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Replicative senescence is an essential cellular process playing important
physiological functions, but it is better known for its implications in aging,
cancer, and other pathologies. One of the main triggers of replicative
senescence is telomere shortening and/or its dysfunction and, therefore, a
deep understanding of the molecular determinants is crucial. However,
replicative senescence is a heterogeneous and hard to study process,
especially in mammalian cells, and some important questions still need an
answer. These questions concern i) the exact molecular causes triggering
replicative senescence, ii) the role of DNA repair mechanisms and iii) the
importance of R-loops at telomeres in regulating senescence onset, and iv)
the mechanisms underlying the bypass of replicative senescence. In this
review, we will report and discuss recent findings about these mechanisms
both in mammalian cells and in the model organism Saccharomyces cerevisiae.
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1 Introduction

The ends of eukaryotic linear chromosomesmust be protected to ensure genome stability
and cell survival. Specialized nucleoprotein complexes, called telomeres, carry out these
crucial functions. Telomeres consist of short tandem DNA repeats (e.g., TTAGGG in
mammals) and of a group of specialized proteins, known as “shelterin” in mammals, which
regulate telomere functions (reviewed in de Lange, 2018; Casari et al., 2022).

Telomere length is critical because it is directly proportional to the protective capacity.
Telomeres become progressively shorter upon each cell division due to the “end replication
problem” and nucleolytic degradation (Levy et al., 1992; Fallet et al., 2014; Sholes et al., 2022).
When telomeres become critically short and/or telomeric proteins are lost, chromosome
ends become “uncapped” and they are recognized as DNA damage (reviewed in de Lange,
2018; Galli et al., 2021).

Telomere shortening can be counteracted by two telomere maintenance mechanisms
(TMMs): i) a specific enzyme, called telomerase, that synthesizes new telomeric DNA in a
tightly controlled manner; ii) homology-directed DNA repair mechanisms (HDR)
collectively called “Alternative Lengthening of Telomeres” (ALT). However, in most
human cells, telomere shortening is not sufficiently counteracted and robust TMM
activation is a feature of cancer cells.

Telomeres have important implications in cancer and aging because they are involved in
a process called “replicative senescence” that is tightly linked in these two cellular events.
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Replicative senescence is a permanent proliferation arrest triggered
by several events, including telomere shortening and/or
deprotection. It has long been considered as a tumor suppressor
mechanism because it limits the proliferation of cells with oncogenic
mutations and it prevents genome instability caused by excessive
telomere shortening and deprotection (reviewed in Maciejowski and
de Lange, 2017; Casari et al., 2022). Recent findings, however,
highlight a positive role for replicative senescence in cancer
evolution, related to the secretory functions of senescent cells
(Yang et al., 2021). Last but not least, the accumulation of
senescent cells can deteriorate tissue functions, thereby linking
replicative senescence to aging and age-related diseases, which
include cancer (reviewed in Hernandez-Segura et al., 2018).

Cellular senescence is a double-edged sword and this evidence
emphasizes the importance of its deeper understanding both to
unravel pathological process and to find new therapeutic
approaches.

Here, we will review some recent findings concerning the
connections between telomeres and replicative senescence both in
mammals and in the model organism Saccharomyces cerevisiae.

2 Replicative senescence onset and its
regulation

2.1 Telomeres and replicative senescence

Telomere shortening is not sufficiently counteracted in most
human cells and this physiological event contributes to limit cell
proliferation (Allsopp et al., 1992). Indeed, critically shortened and/
or dysfunctional telomeres elicit a DNA damage response (DDR),
which triggers cell death or an irreversible arrest in cell division, the
latter known as “replicative senescence” state or the “M1 stage”
(IJpma and Greider, 2003; d’Adda di Fagagna et al., 2003; Galli et al.,
2021). It is noteworthy that mitochondrial defects, non-telomeric
DNA damage, chromatin changes, and oncogenes activation also
contribute to replicative senescence onset (Gorgoulis et al., 2019).

The exact mechanisms through which telomeres trigger
replicative senescence onset are still not fully understood. In
yeast cells, a single very short telomere is sufficient to trigger
replicative senescence, while in mammalian cells multiple (from
5 to 10) very short telomeres are required (Zou et al., 2004; Kaul
et al., 2011; Xu et al., 2013). However, the exact threshold length and,
more importantly, the exact state of the shortest telomere(s)
triggering replicative senescence are still unclear. Moreover, i)
how short or damaged telomeres activate and maintain the DDR,
ii) whether and how cells decide to repair them, and iii) how DNA
repair contributes to replicative senescence onset are still open
questions.

