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Multipotent mesenchymal stem cells (MSCs) are widely accepted as a useful tool
for cell-based therapy of various diseases includingmalignancies. The therapeutic
effects of MSCs are mainly attributed to their immunomodulatory and
immunosuppressive properties. Despite the promising outcomes of MSCs in
cancer therapy, a growing body of evidence implies that MSCs also show
tumorigenic properties in the tumor microenvironment (TME), which might
lead to tumor induction and progression. Owing to the broad-spectrum
applications of MSCs, this challenge needs to be tackled so that they can be
safely utilized in clinical practice. Herein, we review the diverse activities ofMSCs in
TME and highlight the potential methods to convert their protumorigenic
characteristics into onco-suppressive effects.
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Introduction

Cancer is the major obstacle to improving life expectancy in the 21st century (Moslemi et al.,
2021; Nagy et al., 2023). Themorbidity andmortality of cancer are rising expeditiously because of
aging and population growth (Sohrabi et al., 2021; Bisht et al., 2023). Cancer therapy is among the
most crucial clinical challenges. Surgical intervention and chemotherapy, as the most common
therapeutic methods, may be associated with different complications (Debela et al., 2021; Zeng
et al., 2023). Despite the development of different therapymethods, metastatic tumors are mainly
untreatable and are responsible for the preponderance of deaths due to cancer (Espona-Fiedler
et al., 2023). Amajor barrier to the development of efficient therapies is the complexity of tumors.
The tumor heterogeneity increases as cancer progresses and the components of the tumor
microenvironment (TME) become fully developed. The TME contains extracellular matrix and
stromal cells, as well as immune cells, thereby playing a substantial role in the evolution of
malignant tumors (Roma-Rodrigues et al., 2019). In recent years, novel therapeutic approaches
including stem cell therapy, targeted therapy, nanoparticles, ablation therapy, radionics, natural
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antioxidants, and chemodynamic therapy have been introduced. These
methods have improved the outcomes of patients, nevertheless, further
advancements in drug delivery systems are required to refine
therapeutic outcomes (Debela et al., 2021).

Recently, mesenchymal stem cells (MSCs) have been of great
interest in the field of cancer therapy. MSCs are precursor cells that
have the ability to self-regulate and proliferate. Under particular
circumstances, they can differentiate into numerous mesenchymal
tissues (Chen et al., 2019; Mahjoor et al., 2021). MSCs are obtained
from different tissues, such as bone marrow, adipose tissue, skin,
salivary gland, limb buds, dental tissues, menstrual blood, and
placenta. MSCs are primarily isolated as plastic-adherent cells via
tissue mincing, enzymatic digestion, and cell outgrowth. The most
commonly used procedures are enzymatic and explant techniques.
In the explant protocol, the source tissue is rinsed and cut into small
fragments. Afterward, the tissue fragments are transferred to plastic
culture vessels containing growth medium. In the enzymatic
technique, tissue pieces are incubated with enzymes that degrade
the extracellular matrix (Mushahary et al., 2018; Mahjoor et al.,
2022). MSCs express specific adhesion molecules (e.g., CD13, CD29,
CD44, CD49b, CD58, CD73, CD105, and CD166). Besides, MSCs
derived from different sources express specific markers. For
instance, CD29 and CD49b are mainly expressed by MSCs
isolated from the placenta, while bone marrow-MSCs (BM-
MSCs) demonstrate higher levels of CD90 (Montesinos et al., 2009).

Immunomodulatory properties of MSCs are mediated by various
cytokines, including transforming growth factor (TGF-β), hepatic
growth factors (HGF), prostaglandin E2 (PGE2), interleukins
(Khakoo et al., 2006), indolamine 2,3-dioxygenase (IDO), and nitric

oxide (NO) (Soleymaninejadian et al., 2012; Mahmoudvand et al., 2023;
Mirshekar et al., 2023). MSCs are divided into various subtypes, which
show different features, accordingly can both boost and suppress tumor
progression by exerting influence on tumor cells through different
mediators and intercellular interactions as well as adjusting the innate
and acquired immune response (Galland and Stamenkovic, 2020;
Janmohammadi et al., 2023). MSC1 and MSC2 are two important
phenotypes of MSCs. The former shows pro-inflammatory properties
while the latter exerts immunosuppressive effects. Strong evidence
confirms that MSC1 is primarily anti-tumorigenic, while
MSC2 favors tumor cell growth. Tumor growth-promoting effects of
MSCs include expression of growth factors, improvement of tumor
angiogenesis, and formation of tumor stem cell micro-environment
(Ramdasi et al., 2015). On the other hand, antitumorigenic effects of
MSCs are exerted through several pathways including, promotion of the
immune response, suppression of angiogenesis, control of cellular
signaling, and induction of cancer components apoptosis (Atiya
et al., 2020). In this review article, the anti-tumorigenic and
protumorigenic properties of MSCs will be highlighted first and we
further discuss the solutions that have been proposed to eliminate the
protumorigenic activity of MSCs and convert them to anti-cancer
features.

MSCs and anti-tumor properties

Investigations have revealed that despite the positive impact of
MSCs on tumorigenesis, they can limit tumor growth. These effects
may be exerted via different mechanisms.
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• Effects of MSCs on TME

Via their strong proinflammatory properties, the combination of
MSCs and tumor cells enhances the infiltration of monocytes,
granulocytes, and T lymphocytes. The elevated infiltration of
inflammatory cells facilitates interaction between immune cells
and the adjacent tissues. These immune cells and the inflamed
tissues enclosing them can produce several chemokines that recruit
activated lymphocytes with their correlating receptors, hence
provoking antitumor immunity (Figure 1A) (Ohlsson et al.,
2003). Researchers have reported that iNOS-expressing MSCs
successfully hinder the growth of fibrosarcoma cells (Xiang et al.,
2009). As a matter of fact, iNOS synthesized by stromal cells plays a
dual role in TME. M1 and M2 macrophages are essential
determiners in the early and late stages of tumor growth
(Trivanović et al., 2016). A similar behavior can be attributable

to MSCs. Despite the lack of convincing evidence for MSC’s
involvement in M1 polarization, the existence of iNOS-expressing
M1 macrophages in tumor milieu suggests that MSCs may have the
ability to acquire an M1 phenotype. Hence, it is reasonable to
conclude that iNOS acts as a switch molecule of phenotypes of
MSCs and macrophages in the tumor milieu. Overall, these findings
point to the intricate cross-talks between macrophages and MSCs in
TME (Sainz et al., 2016).

