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In Europe, with an incidence of 7.5 cases per million, Ewing sarcoma (ES) is the
second most common primary malignant bone tumor in children, adolescents
and young adults, after osteosarcoma. Since the 1980s, conventional treatment
has been based on the use of neoadjuvant and adjuvant chemotherapeutic agents
combined with surgical resection of the tumor when possible. These treatments
have increased the patient survival rate to 70% for localized forms, which drops
drastically to less than 30% when patients are resistant to chemotherapy or when
pulmonary metastases are present at diagnosis. However, the lack of
improvement in these survival rates over the last decades points to the urgent
need for new therapies. Genetically, ES is characterized by a chromosomal
translocation between a member of the FET family and a member of the ETS
family. In 85% of cases, the chromosomal translocation found is (11; 22) (q24; q12),
between the EWS RNA-binding protein and the FLI1 transcription factor, leading to
the EWS-FLI1 fusion protein. This chimeric protein acts as an oncogenic factor
playing a crucial role in the development of ES. This review provides a non-
exhaustive overview of ES from a clinical and biological point of view, describing its
main clinical, cellular and molecular aspects.
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1 Introduction

Sarcomas are defined as solid tumors that develop from connective tissue. In contrast to
carcinomas, which are solid tumors that develop from epithelial cells, sarcomas originate in
mesenchymal cells. These sarcomas can be classified into three main groups (Sbaraglia et al.,
2021).

1) Soft tissue and visceral sarcomas such as liposarcomas, fibro-myofibroblastic sarcomas,
leiomyosarcomas, rhabdomyosarcomas, vascular sarcomas, gastrointestinal stromal
tumors, sarcomas with bone or cartilage differentiation, malignant nerve sheath
tumors, undifferentiated sarcomas.

2) Bone sarcomas such as osteosarcomas, chondrosarcomas, bone fibrosarcomas, bone
angiosarcomas, bone leiomyosarcomas and undifferentiated polymorphic sarcomas.

3) Undifferentiated small round cell sarcomas of bone and soft tissue such as Ewing
sarcomas.
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2 Ewing sarcoma (ES)

2.1 Main clinical characteristics

2.1.1 Primary bone tumors
Twenty-one percent of pediatric cancers are defined as sarcomas

(Burningham et al., 2012), of which 3% are primary bone tumors
(Stiller et al., 2013; Jackson et al., 2016; Aran et al., 2021). ES is thus
the second most common primary malignant bone tumor in
children, adolescents, and young adults, after osteosarcoma.
Together, these two tumors account for around 90% of pediatric
bone sarcomas (Desandes et al., 2004; Raze et al., 2021).

2.1.2 General overview
ES was first described by James Ewing in 1921 as a new bone

tumor called “diffuse bone endothelioma” (Ewing, 1972). Initially,
the World Health Organization classification grouped ES tumors,
primitive neuroectodermal tumors and Askin tumors into a single
tumor group on the basis of their histological similarities and the
presence of FET-ETS fusion genes (Doyle, 2014).

These tumors were distinguished from “Ewing sarcoma-like”,
having morphological similarities with ES, but being characterized
by other fusion genes and different clinical and pathological features
(Grünewald et al., 2018). This classification was modified in 2016,
notably differentiating primitive neuroectodermal tumors from
bone-site or extra-bone-site ES (Louis et al., 2016).

The majority of ES are osseous, arising mainly in the pelvis and
ribs, but also in the diaphysis of long bones (femur, tibia, fibula)
(Figure 1A). Twenty to 30% of ES may nevertheless be extraosseous
(Lynch et al., 2018; Jahanseir et al., 2020). ES can thus be located in
soft tissues, such as the thoracic cavity wall or pleural cavities. ES is
an aggressive tumor, including a high risk of metastases, which is a

factor of poor prognosis. The percentage of patients with metastatic
ES at diagnosis is estimated to be between 20% and 25%. These
metastases are most often located in the lungs, bones, but also in the
spinal cord in a smaller percent (Grünewald et al., 2018).

2.1.3 Epidemiology
ES mainly affects children, adolescents, and young adults, with a

peak incidence at 15 years of age at diagnosis (Jawad et al., 2009). In
Europe, the incidence rate is 7.5 cases per year per million children
aged between 10 and 19 years old (Spector et al., 2021). In addition,
there are around 100 new cases every year in France. Men are slightly
more affected than women, with a sex ratio of 3:2 (Hu et al., 2021).
Disparities can also be observed in the distribution of ES across the
population. Indeed, several studies show a very low incidence of this
tumor in Asian and African populations (Jawad et al., 2009; Worch
et al., 2011; Hu et al., 2021). Beyond environmental and lifestyle
disparities, this has been correlated with a germline genomic variant
common to European and Western populations that allows the
extension of microsatellites at 6 loci (EGR2, Early Growth Response
2; ADO, 2-Aminoethanethiol Dioxygenase; TARDBP, TAR DNA
Binding Protein; RREB1, Ras Responsive Element Binding Protein 1;
KIZ, Kizuna Centrosomal Protein and NKX2-2, NK2 Homeobox 2)
facilitating the binding of the EWS-FLI1 fusion protein (Postel-
Vinay et al., 2012; Machiela et al., 2018).