Interestingly, single-cell studies in the model organism S.
cerevisiae have shown that telomerase-negative yeast cells often
undergo transient periods of cell division arrest followed by
resumption of normal growth before finally entering a “terminal”
state (replicative senescence) (Xu et al., 2015; Coutelier et al., 2018).
Importantly, “non-terminal” arrests start to occur early after
telomerase inactivation, when telomere shortening is not yet
critical, thus indicating that this event is not the triggering signal.
However, the frequency of transient arrests increases with ongoing

cells divisions and telomere shortening, thus suggesting that short/
dysfunctional telomeres contribute to reach the terminal arrest
(Figure 1). Interestingly, transient proliferation arrests preceding
replicative senescence have been described in human cells too
(Ghadaouia et al., 2018; Ghadaouia et al., 2021).

These transient arrests indicate the presence of DNA damage
and DDR activation. Several hypotheses could explain how cells
resume growth: telomeric damage i) is resolved, ii) activates a weak
DDR that is tolerated, iii) remains unrepaired and the DDR is
switched off in a process called “adaptation” (Figure 1). These
findings also suggest that different signals reflecting different
telomere length/state exist and they dictate whether the arrest is
transient or permanent.

The exact trigger of the terminal arrest is still unclear, especially
in mammalian cells. Here, multiple short/dysfunctional telomeres
might be required to pass a DDR activation threshold.

Interestingly, genome instability increases upon subsequent
non-terminal arrests both in yeast and in mammals (Coutelier
et al., 2018; Ghadaouia et al., 2018; Ghadaouia et al., 2021). An
intriguing hypothesis suggests that dysfunctional telomeres are not
direct inducers of replicative senescence, but they rather lead to a
wider genome instability and a strong DDR activation that together
trigger senescence onset (Figure 1). Accordingly, adaptation to DNA
damage is a potent source of genome instability (Pizzul et al., 2022),
which may accumulate upon successive transient arrests. In human
cells, telomere uncapping can be tolerated leading to a transient
arrest (Ghadaouia et al., 2018; Ghadaouia et al., 2021), but
subsequent cell divisions with dysfunctional telomeres likely fuel
genome instability and lead to a stable senescence-associated
proliferation arrest (Ghadaouia et al., 2021).

2.2 HDR and replicative senescence

The path to replicative senescence onset must be tightly
regulated to ensure a non-pathogenic balance. In fact, the
premature accumulation of senescent cells contributes to
progeroid syndromes (reviewed in Armanios, 2022). As
previously mentioned, replicative senescence affects both cancer
suppression and development. For example, solid tumors are rare in
individuals with short telomere syndromes associated with
premature senescence, whereas long telomeres seem to promote
cancer development, likely by postponing senescence onset and
increasing the chance for oncogenic mutations to occur (McNally
et al., 2019; Armanios, 2022). Thus, since telomere length and
protection are critical determinants for senescence onset, their
control is essential.

Telomeres constitute a barrier against DNA repair mechanisms.
Nonetheless, in yeast andmammals, homology-directed DNA repair
(HDR) mechanisms constitute a TMM besides telomerase enzyme
(Lundblad and Blackburn, 1993; Bryan et al., 1997; Sobinoff and
Pickett, 2017). Telomeres can be lengthened by the recombination-
mediated synthesis using the DNA sequences of other telomeres as a
template. HDR is important for telomere maintenance in a subset of
cancer cells (ALT cells) and in yeast cells (called “survivors”) that
bypass replicative senescence and upregulate/deregulate these
mechanisms at telomeres (Lundblad and Blackburn, 1993; Le
et al., 1999; Apte and Cooper, 2016).
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Importantly, HDR is also crucial before senescence onset, but these
mechanisms are still poorly understood, especially inmammals. In yeast
cells, HDR impairment in the absence of telomerase leads to a
drastically premature senescence (Claussin and Chang, 2016).
Notably, in telomerase-negative cells, many important HDR factors
bind telomeres long before senescence onset (Khadaroo et al., 2009;
Pérez-Martínez et al., 2020). Recently, RAD51 defects have been shown
to cause premature aging in mouse models (Matos-Rodrigues et al.,
2022). HDR activity was also shown to decrease as human fibroblasts
get closer to replicative senescence (Mao et al., 2012). Thus, under
certain circumstances, recognition of a telomere as a DNA damage is
not triggering senescence but rather contributes to its physiological
delay.