• Antitumor properties exerted through signaling pathways

Khakoo and co-authors (Khakoo et al., 2006) found that MSCs
inhibited tumor progression in vivo by reducing target cell AKT
activation in Kaposi’s sarcoma (KS). Nevertheless, they observed
that when KS tumor cells were modified to express active AKT
constantly, KS tumors were no longer susceptible to MSC treatment.

FIGURE 1
(A). Mesenchymal stem cells strengthen the body’s immune system to combat tumors (B). The immune system, with its immunomodulatory and
anti-inflammatory properties, shuts down the immune system, as a result of which we see the progress of the tumor.
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These results imply that MSCs produce significant antitumorigenic
properties via blocking AKT signaling. Furthermore, others have
found that MSCs decrease breast cancer cell growth through the
Wnt pathway, which is critical in oncogenesis (Qiao et al., 2008).
MSCs have been administered systemically to deliver a binary vector
containing an OAd along with a helper-dependent Ad that expresses
IL-12 and programmed death-ligand 1 blocker (PD-L1). These
MSCs deliver and synthesize viruses to invade and destroy lung
tumor cells while triggering the onco-suppressive properties of
chimeric antigen receptor-T (CAR-T) cells by producing IL-12
and PD-L1 blockers. In vivo, administration of combinatorial Ad
vector MSCs causes a more significant rise in the number of T cells
compared to CAR-T cells and propagates their polyfunctional
cytokine release (McKenna et al., 2021). Moreover, in a study by
Lu et al. (Lu et al., 2008), In cancerous cells, injection of MSCs
increased the messenger ribonucleic acid (mRNA) expression of
p21 (cell cycle negative regulator) and caspase 3 (apoptosis-related
protease). Their results indicated that MSCs may suppress the
growth of cancer in vitro and in vivo by enhancing cancer cell
apoptosis and G0/G1 phase arrest. In addition, research has
demonstrated that MSCs control cancer by decreasing tumor
angiogenesis employing endothelial cell death and capillary
degeneration (Otsu et al., 2009). As shown in a study, bone
marrow MSCs inhibited vascular development in 1Gli36 glioma
xenografts through suppression of the platelet-derived growth
factor/platelet-derived growth factor receptor (PDGF/PDGFR)
axis. Particularly, the expression of PDGF-BB protein
considerably decreased in tumor lysates when treated with
MSCs, which was associated with diminished concentrations of
activated PDGFR-b and its subsequent target AKT isoform (Ho
et al., 2013a). Lately, Gu and co-authors (Gu et al., 2021)
discovered that MSCs-derived exosome could suppress
hepatocellular cancer stem cells (CSCs) malignancy through a
long noncoding RNAs (lncRNAs) C5orf66-AS1/micro-RNA-127-
3p/dual-specificity phosphatase 1 (DUSP1)/ERK axis. Given the
role of exosomes in both tumorigenic and anti-tumor activities of
MSCs, hepatocellular CSCs were treated with exosomes, leading to
a marked decrease in the proliferation, migration, invasion,
angiogenesis-inducing, and self-regeneration capacities of CSCs
via lncRNA C5orf66-AS1/microRNA-127-3p/DUSP1 axis and
blockage of the phosphorylation of ERK in vitro. Similarly, in
vivo investigation revealed that exosomes diminished the growth
of xenografts made by CSCs in nude mice (Xuan et al., 2021).
MSCs produce cytotoxic factors, including TNF-related apoptosis-
inducing ligand (TRAIL) that selectively drives apoptosis in
several types of malignancies (Hao et al., 2001; Takeda et al.,
2001). In vivo investigations in the murine xenograft model of
intraperitoneal human mesothelioma revealed the potential of
TRAIL-expressing MSCs for dampening inflammatory
responses in TME (Lathrop et al., 2015). Findings of another
study conducted in 2019 showed that bone marrow MSCs could
enhance apoptosis and inhibit the progression of glioma
U251 cells via downregulating the PI3K/AKT signaling cascade
(Lu et al., 2019). IFN-β-releasing BM-MSCs have been observed to
diminish the growth of hepatocellular carcinoma cells primarily by
affecting their cell cycle, reducing the expression of cyclin D1 and
phosphorylation of Rb via silenced Akt and promoting FOXO3a
activity (Xie et al., 2013).

• Cytokine-mediated mechanisms

IL-18-overexpressing umbilical cord MSCs (UC-MSCs) have
been shown to attenuate the growth and spread of breast cancer
cells, probably by modifying the cell cycle of cancerous cells (Liu
et al., 2015). Additionally, by producing inflammatory cytokines
such as the multifunctional cytokine TGF-β, MSCs have been
shown to trigger anti-tumor immune responses. TGF-β signaling
has inhibitory effects in cancer. Although the expression of
the type III TGF-β receptor (TbRIII) drops throughout the
evolution of breast cancer, restoring TbRIII expression inhibits
tumorigenicity. This is even though TbRIII expression drops
during progression. (Dong et al., 2007; Guasch et al., 2007)
(Table 1).