2.1.4 Etiology
In contrast to osteosarcoma, which is a highly heterogeneous

tumor at the genetic level, ES is poor in terms of genetic
abnormalities. It is characterized by a recurrent chromosomal
translocation between a member of the FET family of RNA-
binding proteins and a member of the ETS family of
transcription factors (Table 1). The first observed chromosomal

FIGURE 1
(A) Primary and metastatic sites of Ewing sarcoma. Ewing sarcomamainly affects the humerus, ribs, pelvis and femur and metastasized to the lungs,
bones and bone marrow (B) Schematic representation of the EWS-FLI1 fusion protein. The main chromosomal translocation in Ewing sarcoma occurs
between EWS on the chromosome 22 and FLI1 on the chromosome 11. The resulting fusion protein displays the N-terminal domain of EWS and the
C-terminal domain of FLI1.
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translocation, t (11; 22) (q12; 24), was described in 1984 (Aurias
et al., 1984; Turc-Carel et al., 1984). In 1992, it was characterized as a
chromosomal translocation between the EWSR1 (also known as
EWS) and FLI1 genes, generating the EWS-FLI1 fusion protein
(Delattre et al., 1992), which is characteristic of 85% of ES cases
(Figure 1B). In the remaining 15% of ES cases, other fusion genes
have been described, mainly involving the EWS gene with other
members of the ETS family (Zucman et al., 1993; Jeon et al., 1995;
Kaneko et al., 1996; Peter et al., 1997; Shing et al., 2003; Ng et al.,
2007), with 10% of these cases characterized by the formation of the
EWS-ERG fusion protein (Zucman et al., 1993). Nevertheless, it has
been shown that patient survival does not vary according to
translocation type (Le Deley et al., 2010; van Doorninck et al., 2010).

On the other hand, rare other protein-coding mutations have
been observed, notably in TP53 and STAG2 (Brohl et al., 2014;
Crompton et al., 2014; Tirode et al., 2014), the latter being the most
commonly mutated gene in ES (15%–21% of cases) (Brohl et al.,
2014). More surprisingly, although TP53 is mutated in more than
50% of cancers, mutations in this gene are observed in only 5%–7%
of ES cases (Kovar et al., 1993; Huang et al., 2005). Other mutations
have also been identified such as those affecting EZH2 (Enhancer of
Zeste 2 Polycomb Repressive Complex 2 Subunit), BCOR
(BCL6 Corepressor), ZMYM3 (Zinc finger MYM-type containing
3) or CDKN2A (Cyclin Dependent Kinase Inhibitor 2a) (Huang
et al., 2005; Brownhill et al., 2007; Tirode et al., 2014).

2.1.5 Diagnosis and therapeutic management
2.1.5.1 Clinical diagnosis

ES is a fast-growing tumor, forming osteolytic lesions, which can
lead to bone pain and sometimes to pathological fractures. The clinical
picture of ES is not very distinctive, which often leads to a delay in
diagnosis, ranging from several weeks to several months. The first signs
that may lead to consultation are the appearance of swelling in the
affected bone, associated with a slight pain that may become more
pronounced at night or following physical activity. In more advanced
cases, pain and the presence of a mass are accompanied by less specific
symptoms, such as fever, fatigue or weight loss, whichmay be a sign that
the tumor has becomemetastatic (Biswas et al., 2014; Pizzo et al., 2015).

Diagnosis includes imaging studies before confirmation with
surgical biopsy and histological and molecular analyses. Imaging
consists of conventional radiography, through which it is possible to
see the osteolytic damage created by the tumor mass in the

diaphyseal-metaphyseal bone (Riggi et al., 2021). Magnetic
Resonance Imaging (MRI) is then generally prescribed, which
can be combined with a tomographic examination. Thanks to
better spatial resolution and contrast, this allows better
visualization of calcifications and tumor extension into adjacent
bone and soft tissue. A technique combining 18F-
fluorodeoxyglucose (FDG), PET-scan and tomography can also
be used to assess tumor regression or progression upstream of
MRI (Gerth et al., 2007). It has been shown that this technique
can also be used to assess the presence of spinal cord metastases, in
order to avoid spinal cord puncture (Newman et al., 2013; Kopp
et al., 2015; Kasalak et al., 2018).