The exact role of HDR mechanisms in regulating replicative
senescence onset is still unclear. Since HDR can elongate telomeres,
this event may be directly important in delaying senescence onset
(Kockler et al., 2021). By telomere sequencing, rare telomere
addition events can be detected in telomerase-negative yeast cells
before senescence onset (Claussin and Chang, 2016; Sholes et al.,
2022). Moreover, recent nanopore sequencing approaches have
shown that, in telomerase-negative yeast cells, subpopulations
with sets of elongated telomeres are drastically reduced in the
absence of HDR (Sholes et al., 2022), in contrast with previous
findings (Claussin and Chang, 2016).

Alternatively, HDR might be required to protect/resolve
telomeres under replication stress (Claussin and Chang, 2016;
Matos-Rodrigues et al., 2022) and/or limit the signal(s) triggering
senescence onset, with no telomere elongation (Figure 2).

As previously mentioned, both in yeast and in human cells,
transient cell division arrests have been observed, thus suggesting
the existence of a “reversible” telomeric damage. Here is where HDR
likely acts (Figure 2), thus preventing premature and frequent
terminal arrests. In yeast, indeed, the lack of HDR machinery
strongly reduces the frequency of transient arrests (Xu et al., 2015).

Nonetheless, an important question is still open: is HDR a safe
process that helps to avoid a premature senescence or is it a backup
mechanism that lays the groundwork for senescence onset? A recent
work by Kockler and others proposed that, in yeast cells, shortened

FIGURE 1
The route to replicative senescence. Replicative senescence onset is a multi-step process in which transient cell-cycle arrests occur before the
terminal arrest. Transient arrests might be caused by the presence of a repairable damage (e.g., partial telomere uncapping, stochastic DNA damage) or
replication stress at telomeres. A weak and confined DDR response might be another possible cause of a transient arrest. Genome instability is likely still
low at this point. Cell division arrests might be overcome i) by DNA repair activities (e.g., HDR), eventually leading to telomere elongation, ii) by
tolerating a weak DDR response or iii) by switching off the DDR and trying to survive without solving the DNA damage (adaptation). Adaptation clearly
leads to increased genome instability, while HDR contribution to genome instability is not clear. The event(s) triggering the terminal senescent arrest
might be critically short/irreparable telomere(s), as well as a broader DNA damage. In both cases, an excessive genome instability and/or DDR activation
overcoming a certain threshold lead to replicative senescence onset.

FIGURE 2
HDR and replicative senescent onset. HDR mechanisms
contribute to delay a premature senescence onset, even if in
mammals this evidence is not as clear as in yeast. Different HDR roles
have been reported, including telomere elongation and
resolution of DNA replication stress. Other DNA repair events are also
possible, especially during early non-terminal arrests, when telomeres
have not reached a critical length yet (e.g., stochastic telomeric DNA
damage).
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telomeres undergo HDR events that prevent a premature senescence
onset by elongating telomeres, but, at the same time, as cells undergo
subsequent cell divisions and arrests, genome instability increases.
Accordingly, recent findings in human cells suggest that HDRmight
occur at uncapped telomeres and these events contribute to increase
genome instability and promote senescence onset (Ghadaouia et al.,
2018; Ghadaouia et al., 2021).

Altogether these data suggest that HDR delays premature
senescence onset, but at the same time it might promote genome
instability and set the starting point for senescence onset. Further
studies are required to better understand these processes.

2.3 R-loops and replicative senescence

Important mechanisms of HDR regulation at telomeres rely on
R-loop formation. R-loop is a three-stranded nucleic acid structure
where the formation of a RNA-DNA hybrid, mainly during
transcription, displaces the second DNA strand. R-loops are
receiving huge attention because they play important biological
functions but, on the other hand, their dysregulation contributes
to genome instability and to the development of different diseases
[reviewed in García-Muse and Aguilera (2019) and in Rinaldi et al.
(2021)].