Immunosuppression and
tumorigenesis features of MSCs

• Tumorigenic effects of MSCs on TME

Heterogeneity within the TME is an important factor with a
detrimental effect on the development of tumors. The TME is an
intricate environment, composed of stromal cells and components
of the extracellular matrix, along with secreted factors (Nilendu
et al., 2018). Stromal cells in TME combine endothelial cells,
adipocytes, cancer-associated fibroblasts, immune cells, and MSCs
(Spaw et al., 2017; Tao et al., 2023). Notably, MSCs exhibit
significant tropism to tumor sites, which may either speed up or
slow down the progression of cancer (Xuan et al., 2021). Toll-like
receptors (TLRs) exist in MSCs, among other cell types. TLRs are
able to recognize signals of ‘danger,’ and once they are activated, a
wide range of cells, particularly immune cells and MSCs, are drawn
to the injury site. It is noteworthy that activation of TLR3 drives
MSCs to produce factors that primarily have an immunomodulatory
effect on the tumor cells (such as IL-1 receptor antagonist and IL10),
whereas activation of TLR4 results in the production of
inflammatory and proapoptotic factors by MSCs (such as IL17,
granulocyte-macrophage colony-stimulating factor, and TRAIL).
Degrading tryptophan is another process through which IDO
synthesized by MSCs was able to block allogeneic T-cell
responses (Meisel et al., 2004). In particular, in naive
CD4+T cells, tryptophan catabolism induced the production of
the forkhead box P3-positive regulatory T cells (Fallarino et al.,
2006). These cells impeded the responses of effector T cells, which
led to a decrease in anti-tumor immunity. Current research has
introduced an innovative method through which MSCs control the
activity of the immune system. In fact, MSCs attracted myeloid-
derived suppressor cells (MDSCs) in a C-C motif chemokine ligand
2 (CCL2)-dependent mechanism, hence lowering the activity of
anti-cancer T cells even further (Lee et al., 2015). The MDSC is
considered the main protector of the TME, providing an
immunosuppressive shield that protects the cancerous cells from
the host’s immune system (Tesi, 2019). MSCs have the ability to
decrease the activities of both T cells and B cells as part of the
adaptive immune response. MSCs were able to restrict B cell activity
by producing humoral chemicals via reducing B cell terminal
differentiation (Asari et al., 2009). Overall, MSCs have powerful
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inhibitory effects on adaptive immune response, which can be used
by cancer cells inside TME. MSCs not only suppress the adaptive
immune response, but they also inhibit the innate immune cells,
causing a reduction in the effectiveness of the basic immunological
responses against cancer. MSCs inhibited the formation and
function of monocyte-derived DCs, causing a reduction in the
expression of the costimulatory molecules CD80 and CD86. This
resulted in a limitation of the allogeneic T cell’s potential for
allostimulation (Jiang et al., 2005). Importantly, macrophage
functioning in the TME was directly suppressed by MSCs. It has
been reported that the conditioned medium formed from MSC may
inhibit the phagocytic activity of macrophages, hence further
lowering anti-cancer immunity (Chen et al., 2018). Moreover, the
activity of neutrophils was affected by the presence of MSCs. In a
model of breast cancer, CD11b+Ly6G + neutrophils were cocultured
with MSCs and then taught to obtain immunomodulatory
properties. This training resulted in the neutrophils inhibiting the
proliferation of T cells in vitro and accelerating tumor growth in vivo
(Hu et al., 2014). The mesenchymal niche might also be implicated
in cancer metastasis. Growing shreds of evidence show that MSCs
have the capacity to migrate to tumor locations, including both
primary and pre-metastatic sites (Kaplan et al., 2005). Tumor-
secreted elements might move to surrounding tissues (Bergfeld
and DeClerck, 2010) and draw MSCs to aid in the formation of
mesenchymal niche, propagating tumor cell migration. Breast
cancer cells promote the synthesis of CCL5 (also called
RANTES) from MSCs by communicating with C-C chemokine
receptor type 5, enhancing cancer cell motility, invasion, and
distant spread in vitro and in vivo (Karnoub et al., 2007). Once
affected by oxidative stress in the TME, MSCs can release lactate,
and when lactate is absorbed by cancer cells, they can migrate more
efficiently by producing ATP (Bonuccelli et al., 2014). In particular,
MSCs were found to differentiate into cancer-associated fibroblasts

in vitro, which promotes tumor heterogeneity and aids in cancer
growth and drug resistance (Miyazaki et al., 2020). Several
researchers have also shown that noncoding RNAs are involved
in tumorigenesis and drug resistance (Asari et al., 2009; Wang et al.,
2015; Yuan et al., 2016). Taken together, the evidence revealed the
role of MSCs in boosting cancer progression via different
mechanisms, hence targeting MSCs can be a potential strategy
for cancer therapy (Xuan et al., 2021).

• Cytokine-mediated mechanisms

MSCs were found to block the oncosuppressive innate and
adaptive immune responses, via releasing several soluble factors
and mediators (e.g., PGE2, interferon-gamma (IFNγ), IL-4,
indoleamine 2,3-dioxygenase (Kaplan et al., 2005), TGF-β1, IL-6)
and cross-talking with a wide range of immune cell types (e.g., T cell,
B cells, macrophages, dendritic cells, natural killer (NK) cells, and
neutrophils) (Rivera-Cruz et al., 2017). MSCs inhibit both the
activation and proliferation of T cells, which serve a substantial
role in adaptive immunological responses. PGE2 is released by
MSCs, which subsequently binds to prostaglandin EP2 and
EP4 receptors on macrophages, causing them to produce the
anti-inflammatory cytokine IL-10 and limit T cell activity
(Németh et al., 2009). Besides, T helper 2 (Th2)-polarized
immune response is evoked by MSCs. In fact, they cause a
reduction in inflammatory T cells and their related cytokines
(Th1 cells-IFNγ), while elevating anti-inflammatory T cells and
related cytokines (Th2 cells-IL4) (Bai et al., 2009). MSCs were also
able to suppress T cell activation via secreting immunosuppressive
TGF-β1, which adheres to glycoprotein A repetitions predominant
(GARP) located on MSCs (Niu et al., 2017). IFNγ-activated MSCs
were accompanied by an upregulation in the expression of galectin-
9, resulting in suppressed antigen-driven immunoglobulin secretion

TABLE 1 The role of MSCs in tumor suppression.