Histological features of the sample include the observation of
small, round, undifferentiated cells. These cells have a prominent
nucleus and sparse cytoplasm with glycogen deposits. Classically,
the marker CD99 (Cluster of Differentiation 99), a
transmembrane glycoprotein, is used for the diagnosis of ES
(Ambros et al., 1991). Other markers can also be used, such as
CD57 (Cluster of Differentiation 57) and synaptophysin, which
are neuronal markers (Riggi and Stamenkovic, 2007). However, it
should be noted that CD99 is not specific to ES as it can be a
marker in other round cell sarcomas and even leukemias (Baldauf
et al., 2018). The definitive diagnosis relies on the identification of
the fusion protein by fluorescent in situ hybridization (FISH) or
even quantitative Polymerase Chain Reaction (qPCR)
techniques.

2.1.5.2 Metastatic development
During the progression of ES, 20%–25% of patients may develop

metastases at diagnosis (Grünewald et al., 2018; Strauss et al., 2021)
to the lung (10%), bone (10%) or other sites (5%), spreading via the
bloodstream (Casali et al., 2018) (Figure 2A).

Although many diverse processes are described to drive the
metastatic development of ES, multiple studies report the crucial
role of the EWS-FLI1 fusion protein in intra-tumor heterogeneity
and in the ability of cells to migrate to metastatic sites (Franzetti
et al., 2017; Sheffield et al., 2017; Aynaud et al., 2020). Indeed, cells
with high EWS-FLI1 expression are rather undifferentiated and
proliferate rapidly, whereas cells with low EWS-FLI1 expression
have a more mesenchymal phenotype and are inclined to migrate
and metastasize (Figure 2B). In this context, several studies have
shown that EWS-FLI1 controls the metastatic potential of cells by
regulating the organization of the actin cytoskeleton (Amsellem
et al., 2005; Chaturvedi et al., 2012; 2014). Cells with low EWS-FLI1
expression show a loss of E-cadherin expression (Jolly et al., 2019) in
favor of high expression of mesenchymal markers such as
N-cadherin and Slug (Chaturvedi et al., 2012). EWS-FLI1
silencing also leads to decreased expression of cell-cell adhesion
proteins such as tight junctions (CLD1, Claudin-1; OCL, Occludin)
or desmosomes (DSP, Desmoplakin; PKP1, Plakophilin-1)
(Franzetti et al., 2017).

2.1.5.3 Prognosis
The presence of metastases at the time of diagnosis is the most

important prognostic factor, significantly reducing the probability of
survival from around 70% at 5 years when the tumor is localized to
less than 30% for patients with metastases (Takenaka et al., 2016; Li
et al., 2022). Other factors, such as the location of metastases, the

TABLE 1 Chromosomal translocations identified in Ewing sarcoma.

Family Translocation Fusion gene Frequency

EWS-ETS t (11; 22) (q24; q12) EWSR1-FLI1 85%

t (21; 22) (q22; q12) EWSR1-ERG 10%

t (7; 22) (p22; q12) EWSR1-ETV1 <1%

t (17; 22) (q12; q12) EWSR1-ETV4 <1%

t (2; 22) (q33; q12) EWSR1-FEV <1%

FUS-ETS t (2; 16) (q35; p11) FUS-FEV <1%

t (16; 21) (p11; q22) FUS-ERG <1%

EWS-ETS: abbreviation for EWSR1, standing for Ewing sarcoma breakpoint region 1—E-

twenty six Transformation Specific. FUS-ETS: FUsed in Sarcoma—E-twenty six

Transformation Specific.
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patient’s age and the location of the primary tumor (Hu et al., 2021),
also play a part in prognosis. Indeed, the presence of bone rather
than lung metastases (Casali et al., 2018; Strauss et al., 2021),
adolescents/young adults rather than children aged 0–14
(Desandes and Stark, 2016), and a primary tumor located in the
pelvis, sacrum or coccyx rather than in the long bones have a worse
prognosis (Hu et al., 2021).

2.1.5.4 Therapeutic treatment
According to European guidelines, the therapeutic management

of ES is as follows (Strauss et al., 2021): whether the tumor is
localized or metastatic, the patient will undergo initial neoadjuvant
chemotherapy, followed by local tumor therapy through surgical
removal of the tumor and then adjuvant chemotherapy. Until
recently, standard treatment in Europe combined 4 agents:
Vincristine, Ifosfamide, Doxorubicin and Etoposide (VIDE)
(Juergens et al., 2006; Ladenstein et al., 2010). If the primary
tumor is large, or if the response to treatment is poor, the
patient may be prescribed consolidation treatment with high-
dose chemotherapy based on Vincristine, Actinomycin D and
Ifosfamide (VAI) or Cyclophosphamide (VAC) or Busulfan and
Melphalan. Because ES is a radiation-sensitive tumor (Gaspar et al.,
2015), surgical resection can be supplemented with postoperative
radiation therapy or even replaced by radiation therapy if the tumor
is inoperable because in a site difficult to reach. Nonetheless, patients
who have undergone surgical excision as well as radiation therapy
have a decreased risk of recurrence compared to patients who have
only undergone radiation therapy, although there does not appear to
be a significant effect on overall patient survival (Foulon et al., 2016).