R-loops form in many genomic regions, including telomeres.
Here, their formation is mainly ascribed to the transcription of
TERRA, a long non-coding RNA conserved from yeast to mammals
that plays important roles in regulating both TMMs (reviewed in
Fernandes et al., 2021; Zeinoun et al., 2023). It is still debated
whether R-loops form only in cis during TERRA transcription or
even in trans when the transcribed TERRA anneals back to the
telomere (Feretzaki et al., 2020). Nonetheless, these structures clearly
play important roles in the regulation of HDR at telomeres, both
before senescence onset and in ALT cells.

Indeed, several studies in yeast and mammals have shown that
TERRA and R-loops levels are high both in pre-senescent and in
ALT cells, and they are important for telomeremaintenance byHDR
(Arora et al., 2014; Graf et al., 2017; Misino et al., 2018; Guh et al.,
2022; Misino et al., 2022). Moreover, they regulate telomere length
dynamics and senescence onset in pre-senescent yeast cells by
promoting HDR: accumulation of R-loops delays senescent onset
and this effect requires HDR, while an increased removal of RNA-
DNA hybrids at telomeres accelerates senescence onset (Balk et al.,
2013; Graf et al., 2017).

How exactly R-loops promote HDR is still unclear. The most
likely hypothesis is that, as in other genomic regions, R-loops
hamper DNA replication, leading to replication stress and the
formation of DNA double-strand breaks (DSBs) that are repaired
by HDR. R-loops may also act by recruiting repair factors to
telomeres and promote HDR initiation (D’Alessandro et al.,
2018). TERRA has recently been shown to interact with RAD51,
a key player in HDR, and RAD51 is important for TERRA R-loop
formation at telomeres (Feretzaki et al., 2020). Thus, it is also
possible that increased levels of TERRA and R-loops may
increase the local concentration of RAD51 to sustain DNA
recombination. Accordingly, TERRA has been recently shown to
interact with proteins involved in several DNA repair pathways
(Guh et al., 2022).

Several studies have shown that R-loops must achieve an
optimal balance to stimulate HDR. In fact, their excess causes an
overload of replication stress or hampers the DNA repair machinery
access, thus destroying telomere integrity (Arora et al., 2014; Balk
et al., 2014; Silva et al., 2021).

These findings suggest that telomere maintenance via HDR
requires several factors regulating R-loop levels, both positively
and negatively. Indeed, new factors are continuously identified or
shown to be involved at telomeres in addition to other genomic
regions (Silva et al., 2019; Guh et al., 2022; Kaminski et al., 2022;
Pérez-Martínez et al., 2022).

In this scenario, the role of important factors, like RNA-DNA
and RNA helicases, still need to be investigated at telomeres. Indeed,
in yeast, two important helicases involved in R-loop regulation,
Sen1 and Pif1, orthologs of mammalian SETX and PIF1, have been
shown to interact with telomere specifically during replicative
senescence (Pérez-Martínez et al., 2022). Many RNA helicases,
especially those belonging to the DEAD-box family, have been
identified as telomere interactors and their role need to be deeply
addressed (Pérez-Martínez et al., 2022).

3 Yeast as a model organism

The budding yeast S. cerevisiae took the stage as a tool for the
study of telomere biology very early in the history (reviewed in
Casari et al., 2022). Thanks to the high evolutive conservation of
telomere biology, it quickly became a model organism for
understanding the mechanisms of i) telomere maintenance, ii)
replicative senescence onset, and iii) replicative senescence bypass.

Beyond its easy manipulation and the powerful genetic
engineering tools, S. cerevisiae offers many advantages to study
telomere biology: i) it expresses telomerase enzyme, ii) it rapidly
reaches the senescent state upon telomerase depletion, iii) cells that
overcome senescence and maintain telomeres by HDR, called
“survivors”, easily arise.

Clearly, the use of yeast as a model has some limitations,
including i) the lower complexity of telomere structure (e.g.,
mammalian t-loops) and of proteins networks controlling
telomere protection compared to mammals; ii) a simplified HDR
machinery and a different balance in NHEJ vs. HDR DNA repair
mechanisms compared to mammals, and iii) the knowledge that in
multicellular organisms there has been an evolutive selection for
replicative senescence (Kowald et al., 2020).