MSC
type

Factors Mechanisms Outcome

BM-MSCs CCL-7 and
CCL-12

BM-MSCs treated with TNF-α increase the recruitment of monocytes, macrophages, and
neutrophils to the tumor via CCL-7 and CCL-12

Boostingmonocyte and granulocyte infiltration
(Ren et al., 2012)

BM-MSCs TGFβ and TFF3 MSCs modulate the inflammatory response during the early phase of carcinogenesis
through TGFβ and TFF3

Suppression of tumor cell progression
(François et al., 2018)

BM-MSCs Wnt/β-catenin MSC-derived exosomes reduce tumor development by distorting the Wnt/β-catenin
signaling pathway

Suppression of tumor cell progression (Xu
et al., 2019)

hAMSCs E-cadherin MSC induces upregulation of E-cadherin Suppression of EMT (Safari et al., 2021)

BM-MSCs PDGF and IL-1β BM-MSC inhibits the release of antiangiogenic factors, including PDGF and IL-1β Inhibition of angiogenesis (Ho et al., 2013b)

hAMSCs Bax and
caspase-3

MSC induces the expression of Bax and caspase-3 in tumor cells Induction of tumor cell apoptosis (Safari et al.,
2021)

UC-MSCs PI3K/AKT
and JNK

MSCs induce apoptosis in cancer cells via downregulation of PI3K/AKT and activation of
JNK signaling

Induction of tumor cell apoptosis (Han et al.,
2018)

T-MSCs Bax, p53, c-myc MSC triggers the upregulation of Bax, p53, and c-myc genes in tumor cells Induction of tumor cell apoptosis (Yüce and
Albayrak, 2021)

BM-MSCs , bone marrow-derived mesenchymal stem cell; TNF-α , tumor necrosis factor α, CCL-7, chemokine ligand 7; CCL-12, chemokine ligand 12; TGFβ, transforming growth factor beta,

TFF3 = trefoil factor 3, hAMSC , human amniotic mesenchymal stromal cell; EMT , epithelial-mesenchymal transition; PDGF, platelet-derived growth factor, IL-1β = interleukin 1β, Bax = Bcl-

2-associated X protein, UC-MSCs, umbilical cord-derived mesenchymal stem cell, PI3K/AKT, phosphatidylinositol 3-kinase/Akt, JNK = c-Jun N-terminal kinases, T-MSC, tonsil-derived

mesenchymal stem cell.
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and lowered B cell proliferation (Ungerer et al., 2014). The functions
of NK cells are inhibited by MSC-originated PGE2 and IL-6.
Moreover, MSCs were shown to largely suppress the synthesis of
IFN-γ in NK cells, which reduced the anti-cancer efficacy of the NK
cells (Galland et al., 2017). Dendritic cells (DCs), which play a role in
the process of presenting antigens, are intricately associated with
anti-cancer activity. It has been shown that the maturation and
function of DCs were impeded when PGE2 produced by MSCs was
present in the environment (Spaggiari et al., 2009). Also, MSC-
derived PGE2 stimulated a switch from inflammatory
M1 macrophages to a pro-tumorigenic M2 state, which was
associated with increased concentrations of immune-inhibitory
IL-10 (Vasandan et al., 2016). The aforementioned evidence
suggests that MSCs are able to inhibit the immune response to
tumors, which in turn promotes the progression of tumors. In
addition, MSCs exhibited the ability to promote the proliferation
of cancer cells as well as neovascularization. In breast and prostate
cancers, for example, MSCs increased the levels of pro-angiogenic
factors such as vascular endothelial growth factor (VEGF),
macrophage inflammatory protein-2 (MIP-2), TGF-β, and IL-6.
Owing to the effects of these substances, tumor proliferation and
angiogenesis were triggered, thereby solid tumor formation was sped

up both in vitro and in vivo (Zhang et al., 2013a). Tumor cell
apoptosis is also inhibited by MSCs. Hypoxia, malnutrition, and
inflammation all contribute to tumor pathogenesis. Under this
circumstance, MSCs maintain their self-survival via autophagy
and secreting a variety of pro-survival or anti-apoptotic factors,
such as basic fibroblast growth factor (bFGF), PDGF, VEGF, TGF-β,
stromal cell-derived factor 1 alpha (SDF-1α), NO, and hepatocyte
growth factor (HGF) (Hung et al., 2007). As an illustration, vascular
VEGFs and bFGF, can promote Bcl-2 expression (König et al., 1997;
Dias et al., 2002); on the other hand, PDGF and TGF-β upregulate
VEGF and bFGF gene expression (Brogi et al., 1994). SDF-1α is able
to defend leukemia cells against spontaneous apoptosis (Burger
et al., 2000), and HGF improves the angiogenic and anti-
apoptotic effects (Efimenko et al., 2011). Besides, NO has been
proposed to act as a dual-function apoptotic regulator; At large
doses, NO exerts proapoptotic effects, while at low doses, it has
antiapoptotic function (Stamler, 1994) (Table 2).

• Anti-tumor effects via signaling cascades

In a gastric cancer model, chemotaxis, survival, and stimulation
of neutrophils were modulated by IL6-STAT3-ERK1/2 signaling

TABLE 2 The role of MSCs in enhancing tumor progression.

MSC
type

Factors Mechanisms Outcome

BM-MSCs SphK1 SphK1 in BMSCs is triggered by TGF-β1 resulting in differentiation of
BMSCs into myofibroblasts via S1PR1 and S1PR3 upregulation

Differentiation into cancer-associated fibroblasts
(Yang et al., 2012)

UC-MSCs IL-6 and HGF UC-MSCs produce IL-6 and HGF and induce the synthesis of IL10,
which is involved in immune suppression

Modulation of the anti-tumor immune responses
(Deng et al., 2016)

BM-MSCs NO and PGE2 NO synthesized by MSC and PGE2 contributes to the inhibition of
T cells

Modulation of the anti-tumor immune responses
(Sato et al., 2007)

BM-MSCs IDO MSCs express IDO protein that inhibits allogeneic T-cell responses Modulation of the anti-tumor immune responses
(Meisel et al., 2004)

BM-MSCs TGF-β, LIF, TSG-6, COX-2,
PD-L1, IL-8, CCL2

The molecules exert immunoregulatory function, including induction of
T-cells to differentiate into anti-inflammatory phenotypes