New therapeutic strategies are being explored to improve the
prognosis and survival of ES patients, which have not improved over
the past 20 years.

The EuroEwing 2012 clinical trial was aimed to compare the
efficacy, survival, and toxicity of European standardized
chemotherapy with the protocol used in the United States from
the Children’s Oncology Group (AEWS0031 clinical trial, (Womer
et al., 2012; Anderton et al., 2020). Patients on this protocol receive

alternating cycles of Vincristine - Doxorubicin - Cyclophosphamide
and Ifosfamide - Etoposide (VDC/I.E.,) as induction chemotherapy
and then alternating cycles of Ifosfamide - Etoposide and Vincristine
- Cyclophosphamide (I.E.,/VC). Initial results from this clinical trial
indicate that the US protocol is more effective in terms of overall
survival and event-free survival, less toxic, and shorter in duration
for newly diagnosed cases of ES (Brennan et al., 2020; Brennan et al.,
2022). Since this study, the interval compressed V(D)C/I.E.,
schedule is now standard of care across Europe and the
treatment backbone for the upcoming academic trials in ES.
Other clinical trials aimed at improving response to
chemotherapy using other chemotherapeutic agents, alone or in
combination with various drugs, are currently being studied or
enrolled (Supplementary Table S1). For example, the Phase II/III
multi arm multi stage clinical trial for relapsed refractory ES
(rEECur) was evaluating the effect of Topotecan and
Cyclophosphamide (TC), Irinotecan and Temozolomide (IT),
Gemcitabine and Docetaxel (GD), or high-dose Ifosfamide
(IFOS) in the treatment of recurrent and refractory ES (RR-ES)
(ISRCTN36453794). The first results showed that IFOS is more
effective in prolonging survival than TC, having previously
overcoming GD and IT, and should be considered as a control
arm in future randomized phase II/III studies in RR-ES if
combination with IFOS makes sense. This trial is currently
recruiting patients to IFOS and Cyclophosphamide/Etoposide
regimens, and an additional arm with a molecularly targeted
agent is planned, such as Multi-Tyrosine Kinase Inhibitors
(MTKI) (McCabe et al., 2022).

2.2 Main cellular characteristics: cellular
origin of ES

The origin of ES has been debated for several decades with two
main theories as to the cell of origin, neural crest stem cells or
mesenchymal stem cells (Kovar, 2010; Lin et al., 2011; Tu et al.,
2017).

FIGURE 2
(A) Metastatic development of Ewing sarcoma. Tumor cells invade the primary tumor site (Invasion), before passing through the bloodstream
(Intravasation) to the metastatic site, where they exit the bloodstream (Extravasation) to form metastases (Colonization) (B) Mechanism of proliferation
and dissemination of Ewing sarcoma according to EWS-FLI1 expression (based on Franzetti et al., 2017). Cells strongly expressing EWS-FLI1 are
undifferentiated, more proliferative and display more cell-cell interactions. On the other hand, cells weakly expressing EWS-FLI1 are more
mesenchymal, migrate more and display more cell-matric interactions.
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2.2.1 Neural crest stem cells
Neural crest stem cells are multipotent stem cells

contributing, for example, to the precursors of Schwann cells
or cells of the peripheral nervous system. Various studies have
shown that ES express markers of neural crest stem cells, such as
CD57 (Cluster of Differentiation 57), ENO2 (Neuron-specific
Enolase), S-100 or genes of the Notch signaling pathway (Franchi
et al., 2001; Baliko et al., 2007; Wahl et al., 2010). Neurosecretory
granules, have also been observed in ES by electron microscopy
(Suh et al., 2002). Furthermore, it has been shown that ES cell
lines can differentiate into neurons after specific treatments
inducing neuronal differentiation (Cavazzana et al., 1987). In
support of a neuroectodermal origin of ES, various studies have
also demonstrated a genomic expression profile of this tumor
similar to neural crest stem cells, in the presence of EWS-FLI1
(Staege et al., 2004; von Levetzow et al., 2011). However, as EWS-
FLI1 is able to induce a neural crest-like phenotype and
upregulates genes associated with primitive neuronal
differentiation (Teitell et al., 1999; Hu-Lieskovan et al., 2005),
doubts remain as to the cellular origin of ES. Indeed, the
neuroectodermal characteristics of ES could be the result of
EWS-FLI1 expression and not a reflection of the intrinsic
properties of the cell of origin.

2.2.2 Mesenchymal stem cells (MSC)
MSCs are multipotent, self-renewing stem cells derived in

particular from bone marrow, able to differentiate into
osteoblasts, adipocytes, chondrocytes or myocytes.

