogenic
function of mutant p53 (Bado et al., 2016), an effect that may be
further enhanced by tamoxifen treatment (Scarpetti et al., 2023).
However, ERβ has been reported to enhance proliferation in a wild
type p53 cell line (Mukhopadhyay et al., 2019). Song et al. also
reported that activation of ERβ1 upregulates CLDN6, which
induces beclin1-dependent autophagy in TNBC cells (Song
et al., 2019b).

Rapidly proliferating cells require cholesterol for biosynthesis of
cell membranes and to support cellular biological function. Hence,
the factors that regulate cholesterol metabolism are involved in the
progression of breast cancer (González-Ortiz et al., 2021).
ERβ1 takes part in the regulation of cholesterol biosynthesis in
breast cancer cells. ERβ1 regulates many chromatin remodeling
complexes, which suppresses breast cancer progression by
repressing cholesterol biosynthesis genes (Alexandrova et al.,
2020a). miR-181a-5p is involved in the key signaling pathway of
cholesterol biosynthesis. It has been reported that ERβ1 inhibits
cholesterol biosynthesis by upregulating miR-181a-5p (Alexandrova
et al., 2020b).

5.1.3 ERβ1 regulates mitochondrial function
ERβ1 was first identified in the mitochondria of the human heart

and aids in regulating mitochondrial function through a genomic
pathway (Yang et al., 2004). In ERa-positive breast cancer,
E2 treatment may increase ERβ localization in the mitochondria
in a time-and concentration-dependent manner (Chen et al., 2004).
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Studies have shown that in TNBC cells, glucose-regulated protein 75
(GRP75) mediates the translocation of ERβ1 from the cytoplasm to
the mitochondria by directly interacting with ERβ1 (Song et al.,
2019a). The function of mitochondrial ERβ1 (mitoERβ1) in TNBC
remains controversial. Some clinical studies have shown that
mitoERβ1 enhances mitochondrial biogenesis to meet the energy
demands of tumor progression (Liao et al., 2015). However, others
have reported the opposite results, noting that mitoERβ1 suppresses
breast cancer progression by maintaining mitochondrial function.
Low expression of mitoERβ1 has been associated with an increased
risk of postoperative TNBC recurrence. Overexpression of
mitoERβ1 enhances mitochondrial transcription, activating the
oxidative phosphorylation (OXPHOS) system to produce ATP
and inhibit TNBC cells growth in vitro, while impairing tumor
growth in vivo (Song et al., 2019a). In cell culture and mouse
xenograft models, these effects were reversed by the deletion of
the C- or N-terminal portions of the mitoERβ1 protein. Further
investigation demonstrated that full-length mitoERβ1 expression,
via binding to the mtDNA D-loop, promotes transcription of
13 mitochondrial genes, an effect that was not observed in the
presence of C- or N-terminally truncated receptor versions (Song
et al., 2019a). In addition, a clinical study reported that Bcl-2
expression was lower in ERβ1-positive breast cancer than in
ERβ-negative breast cancer (Le Cornet et al., 2020). Bcl-2 may
suppress apoptosis by inhibiting the mitochondrial permeability
transition.

5.2 Mechanisms underlying the roles of
ERβ2, ERβ4, and ERβ5 in TNBC progression

The expression of ERβ2 and ERβ5 mRNA is higher than that of
other isoforms in TNBC. According to our recent study, ERβ2 and
ERβ5 are the predominant isoforms and are present in more than
80% of breast cancers (Yan et al., 2021). ERβ2 and ERβ5 are
oncogenic and enhance the aggressiveness of TNBC. Exogenous
overexpression of ERβ2 or ERβ5 enhances the proliferation,
invasion, and migration of TNBC cells by upregulating survivin
expression, whereas their downregulation suppresses TNBC
progression (Yan et al., 2021).