Modulation of the anti-tumor immune responses
(Svobodova et al., 2012; Holan et al., 2018)

BM-MSCs Twist, Snail, FOXC2 These factors produced by MSC promote epithelial-mesenchymal
transition (EMT), which can enhance cancer progression

Promotion of the EMT (Battula et al., 2010)

BM-MSCs IL-6 and JAK2/STAT3 Secretion of IL-6 by MSCs triggers JAK2/STAT3 cascade activation Enhancement of cancer cell stemness (Hsu et al.,
2012)

in cancer cells, leading to the enhancement of tumor formation

BM-MSCs IL6 and CXCL7 MSC regulates cancer stem cells via IL6 and CXCL7 Enhancement of cancer cell stemness (Liu et al.,
2011)

BM-MSCs TGF-β, VEGF, IL-6, and
MIP-2

MSC produces pro-angiogenic factors when exposed to tumor cells Reinforcement of tumor angiogenesis (Zhang et al.,
2013b)

BM-MSCs IL-6, STAT3, MRP, and
MDR-1

MSCs exert chemoprotective effects via IL-6, which is activated by
STAT3, MRP, and MDR-1

Enhancement of cancer cell survival (Tu et al., 2016)

BM-MSCs STC1 and UCP2 STC1 derived by MSC upregulates UCP2 resulting in increased cancer
cell survival

Enhancement of cancer cell survival (Ohkouchi et al.,
2012)

BM-MSCs CCL5 Cancer cells stimulate the secretion of CCL5 from MSCs leading to the
elevated invasion and metastasis of tumor

Augmentation of tumor invasion and metastasis
(Karnoub et al., 2007)

BM-MSC, bone marrow-derived mesenchymal stem cell, SphK1 = sphingosine kinase 1, TGF-β, transforming growth factor-β, S1PR1 = sphingosine 1-phosphate receptor 1, S1PR3 =

sphingosine 1-phosphate receptor 3, UC-MSC, umbilical cord-derived mesenchymal stem cell; IL, interleukin; HGF, hepatic growth factor; NO, nitric oxide, PGE2 = prostaglandin E2, IDO,

indolamine 2,3-dioxygenase, LIF, leukocyte inhibitory factor; TSG-6 , tumor necrosis factor a-stimulated gene 6, COX-2, cyclooxygenase-2; PD-L1, programmed death ligand 1, CCL2 =

chemokine ligand 2, FOXC2 = mesenchyme forkhead 1, JAK2/STAT3 = Janus kinase 2/signal transducer and activator of transcription 3, CXCL7 = chemokine ligand 7, VEGF, vascular

endothelial growth factor; MIP-2 , macrophage inflammatory protein 2; MRP , multidrug resistance protein; MDR-1 , multidrug resistance p-glycoprotein, STC1 = secretion of stanniocalcin-1,

UCP2 = upregulated uncoupling protein 2, CCL5 = chemokine ligand 5.
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(Zhu et al., 2014). In a hepatocellular carcinoma model, Li and
colleagues observed a remarkable increase in the microvessel
density and TGFβ1 mRNA levels, as well as a noticeable
reduction in Smad7 mRNA in the subjects treated with MSC.
These findings insinuated that MSCs might serve pro-angiogenic
effects via the TGFβ1/Smad pathway (Li et al., 2016). Similarly,
in a gastric cancer model, TGF-β1 secreted by MSCs stimulated
the SMAD2/3 pathway and enhanced tumor growth via the
lncRNA MACC1-AS1/miR-145-5p/fatty acid oxidation axis in
cancer cells (He et al., 2019). Yuan et al. also discovered that
LncRNA H19 contributes to MSC-mediated angiogenesis (Yuan
et al., 2019a). Their results pointed to the fact that LncRNA
H19 knockdown in MSCs blocked neovascularization by
interacting with histone methyltransferase EZH2 and inducing
the angiogenesis inhibitor gene VASH1, diminishing
angiogenesis factors release, and promoting the formation of
angiogenesis inhibitors. Importantly, MSCs can induce the
spread of cancerous cells; Breast cancer cells treated with
MSCs showed overexpression of oncogenes (NCOA4, FOS),
proto-oncogenes (FYN, JUN), and EMT-specific markers,
leading to breast cancer metastasis (Martin et al., 2010). MSCs
also increase tumor growth by modifying their metabolic state. In
lymphoblastic leukemia, MSCs-derived PGE2 activated cAMP-
PKA signaling in tumor blasts and blocked the antitumor role
of wild-type p53, thus promoting leukaemogenesis (Naderi et al.,
2015) (Table 3).

Are there ways to convert the
tumorigenic properties of MSCs to anti-
tumorigenic?

As mentioned before, the role of MSCs in cancer progression is
controversial. In vivo and in vitro studies have demonstrated that
MSCs have the ability to suppress tumor growth. However, there is
robust evidence that confirms the substantial role of MSCs in
promoting cancer and metastasis through various pathways
(Atiya et al., 2020; Bui et al., 2023). Since decades ago, various
therapeutic advantages have been proposed for exogenous MSCs.
Application of MSCs in the field of tissue regeneration has shown
promising outcomes in the treatment of cardiovascular diseases,
stroke, lung disorders, renal failure, rheumatic diseases, neurological
disorders, etc. Nevertheless, emerging evidence on the tumorigenic
function of MSCs raises concerns about their safety in clinical
applications (Galland and Stamenkovic, 2020). As reported in an
article, a boy diagnosed with ataxia-telangiectasia who received
human fetal neural SCs developed a glioneuronal tumor 4 years
after the first SC- injection. Further assessment revealed that the
tumor was of non-host origin, implying that the tumor arose from
the transplanted neural SCs (Amariglio et al., 2009). The findings of
another survey suggested that chronic infection of C57BL/6 mice
with Helicobacter triggers repopulation of the stomach with BM-
MSCs, which then undergo metaplasia and dysplasia to induce
intraepithelial cancer (Houghton et al., 2004). These and other

TABLE 3 Overview of the anti-tumorigenic behavior of different types of MSCs.