In this context, it has been shown that overexpression of EWS-
FLI1 in murine MSCs leads to their transformation and the
formation of sarcoma once implanted in vivo, with
characteristics (CD99 expression) and morphology similar to
those of ES (Torchia et al., 2003; Castillero-Trejo et al., 2005;
Riggi et al., 2005). Expression of EWS-FLI1 in human MSCs
stimulates expression of genes involved in neuronal
differentiation, but is not sufficient to induce a tumor in vivo,
in contrast to experiments with murine MSCs (Riggi et al., 2008).
In addition, a study of transcriptomic profiles showed that ES cells
deficient in EWS-FLI1 displayed mesenchymal characteristics
(Tirode et al., 2007). In a recent study, EWS-FLI1-expressing
cells were generated from “normal, non-cancerous” MSCs
derived from a patient with Ewing sarcoma (Sole et al., 2021).
These cells display morphological, transcriptomic and epigenetic
characteristics similar to those of ES, suggesting that ES can be
derived from bone marrow-derived MSCs.

2.3 Main molecular characteristics

2.3.1 The FET protein family
Located on chromosomes 16, 22 and 17 respectively, the FUS

(Fused In Sarcoma or TLS, for Translocated in Liposarcoma),
EWSR1 (Ewing sarcoma breakpoint region 1 also known as
EWS) and TAF15 (TATA-binding protein-associated factor 15,
also known as TAF2N) genes belong to the FET family of RNA-
binding proteins. Structurally, the FUS, EWS and TAF15 genes are
very similar, with several common domains (Tan and Manley, 2009;
Schwartz et al., 2015).

- An N-terminal domain characterized by a disordered, prion-
like structure, due to the presence of Serine - Tyrosine -
Glycine - Glutamine (SYGQ) repeats. Its composition
suggests its involvement in protein-protein interactions,

- A central Recognition RNA Motif (RRM),
- Arginine-glycine-glycine (RGG)-rich domains, also involved
in protein self-assembly and RNA binding,

- A Zinc-Finger Domain, with the same role as the RGG
domains in protein-RNA binding.

Due to their structure, the ubiquitously expressed genes that
compose the FET protein family are involved in a wide variety of
processes, such as transcription, post-transcriptional regulation and
DNA damage repair (Tan and Manley, 2009; Wang et al., 2013;
Schwartz et al., 2015). These proteins can affect the transcription of
target genes through direct interactions with regulators or
transcription factors, such as RNA polymerase II, CBP (CREB-
Binding Protein)/p300, TFIID (Transcription Factor II D) or Sp1
(Bertolotti et al., 1996; Hallier et al., 1998;Wang et al., 2008; Tan and
Manley, 2009; Hoell et al., 2011; Schwartz et al., 2012).

2.3.2 The ETS protein family
Friend Leukemia Integration 1 (FLI1) is one of 26 genes in the

E-twenty-six Transformation-Specific (ETS) protein family. The
ETS proteins are divided into 12 subfamilies, including the ERG
subfamily, which comprises 3 proteins: ERG (ETS-Related Gene),
FLI1 and FEV (Fifth Ewing Variant). All proteins in this ETS family
have a DNA-binding domain (ETS domain), binding a purine-rich
motif (GGA [A/T]) (Karim et al., 1990; Nye et al., 1992). More
specifically, FLI1 displays 4 distinct functional domains, including a
5′ETS domain, a specific FLI1 region (FLS, FLI1 Specific domain), a
second 3′ETS domain, responsible for DNA binding, and a
C-terminal Transcriptional Activation domain (CTA) (Wenge
et al., 2015).

These proteins are known to be involved in various biological
processes, such as embryonic development, vasculogenesis,
angiogenesis and hematopoiesis (Oikawa and Yamada, 2003;
Schober et al., 2005). In addition, these transcription factors are
regularly studied for their role as oncogenic transcription activators,
the latter being notably implicated in chromosomal translocation
mechanisms in various types of cancer (Sizemore et al., 2017).
Examples include EWS-FLI1 in ES (Delattre et al., 1992) and
TMPRSS2-ERG in prostate cancer (Tomlins et al., 2005). Finally,
some studies demonstrate a role for ETS proteins other than that of
transcription factor. Indeed, they could be involved in post-
transcriptional processes, ERG having been shown to play a role
in mRNA degradation (Rambout et al., 2016).