In the study of replicative senescence, yeast offers the interesting
and unique opportunity to set a “time zero” by genetically
inactivating telomerase, thus allowing to follow the senescence
process from the beginning in a nearly synchronous way. This
approach also offers important opportunities to compare
different genotypes and to elaborate the senescence kinetics. This
is usually done by deriving haploid telomerase-negative cells from a
heterozygous diploid or by controlling telomerase expression
through regulatable promoters. Upon telomerase depletion, yeast
telomeres shorten up to 5 bp per generation (Sholes et al., 2022). At
the onset of senescence, around 60–80 population doublings after
telomerase depletion, the average telomere length in the population
is 100–120 bp but the shortest telomere is about 75 bp long (Kockler
et al., 2021; Sholes et al., 2022).
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Yeast is also a very important tool to study ALT mechanisms.
Indeed, many ALT features are conserved from yeast to human cells.
About 15% of cancers activate ALT as a TMM (Apte and Cooper,
2016), which is also responsible for relapses of cancers treated with
anti-telomerase drugs (Hu et al., 2012). The significant role that
these mechanisms play in human diseases makes it important to
understand how ALT is initiated, established, and maintained.
However, current human cell models mainly allow the study of
ALT maintenance, whereas its establishment remains obscure. The
use of S. cerevisiae offers the opportunity to address mechanisms
underlying the bypass of replicative senescence arrest and the
establishment of cells that can proliferate by activating ALT
mechanisms.

A recent important upgrade in this scenario has been introduced
by Kockler and others. Before the development of their new
methods, post-senescence yeast survivor formation was mainly a
“yes” or “no” answer and the study of cell populations did not allow
to catch and analyze single events. Now the possibility to study the
frequency is significantly increasing our understanding of ALT
mechanisms.

Another recent intriguing discovery is that also yeast survivors
experience replicative senescence. Indeed, by propagating cells
starting from single clones after survivor formation, Misino and
others observed that these cells undergo cycles of senescence,
similarly to non-survivors. They refer to this event as “survivor
associated senescence” (SAS), highlighting an unexpected parallel
between senescent and post-senescent cells (Misino et al., 2022).

4 Conclusion and perspectives

Since replicative senescence is tightly linked to aging and cancer,
future studies are essential to understand some pathological
processes and to develop new therapeutic strategies. In fact, as
recently shown, a deeper and more complete understanding of
senescence can be useful to figure out its complex role in the
evolution of cancer and to identify new therapeutic targets based
on different types of senescent cells (Garbarino et al., 2023).

The current “state of the art” is that replicative senescence
onset is not a straightforward process, in which at some point one
or more critically short telomeres trigger a permanent DDR to
prevent genome instability. Rather, it appears to be a multistep
process in which many aspects still need to be clarified.
Importantly, further studies are required to clarify the exact
signal(s) that triggers senescence and especially the
contribution of genome instability in both senescent onset and
bypass. It is important to better understand the role of HDR
during replicative senescence onset and what are exactly the
outcomes at telomeres that avoid a premature senescence
rather than promoting it. Moreover, it is important to
elucidate the role of R-loops and their regulation at telomeres
during replicative senescence onset and in ALT cells.

Several omics approaches will be useful, both in yeast and
mammals, to better understand many of these molecular
mechanisms and to find an answer to the different open
questions. Yeast, for example, is a powerful tool to perform
genetic screenings, and recent genome editing technologies will

allow to perform genome-wide genetic screenings also in human
cells. In particular, the identification of specific alleles could be
particularly useful when knock-outs are not possible or too drastic,
as for several HDR genes. Different interesting approaches to scan
for specific mutations in specific genes have been successfully
applied in human cells (Kweon et al., 2020; Cuella-Martin et al.,
2021).

Similarly to yeast, single-cell analyses are a powerful tool to be
applied to mammalian cells to better understand replicative
senescence (Cohn et al., 2023; Fard et al., 2023). Since to date, in
mammals, replicative senescence has been mainly studied at the
bulk-population level and results depend on cells source, age,
telomerase expression, and many other factors. Moreover,
cultures of senescent cells consist of a mix of cell types, including
proliferative and apoptotic cells. Therefore, new technologies are
required to identify and characterize senescent cells with more
accuracy.

A combination of genetic and genomics approaches together
with a better identification of senescent cells during time course
analyses will help to clarify several open questions, including the role
of HDR mechanisms during replicative senescence.
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