MSC origin Type of cancer Anti-tumorigenic effects

BM-MSC Kaposi’s sarcoma Intravenously injection of BM-MSC suppressed tumor development in a mouse model of Kaposi’s sarcoma (Khakoo et al.,
2006)

Colon cancer The use of BM-MSC resulted in cytotoxicity against colon cancer cell lines (Larmonier et al., 2003)

non-Hodgkin’s
lymphoma

BM-MSC showed anti-tumor activity against disseminated non-Hodgkin’s lymphomas in a mouse model (Secchiero et al.,
2010)

Kidney BM-MSC reduced the growth of renal cell carcinoma and improved survival via releasing IL-12 (Gao et al., 2010)

Liver Systemically administered measles virus-infected BM-MSCs inhibited liver cancer growth (Ong et al., 2013)

AT-MSC Brain The injection of AT-MSC-HSV-Tk cells combined with ganciclovir caused a significant decrease in glioblastoma cells in nude
mice (de Melo et al., 2015)

Breast AT-MSC increased chemosensitivity of human breast cancer cells SKBR3 (Kucerova et al., 2013)

Prostate Administration of AT-MSCs into mice treated with 5-FC led to a complete tumor regression (Cavarretta et al., 2010)

Pancreas Suppressed pancreatic ductal adenocarcinoma proliferation, both in vitro and in vivo, and promoted tumor cell death via
modifying cell cycle progression (Cousin et al., 2009)

UC-MSC Breast UC-MSC-derived exosomes carrying miRNA-148b-3p suppressed breast cancer progression (Yuan et al., 2019b)

Lung Silencing TGF-β1 expression enhances the pro-apoptotic effects of MSC-exosome on lung cancer cells (Zhao et al., 2018)

Prostate UC-MSCs drive apoptosis in PC-3 prostate cancer cells via downregulation of PI3K/AKT and activation of JNK signaling (Han
et al., 2018)

hAMSCs Prostate The anti-tumor effects of hAMSCs on LNCaP prostate cancer cells through induction of apoptosis, suppression of epithelial-
mesenchymal transition process, and downregulation of EGFR were shown (Safari et al., 2021)

Bladder MSC-derived exosomal miRNA-139-5p showed onco-suppressive activities in bladder cancer (Jia et al., 2021)

BM-MSC, bone marrow-derivedmesenchymal stem cells; AT-MSC, adipose tissue-derived mesenchymal stem cells; UC-MSC , umbilical cord-derived mesenchymal stem cells; miRNA , micro

ribonucleic acid; TGF-β1 , transforming growth factor beta 1; hAMSCs, human amniotic mesenchymal stem cells; EGFR , epidermal growth factor receptor.
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similar reports persuaded scientists to find methods for enhancing
the anti-tumor properties of MSCs relative to their tumorigenic
activities and converting them into unquestionable therapeutic
agents (Liang et al., 2021).

• Genetic modification of MSCs

Tumor specificity is the main barrier to the effectiveness of
conventional cancer therapy. MSC’s tendency towards tumor sites
improves drug specificity by resolving the issues of stability, dosing,
and toxicity related to systemic administration of drugs. This approach
has been previously used for the controlled release of anti-cancer
agents and has shown promising results when using genetically
modified MSC (GM-MSC) against various cancers in animal
models (Hagenhoff et al., 2016; Christodoulou et al., 2018). Several
studies used GM-MSCs as a tool to transfer and express different onco-
suppressive agents such as IFN α and β, IL-2, IL-12, CXCL1, TRAIL,
and oncolytic virus. Since GM-MSCs elevate the local concentration
of these agents, their anti-tumorigenic function is more effective
relative to their function when applied systematically. Furthermore,
manipulated MSCs can express certain enzymes that may modify
inactive systemically used prodrugs such as ganciclovir into active
cytotoxic medications (Liang et al., 2021). von Einem et al. investigated
the efficacy of autologous GM-MSC combined with ganciclovir in the
treatment of advanced gastrointestinal adenocarcinoma. The results
showed that this combination was tolerable and safe which led to
clinical stabilization of malignancy and a higher overall survival rate
than expected in patients (von Einem et al., 2019). Other studies have
similarly reported the therapeutic effectiveness of GM-MSCs against
lung, brain, and breast cancers (Christodoulou et al., 2018). By way of
illustration, Fei et al. investigated the effects of cytosine deaminase-
expressingMSCs in a ratmodel of C6 glioma. This strategy reduced the
tumor volume, propagated tumor cell apoptosis, and improved the
survival time (Fei et al., 2012). Gene-directed enzyme/prodrug therapy
using adipose MSCs that expressed herpes simplex virus thymidine
kinase (TK) demonstrated a great potential for glioblastoma therapy. A
group of researchers showed that canine adipose MSCs can be treated
with a lentiviral vector to express TK. Combined with ganciclovir,
this prodrug exerted antitumor effects on human glioblastoma cell
line U87 in a murine model (Villatoro et al., 2022). Adipose SCs
were also genetically modified to express recombinant secretory
human carboxylesterase-2 and nanoluciferase genes. These cells
effectively targeted and localized at tumor stroma and necrotic
tissues, and when used together with irinotecan, destroyed all
intraperitoneal tumor cells and ameliorated the survival
(Malekshah et al., 2019). In another experiment, the combination
of the suicide gene CYP2B6TM-RED (a fusion of a triple mutant of
CYP2B6 with NADPH cytochrome P450 reductase) and
cyclophosphamide showed promising results in treating solid
tumors. MSCs as cellular vehicles for the delivery of our suicide
genes. MSCs expressing CYP2B6TM-RED could activate
cyclophosphamide and eliminate the surrounding tumor cells
(Amara et al., 2016).