2.3.3 The EWS-FLI1 fusion protein
2.3.3.1 Chromosomal translocation

The chromosomal translocation t (11; 22) (q24,q12) generates
the EWS-FLI1 fusion gene (under the control of the EWS promoter),
composed of the N-terminal domain of the EWS gene and the
C-terminal domain of FLI1 (Figure 3A). Depending on the position
of the breakpoints in the different genes, over 10 different EWS-FLI1
transcripts have been described in the literature (Zucman et al.,
1993), the majority being between exon 7 of the EWS gene and exon
6 of the FLI1 gene (Delattre et al., 1992), or between exon 7 of the
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EWS gene and exon 5 of the FLI1 gene (Delattre et al., 1992; Zucman
et al., 1993). It should be noted that the reciprocal transcript (FLI1-
EWS) also exists, but until recently was considered to be little or not
expressed in ES cells (Zucman et al., 1993). Indeed, EWS-FLI1 is
expressed under the control of the EWS promoter, whereas FLI1-
EWS is expressed under the control of the FLI1 promoter, which is
not very active in ES (Zucman et al., 1993). However, a recent study
shows that FLI1-EWS expression in some ES cell lines is involved in
the regulation of ES cell proliferation (Elzi et al., 2015).

2.3.3.2 EWS-FLI1 protein and transcription
This EWS-FLI1 fusion gene leads to the formation of the EWS-

FLI1 fusion protein, whose activator domains are more potent than
those of FLI1 alone as a result of N-terminal domain substitution
during chromosomal translocation (May et al., 1993). This property
enables EWS-FLI1 to act as an aberrant transcription factor, thus
activating the expression of numerous oncogenes. After
translocation into the cell nucleus, EWS-FLI1 binds to its
consensus sequences located at the promoters of its target genes.
Using chromatin immunoprecipitation experiments, several studies
have identified the DNA-binding motif of EWS-FLI1 in vitro and in
vivo (Gangwal et al., 2008; Guillon et al., 2009; Boeva et al., 2010).
EWS-FLI1 is known to bind to the canonical DNA-binding motif of
the ETS protein family, the GGAA sequence (Boeva et al., 2010), but
it is also capable of binding to GGAA microsatellites, according to
the following rule: “the greater the number of repeats, the more the
target gene will be expressed”, within the limit of 20 GGAA repeats
(Guillon et al., 2009; Johnson et al., 2017) (Figure 3B). In this
context, a 2014 study demonstrates that the regulation of target
genes by EWS-FLI1 depends closely on the number of repeats of the
GGAAmotif at the DNA-binding domain: genes activated by EWS-

FLI1 are associated with GGAA microsatellites (motif repeated at
least 4 times), while genes repressed by EWS-FLI1 are associated
with the canonical DNA-binding motif of the ETS protein family
(1 GGAA sequence) (Riggi et al., 2014).

As this ability to bind to GGAA microsatellites is not observed
for FLI1 alone, this confers on EWS-FLI1 specific functions enabling
the activation of de novo enhancers through the recruitment of BAF
(BRG1-or BRM-Associated Factors), a chromatin remodeling
complex (Boulay et al., 2017). This modulates the expression of
numerous target genes, such as LOXHD1 (Deng et al., 2022), or
activates the expression of genes not expressed in healthy tissues or
other tumor tissues outside ES (Vibert et al., 2022).

2.3.3.3 Regulation of EWS-FLI1 expression
EWS-FLI1 expression can be regulated at transcriptional,

translational and post-translational levels, and via protein-protein
interactions (Yu et al., 2023).

At the transcriptional level, EWS-FLI1 expression is promoted
by methylation or acetylation of histone 3 (H3K4me3, H3K9ac or
H3K27ac) (Montoya et al., 2020) and by the binding of the
transcription factor SP1 (Specificity Protein 1) to its promoter.
Conversely, expression of miR-145 inhibits EWS-FLI1 transcription
(Ban et al., 2011).

EWS-FLI1 translation is modulated by compounds such as
Lovastatin or Tunicamycin, which reduce the protein level of
EWS-FLI1, thus reducing primary tumor growth (Wang et al.,
1999; Herrero-Martin et al., 2011), but increasing a migratory
phenotype (Franzetti et al., 2017). Numerous post-translational
modifications can take place on EWS-FLI1, resulting in
overexpression or degradation of the fusion protein. For example,
phosphorylation of threonine 79 (T79) (Klevernic et al., 2009) or

FIGURE 3
(A) Detailed schematic representation of the EWS-FLI1 fusion protein. EWS has Serine—Tyrosine—Glycine—Glutamine rich domain (SYGQ),
Arginine—Glycine—Glycine rich domain (RGG) and a RNARecognitionMotif (RRM). FLI1 has an E26 Transformation-Specific domain (ETS), a FLI1-Specific
Region (FLS) and a Carboxy-terminal Transcriptional Activation domain (CTA). After the chromosomal translocation, the EWS-FLI1 fusion protein display
the SYGQ domain from EWS and the FLS, ETS and CTA domains from FLI1 (B) EWS-FLI1 binding at GGAA microsatellites near its target gene
promoter. EWS-FLI1 is able to bind GGAA microsatellites repetitions in chromatin-opening regions (H3K27ac) and active promoter regions (H3K4me3),
allowing the transcription of the target gene by the RNA polymerase II.
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O-GlcNAcylation of EWS-FLI1 (Bachmaier et al., 2009) stimulates
the oncogenic function of EWS-FLI1, while its ubiquitination leads
to its degradation by the proteasome (Gierisch et al., 2016).