Accumulating evidence has demonstrated that circRNA is
critical for the initiation and progression of TNBC. Hsa_circ_
000073, one type of circRNA, is upregulated in TNBC tissues
and is positively corelated with the expression of ERβ2. Further
studies have indicated that ERβ2 promotes TNBC cell migration and
invasion by upregulating hsa_circ_0000732, which upregulates
cyclinD1 and PCNA expression (Chen et al., 2022). In addition,
mitochondrial ERβ2 drives antiapoptotic pathways in advanced
serous ovarian cancer (Ciucci et al., 2015). The role of
mitochondrial ERβ2 in TNBC is not clear, marking a key
direction for future research.

While ERβ1 preferentially dimerizes with ERβ4, it influences the
malignancy of TNBC cells and regulates stem cell markers such as
Nanog, SOX2, and OCT4 in an opposing manner (Bano et al., 2023).
ERβ4 has been reported to cause mammosphere formation in the
human normal mammary epithelial cell line MCF-10A and enhance
mammosphere proliferation in the early stages of tumor progression
(Faria et al., 2018).

ERβ1 may exert anti-tumor effects in TNBC by suppressing
mutation of p53. ERβ2 has been shown to physically interact with
mutant p53, increase transcription of the FOXM1 gene, enhance cell
proliferation, and lead to carboplatin resistance in patients with
high-grade serous ovarian cancer (Oturkar et al., 2022). However,
crosstalk among ERβ2, ERβ4, ERβ5, and p53 has not yet been
reported in TNBC, providing another valuable direction for future
research.

6 ERβ isoforms and drug resistance

Hypoxia promotes cell growth, angiogenesis, migration, and
drug resistance by activating HIF-1a, the major regulator of oxygen
homeostasis. Endogenous ERβ2 and ERβ5 drive the proliferation of
TNBC cells by increasing HIF-1a protein levels and upregulating the
HIF-1α pathway (Natarajan et al., 2012; Bialesova et al., 2017). HIF-
1α expression and transcription are activated by chemotherapeutic
drugs in stem-like TNBC cells. HIF inhibitors reverse paclitaxel or
gemcitabine resistance and lead to tumor eradication (Samanta et al.,
2014). Overexpression of ERβ4 increases HIF-1α expression and
increases resistance to paclitaxel in TNBC (Bano et al., 2023). In
contrast, downregulation of ERβ4 sensitizes TNBC to paclitaxel
(Faria et al., 2018).

Prolyl-4-hydroxylase 1 (PHD1), PHD2, and PHD3—three HIF
inhibitors—serve as oxygen sensors in the HIF pathway,
hydroxylating HIF-1a in an oxygen-dependent manner (Kaelin
and Ratcliffe, 2008). Impeding the catalytic activity of PHDs may
stabilize HIF-1a and activate HIF-1a-mediating transcriptional
pathways, which can in turn promote cellular adaptation to
hypoxic conditions and the transcription of oncogenic genes,
thus leading to tumor progression (Lee et al., 2016). ERβ1 has
been reported to destabilize HIF-1α by promoting the expression of
prolyl hydroxylase 2 (PHD2), which maintains epithelial
differentiation and suppresses migration (Mak et al., 2013).
Furthermore, ERβ2 has been shown to contribute to the
invasiveness of TNBC cells by repressing the transcription of the
PHD3 gene and increasing HIF-1α protein levels (Bialesova et al.,
2017).

The human breast cancer resistance protein (BCRP/ABCG2) acts
to restrict the absorption and regulate the subcellular distribution of
drugs (Natarajan et al., 2012). HIF-1a may upregulate ABCG2, which
is involved in resistance to cancer drugs and has been correlated with
worse prognosis (Krishnamurthy et al., 2004; Staud and Pavek, 2005;
Xiang et al., 2012). Overexpression of ERβ2 and ERβ5 has been shown
to contribute to drug resistance by increasing the expression of
ABCG2 in a TNBC cell line (Faria et al., 2017). Conversely,
knockdown of endogenous ERβ2 or ERβ5 can reverse drug
resistance in the context of TNBC (Faria et al., 2017; Faria et al., 2019).