• Preconditioning with pro-inflammatory cytokines

Macrophages, which can be present as pro-inflammatory
M1 and alternatively activated M2 cells, contribute to different

inflammatory responses. MSCs can steer monocytes to
differentiate into anti-inflammatory M2 phenotypes. Thus, MSCs
have the ability to inhibit excessive immune response. MSCs feature
immunosuppressive effects that need to be promoted by supportive
signals. The immunosuppressive properties of MSCs can be affected
by certain pro-inflammatory cytokines IFN-γ, TNF-α, and IL-1α.
The stimulation of MSCs by these cytokines is essential for the
demonstration of their immunosuppressive behavior (Kim et al.,
2018a). Philipp and colleagues found that MSCs preconditioned
with IL-1ß and IFN- γ released high amounts of PGE2, NO, and IL-
6. Additionally, co-culture with M0 macrophages under the
influence of M1 inducers, lipopolysaccharide, and IFN-γ, caused
a marked drop of CD86 and iNOS protein in macrophages and
reduced TNF-α release. Overall, this method was highly effective in
promoting the immunosuppression behavior of MSCs (Philipp
et al., 2018). The elevated immunosuppressive activity of MSCs
following POLY-IC stimulation that has been observed in some
studies is also a promising approach to improve conventional SC-
based therapies (Sangiorgi and Panepucci, 2016).

• MSC-extracellular vesicles (MSC-EVs)

Recently, the application of MSC-EVs has been suggested as a
potential cell-free therapeutic agent (Galland and Stamenkovic,
2020). EVs are defined as heterogeneous vesicles that act as
mediators of intercellular interaction through their loaded
proteins, or nucleic acids. Although significantly smaller in size,
MSC-derived EVs show most of the features of MSC. MSC-EVs
excel in many ways such as in vivo stability and long half-life (Lai
et al., 2019). They play a major role in TME communications and
akin to MSCs, MSC-EVs may demonstrate both onco-suppressive
and protumorigenic activities (Shojaei et al., 2019). Various
researchers have proposed that the cell source can condition EV
homing to particular sites and that their membrane could be
manipulated to elevate tissue-specific targeting. Hence, MSC-EVs
can be utilized as biocompatible tools to deliver mRNA, microRNA
(miRNA), non-coding RNAs, prodrugs, and peptides to the desired
cells (Galland and Stamenkovic, 2020; Guo et al., 2022). By way of
illustration, a group of researchers evaluated the application of
membrane surface manipulation along with targeting EVs for
reinforced uptake in cardiac tissues affected by ischemia via
admixture of tissue-targeting antibodies, fluorescent tags, and
homing peptide surface cloaks. Their findings showed that EV
targeting could be boosted both by a surface display and cloaking
(Antes et al., 2018). The activities of MSC-EVs have been
investigated in different types of malignant tumors and
promising anti-tumorigenic effects have been observed. Del
Fattore et al. (Del Fattore et al., 2015) investigated the effects of
MSC-EVs on glioblastoma cells. The results showed that UC- and
BM-MSC-EVs reduced cell proliferation and increased apoptosis of
glioblastoma cells. Some researchers have demonstrated improved
efficacy of EVs when applied in combination with gene therapy
methods. Gene therapy can be a beneficial method by providing
ways to control and correct gene expression. Small interfering RNA
(siRNA) and miRNA are among the main molecules applied to
trigger gene suppression (Hu et al., 2020). For instance, Dong and
colleagues (Dong et al., 2019) enriched human umbilical cord MSCs
(UC-MSCs) with siRNA-ELFN1-AS1 and observed that EVs from
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these treated cells could suppress colon adenocarcinoma cell
proliferation and migration in vitro. Kamerkar and co-authors
(Kamerkar et al., 2017) evaluated the impact of siRNA carried by
exosomes against oncogenic KRAS in human pancreatic cancer.
They observed that this strategy remarkably reduced mRNA levels
and phosphorylated-ERK protein concentrations in PANC-1 cells.
Another group of researchers reported that the administration of
anti-miRNA via MSC exosomes targeting glioblastoma multiforme
was effective in the restoration of chemosensitivity of multidrug-
resistant cells (Munoz et al., 2013). MSC-EVs have also been
suggested as an excellent vehicle for drug therapy against
malignant cells. As an illustration, the use of UC-MSC-EVs
loaded with Vincristine has led to a further increase in
cytotoxicity against glioblastoma cells compared with both free
drugs and intact EVs (Del Fattore et al., 2015). Hence, the use of
EVs seems to be an effective approach to enhance the onco-
suppressive effects of MSCs.

• Manipulating the protumorigenic signaling pathways

Therapeutic blockade of signaling cascade molecules involved
in tumorigenesis is another approach to suppress protumorigenic
activities of MSCs. In this regard, both chemical and herbal
products have been suggested to hinder the protumorigenic
properties of MSCs. To give an example, MSCs have been
shown to induce ovarian carcinoma STAT3 signaling through
IL6 and LIF. A group of researchers used Ruxolitinib to target this
signaling and observed increased survival in subjects following
this therapy (McLean et al., 2019). Recently, the usage of herbal
products in the suppression of protumorigenic activities of MSCs
has also gained attention. The evaluation of the function of
curcumin in adjusting gastric cancer cells-derived MSCs
mediated angiogenesis has shown that this product can inhibit
angiogenesis via suppressing NF-κB/VEGF signaling (Huang
et al., 2017). Treatment with Astragalus polysaccharide, a
traditional Chinese herb, has led to a protective impact on
morphological changes in BM-MSCs triggered by lung cancer
cells (Zhang et al., 2019). Wensheng Zhuanggu Formula inhibits
BM-MSC-induced EMT and metastasis in breast cancer via
downregulating TGF-β1/Smads signaling (Ma et al., 2020).
Similarly, ginseng extract has been shown to inhibit the
invasion of colon cancer cells by suppressing ERK1/2 and NF-
κB pathways (Kim et al., 2018b)