Finally, EWS-FLI1 is known to interact with numerous protein
players regulating its transcriptional activity. For example, it can
bind with RHA (RNA Helicase A) to increase its transcriptional
activity (Toretsky et al., 2006), or with PARP-1 to facilitate
transcription (Brenner et al., 2012). Conversely, its interaction
with CIMPR (Cation-Independent Mannose 6-Phosphate
Receptor) leads to its degradation via a lysosome-dependent
pathway (Elzi et al., 2015).

2.3.3.4 EWS-FLI1 and ES tumor development
Through its function as a transcription factor, EWS-FLI1 regulates

the expression of numerous oncogenes involved in many key
tumorigenesis processes (cell proliferation, migration, apoptosis, etc.).
In particular, EWS-FLI1 has been shown to regulate the expression of
numerous transcription factors (Cidre-Aranaz and Alonso, 2015). For
example, EWS-FLI1 stimulates the expression of c-Myc (Dauphinot
et al., 2001),Gli1 (Glioma-associated Oncogene Homolog 1) (Merchant
et al., 2009; Mullard et al., 2020) orNR0B1 (Nuclear Receptor subfamily
0 group B member 1) (Kinsey et al., 2006; Gangwal et al., 2008), genes
involved in tumor progression andmetastatic development. Conversely,
EWS-FLI1 reduces the expression of genes involved in tumor
suppressor mechanism (ex: apoptosis), such as FOXO1 (Forkhead
Box O1) (Yang et al., 2010), or IER3 (Immediate Early Response 3)
(Tsafou et al., 2018), tumor suppressor genes regulating mechanisms
such as DNA repair, cell cycle arrest and apoptosis.

By recruiting the BAF complex (Boulay et al., 2017), EWS-FLI1
plays a major role in chromatin accessibility at the promoter and
enhancer regions of various genes (Tolstorukov et al., 2013) and its role
in regulating chromatin remodeling is diverted, like p300 (Riggi et al.,
2014), towards aberrant transcription of oncogenes. The GGAA
microsatellites therefore appear to be a potential therapeutic target
for Ewing sarcoma. Their epigenetic silencing (H3K9me3 labelling)
inhibited EWS-FLI1 binding to the SOX2 enhancer (SRY-box
transcription factor 2), thereby reducing its expression and altering
tumor growth in vivo (Boulay et al., 2018). More recently, EWS-FLI1
has been shown to be directly involved in changes in chromatin
configuration (Showpnil et al., 2022). Indeed, through its binding to
DNA, via GGAA microsatellites, EWS-FLI1 plays a major role in
reprogramming the 3D structure of chromatin, by disrupting, for
example, TADs (Topological Associated Domains, highly self-
interacting genomic regions, delimited by regions enriched in
CCCTC binding factor (CTCF) and involved in the regulation of
gene expression by limiting enhancer-promoter interactions within
the same TAD (Dixon et al., 2012)), or by modulating chromatin
loops, with the direct consequence of altering transcription in ES
(Showpnil et al., 2022).

Finally, EWS-FLI1 is also involved in ES tumorigenesis by
inducing genomic instability. Indeed, it has been shown that
EWS-FLI1-induced transcriptional regulation promotes an
accumulation of R-loops (Gorthi et al., 2018). These triple-
stranded nucleic acid structures (DNA-RNA complex associated
with a single-stranded DNA molecule) are rare products of
transcription, with a particular conformation and influencing
many cellular processes (Aguilera and García-Muse, 2012). In ES,
these structures sequester the BRCA1 (Breast cancer type

1 susceptibility) gene, preventing its expression, and its crucial
role in the response to DNA damage (Gorthi et al., 2018).

3 Targeted therapies

The lack of progress in chemotherapy-based treatments,
particularly for patients with poor response or metastatic disease
at diagnosis, has led to the development of new targeted therapies.