7 Implications of targeting ERβ isoforms
for clinical treatment

Positivity for the ERβ1 protein is detected in approximately 18%
of TNBC tumors when analyzed using IHC involving a PPG5/
10 ERβ monoclonal antibody, which target the specific C-terminal
domain of ERβ1 (Aspros et al., 2022). Ligand-activated ERβ
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suppresses the aggressiveness of TNBC in vitro (Reese et al., 2018;
Yan et al., 2021). In vivo, ERβ inhibits the growth of TNBC cells in
xenograft models and suppresses the development of metastatic
lesions in a ligand-dependent manner (Reese et al., 2018; Dey et al.,
2022). Thus, targeting ERβ1 using its ligands represents an attractive
approach for treating patients with TNBC expressing ERβ1.
Estradiol, a form of estrogen, is the natural ligand of ERβ. An
ongoing phase II trial at the Mayo clinic is investigating the efficacy
of ERβ1 stimulation via estradiol in patients with ERβ1-positive
TNBC with advanced or metastatic disease (NCT03941730) (Leon-
Ferre and Goetz, 2023). However, results and updates from this trial
have yet to be reported but are eagerly awaited.

Preclinical evidence has demonstrated that the oral ERβ agonist
S-equol inhibits the proliferation of TNBC cells. A neoadjuvant
study evaluated the anti-tumor effects of S-equol in 39 patients with
TNBC, reporting that S-equol treatment exerted anti-proliferative
effects based on a decrease in Ki-67. Further RNA-seq data indicated
that S-equol treatment resulted in immune activation. Future
clinical trials designed to assay the synergistic effect of immune
checkpoint inhibitors and immune activating agents such as S-equol
are warranted (Lathrop et al., 2020; Lathrop et al., 2021). Although
several novel synthesized ERβ-selective agonists have also been
examined in vitro, no clinical trials have been conducted among
patients with TNBC (Lathrop et al., 2020; Datta et al., 2021).

Given that cancers are likely to develop de novo or acquired
resistance to targeted therapy, several studies have explored the
mechanisms underlying resistance to ERβ1-targeted therapy. Such
studies have reported that lncRNA XIST expression may induce
resistance to ERβ1-targeted therapy (Emch et al., 2022). Thus, cases
of TNBC with low or no XIST expression may benefit from
treatment with ERβ1 agonists. Strategies designed to suppress
XIST expression may re-sensitize the resistant cells to
ERβ1 agonists. On the other hand, the oncogenic functions of
ERβ2, ERβ4, and ERβ5 highlight the potential for the
development and clinical application of specific antagonists or
receptor down-regulators in TNBC treatment.

8 Conclusion

The exact patterns and functions of ERβ isoform expression
remain controversial. TNBC cell lines that exhibit detectable full-
length ERβ1 protein levels are not available, perhaps because the in
vitro-transferable cell lines are more malignant. Clinical prognostic
studies focused on the role of ERβ isoforms have also yielded
controversial results, possibly due to a lack of sensitive and/or
specific antibodies or inaccurate RT-PCR results. Exploring more
reliable and precise tools to distinguish different ERβ isoforms is still
an urgent problem to be solved. Most of the recently published data
on the role of ERβ isoforms were obtained using transient or

inducible induction of ERβ isoforms in cell lines. ERβ isoforms
exert different effects on proliferation, invasion, and migration in
TNBC cell lines. These ERβ isoforms interact with nuclear factors
and several signaling pathways, constituting an intricate network
that regulates biological behavior in TNBC. Given the inhibitory
effect of ERβ1 on TNBC progression, future studies should focus on
developing new, specific ligands for study in clinical trials. As for the
preliminary data on the carcinogenic effect of ERβ2, ERβ4, and
ERβ5, future research should be directed towards exploring novel
specific inhibitors or receptor downregulators. Additional studies
are required to identify factors that can engage in crosstalk with
ERβ2, ERβ4, and ERβ5 to reveal the exact mechanisms by which
these isoforms influence TNBC. These data will in turn aid in the
development of a scheme for multi-target treatments based on the
relevant molecular mechanism.
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