Conflicts remaining to be resolved

Asmentioned earlier, the influence ofMSCs on the tumormilieu
is extensive and occasionally paradoxical. The majority of studies
that have shown antitumorigenic effects for MSCs have applied
MSCs with no previous exposure to cancer cells. This may reflect
that cancer-naïve MSCs and cancer-educated MSCs have different
functions (Atiya et al., 2020). Moreover, the anti-cancer activity of
different types of MSC has been investigated compared to each
other. The results have shown that UC-MSCs have significantly
higher onco-suppressive effects compared to BM- MSCs and
adipose tissue-MSCs (Christodoulou et al., 2018). The complex
cellular and molecular interplays between MSCs and the TME
can also cause discrepancies in results. MSCs can migrate to
tumors and differentiate into various types of cells, including
tumor-associated MSCs and tumor-associated fibroblasts (Quante
et al., 2011). Neoplasm-derived signals can affect the phenotype of
the recruited MSCs, making them a component of tumor tissue;
these MSCs carry characteristics that are different from tissue-
associated MSCs and BM-MSCs (Zhao et al., 2020). MSCs that
have been primed with TLR4 are referred to as MSC1 and display an
antitumorigenic effect, while MSCs that have been primed with
TLR3 are known as MSC2 and have a tumor-supportive role
(Figure 1B) (Waterman et al., 2012). Ruth et al. found that
MSC1 was able to suppress tumor progression, while tumor
growth and metastasis were promoted by MSC2 both in vivo and
in vitro (Waterman et al., 2010). It is interesting to note that the
specific TLR agonist that MSCs are exposed to facilitates the shift
betweenMSC1 andMSC2. To further clarify, TLR4 agonists polarize
MSCs in the direction of the pro-inflammatory MSC1 population,
which is essential for early injury responses. On the other hand,
TLR3 agonist exposure would polarize MSCs towards the
immunosuppressive MSC2 population, which is essential for
facilitating tissue repair. This might partly clarify why MSCs have
such a wide function in the treatment of different forms of cancer.
Co-culture with MSCs causes more breast, pancreas, and ovarian
tumor cell colonies and larger masses compared to untreated
controls. MSC2 co-culture leads to the most expanded colonies.
On the contrary, co-culture with MSC1 is accompanied by fewer
cancer colonies and smaller masses. Overall, these findings insinuate
that MSCs and MSC2 promote tumor progression, while
MSC1 hurdles tumor cell growth (Waterman et al., 2012). This is
partially true of MSC-EVs as well as MSCs. Since MSC-EVs are non-

TABLE 4 Comparison of the effects of naïve and educated MSCs on tumor cells.

Naïve MSCs Educated MSCs

Modifying the ratio of T regulatory and myeloid-derived suppressor cells to CD8+

T cells by recruiting diverse immune cells into the TME, which leads to the onco-
suppressive state (Zheng et al., 2016)

Suppression of the anti-tumor immune responses by releasing different factors,
including IL-6 and HGF (Deng et al., 2016)

hAMSCs show anti-tumour effects on cancer cells through induction of apoptosis and
suppression of EMT (Safari et al., 2021)

MSCs release pro-angiogenic factors, when stimulated by tumor cells, promoting
tumor growth and angiogenesis (Zhang et al., 2013b)

Naïve BM-MSC expresses appropriate levels of miR-15a which is involved in tumor
suppression (Roccaro et al., 2013)

Expression of miR-15a is reduced in BM-MSC–derived exosomes exposed to multiple
myeloma (Roccaro et al., 2013)

Naïve MSCs express low levels of markers known as cancer-associated fibroblasts
(Arena et al., 2018)

The expression of cancer-associated fibroblasts is significantly increased in tumor-
exposed MSCs (Arena et al., 2018)

TME, tumor microenvironment; hAMSC, human amniotic mesenchymal stem cell; EMT, epithelial mesenchymal transition; IL-6, interleukin 6; HGF, hepatic growth factor.
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living components, they lack the ability to cause neoplasms.
Nevertheless, they may exert an influence on tumor progression.
The impact of MSC-EVs on tumor growth is a matter of debate.
Some investigations reported that MSC-EVs dampened tumor
growth; on the other hand, there are pieces of evidence for the
implication of MSC-EV in tumor progression and spread.
Interestingly, all of the MSC-EVs used in these surveys also
originated from naïve MSCs. Where MSC exosomes synthesized
by MYC-transformed MSCs, E1-MYC cells were used, no inhibitory
or promoting effects were observed on tumor growth. These
controversial findings may be justified by the heterogeneity of
MSC sources, different methods used for EV isolation, or
discrepancy in tumor models studied (Tan et al., 2021) (Table 4).
Further studies may help to explain the intricate interactions
between MSCs and tumor components.

Conclusion

MSCs can be considered themajor regulators of tissue homeostasis.
Evaluating the level of the inflammatory response to injury, MSCs can
adapt effective functions to suppress or promote the response. Pro-
tumorigenic effects of MSCs are exerted through various mechanisms
in the TME, including differentiation into stromal components of the
TME, suppression of immune response, enhancement of angiogenesis,
improving tumor cell survival, and promotion of metastasis. On the
other hand, many studies have suggested that MSCs have the potential
to suppress tumor progression via modulation of the immune system,
suppression of angiogenesis, induction of apoptosis, and regulation of
cellular signaling pathways. Despite the controversy on the role of
MSCs in tumor promotion or inhibition, it is obvious that they have a
dynamic role in the TME. Considering the wide range of therapeutic
applications of MSCs, numerous studies have tried to identify the anti-
cancer properties of different types of MSCs. A great body of evidence
shows that cancer-naïve MSCs and UC-MSCs have remarkably higher
onco-suppressive effects compared with other subtypes. Additionally,
some researchers have taken a step further and proposed techniques to
convert the tumorigenic function of MSCs into onco-suppressive

effects. The existing methods include the application of GM-MSCs,
which can help to transfer anti-cancer agents in a highly effective way
compared with systemic administration, using MSC-EVs as
biocompatible tools to deliver mRNA, miRNAs, prodrugs, and
peptides to the target cells, autologous injection of MSCs, which can
be administered in combination with prodrugs, therapeutic blockade of
cell signaling, and the use of herbal such as curcumin and ginseng.
Further studies are suggested to explain the complex interaction
between MSCs and tumor components more precisely. Since
different subpopulations of MSCs show varied effects, further
research should be conducted to evaluate the role of these
subpopulations in the progression of different types of cancer which
can help to develop more effective methods to convert these
unfavorable activities to onco-suppressive effects.
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