By way of illustration, various key cellular processes in tumor
development such as DNA repair, with inhibitors of Poly (ADP-Ribose)
Polymerase 1 (PARP1), or the cell cycle, with inhibitors of Cyclin-
Dependent Kinase (CDK) have been or are currently being studied
(Supplementary Table S2). For example, an initial trial showed that the
use of a PARP1 inhibitor, Olaparib, alone had no beneficial effect on ES
patients (Choy et al., 2014). However, preclinical studies suggesting the
benefit of this treatment in combination with other therapies such as
Temozolomide, Irinotecan or Ceralasertib led to the initiation of phase
I/II clinical trials (ClinicalTrials.gov No. NCT01858168, ClinicalTrials.
gov No. NCT02044120 and ClinicalTrials.gov No. NCT02813135)
combining Olaparib or Niraparib, with Temozolomide, Irinotecan
and Ceralasertib. With regard to cell-cycle targeting, it has been
shown, for example, that ES cells require CDK4 and Cyclin D1 to
survive and grow independently of anchoring (Kennedy et al., 2015).
Thus, a clinical trial targeting CDK4/CDK6 is still underway
(ClinicalTrials.gov No. NCT02644460) to study the tolerated dose of
Abemaciclib, an inhibitor of these kinases involved in cell-cycle
regulation, and in particular in G1 phase regulation. A clinical trial
was also initiated last year (ClinicalTrials.gov No. NCT05275426) to
determine whether LY2880070, a Checkpoint kinase 1 (Chk1) inhibitor
capable of regulating the G2/M transition of the cell cycle in
combination with the chemotherapeutic agent gemcitabine could be
an effective treatment for ES (Supplementary Table S2). Another
approach being considered is the use of CAR-T cells. Indeed, there
are clinical trials underway using this method to treat pediatric solid
tumors (Supplementary Table S3). Different targets are under study,
such as B7-H3, or other surface antigens. If this line of action proves its
safety and its anti-tumor activity depending on the target, the use of
CAR-T cells could be considered as a promising approach to treat ES.

Because EWS-FLI1 i) is characteristic of 85% of ES cases, ii)
regulates numerous oncogenes, and iii) that development of ES
depends on this fusion protein, targeting EWS-FLI1 appears as an
interesting approach in new therapies for ES. This section
therefore focuses on approaches to target EWS-FLI1 that have
led to clinical trials, by targeting its interactome or using RNA
interference (see (Flores and Grohar, 2021)). There is currently a
phase II clinical trial aiming to target EWS-FLI1, by using TK216,
an analog of YK-4–279 (Clinical trial.gov No NCT05046314), in
combination with vincristine in patients with relapse or
treatment-refractory ES. This clinical trial started after a first
phase I clinical trial having demonstrated the non-toxicity of
TK216 (Clinical trial.gov No NCT02657005). YK-4–279 inhibits
the interaction between EWS-FLI1 and RNA helicase A, which is
known to enhance EWS-FLI1 activity (Toretsky et al., 2006), and
is also able to induce G2/M cell cycle arrest and apoptosis in
synergy with vincristine (a microtubule destabilizing
chemotherapeutic agent) (Zöllner et al., 2017). However,
TK216 has recently been shown to exhibit toxicity to many
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cancer cell lines by targeting microtubules (Povedano et al.,
2022), rather than directly targeting EWS-FLI1 in ES cells, so
further study should be considered for the current clinical trial.
Another clinical trial is currently in progress, using the RNA
interference method (Clinical trial.gov No NCT02736565).
Indeed, pre-clinical studies have shown the interest of
silencing EWS-FLI1 via RNA interference approaches
(Chansky et al., 2004; Prieur et al., 2004). The current phase I
clinical trial aims to study the safety and the toxicity to target
EWS-FLI1 by a lipoplex shRNA. However, the short half-live of
this shRNA would require a repeated administration, thus
limiting their suitability for use in clinic. The limited number
of clinical trials targeting EWS-FLI1 may be explained by the
challenges of targeting this fusion protein. Indeed, EWS-FLI1 is a
transcription factor with no enzymatic activity.

4 Conclusion

A better understanding of the cellular and molecular
mechanisms governing ES development has led to the
emergence of targeted therapies, such as those targeting EWS-
FLI1. In this context, new pre-clinical approaches are currently
being studied, involving the targeting of EWS-FLI1 expression,
epigenetic changes induced by this fusion protein, or the
regulation of the EWS-FLI1 target expression. It has been
shown that Proteolysis Targeting Chimeric Molecules
(PROTACs) could be an interesting method for targeting
EWS-FLI1 degradation. Indeed, one study demonstrated that
polyubiquitination of EWS-FLI1 to Lysine 380 led to its
degradation (Gierisch et al., 2016). PROTACs are bi-
functional compounds that induce proteasomal degradation of
targeted proteins by recruiting both the target protein and an
E3 ubiquitin ligase (Paiva and Crews, 2019). Although this Lysine
380 is also found in several members of the ETS family, the design
of a PROTAC targeting this motif could be a promising approach
because of the short-life of EWS-FLI1 (Gierisch et al., 2016). Even
if there is currently no clinical trial using PROTACs targeting
EWS-FLI1, this innovative technology is developing rapidly in
preclinical studies. One such study using PROTACs targeting
BET proteins in ES cells showed the potential interest of this
approach, by reducing their proliferation and inducing apoptosis
in these ES cells. Consequently, targeting EWS-FLI1 seems to be
of great therapeutic interest in the treatment of ES, as this fusion
protein is necessary for the development of this tumor.
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