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MYC, a key member of the Myc-proto-oncogene family, is a universal
transcription amplifier that regulates almost every physiological process in a
cell including cell cycle, proliferation, metabolism, differentiation, and
apoptosis. MYC interacts with several cofactors, chromatin modifiers, and
regulators to direct gene expression. MYC levels are tightly regulated, and
deregulation of MYC has been associated with numerous diseases including
cancer. Understanding the comprehensive biology of MYC under physiological
conditions is an utmost necessity to demark biological functions of MYC from its
pathological functions. Here we review the recent advances in biological
mechanisms, functions, and regulation of MYC. We also emphasize the role of
MYC as a global transcription amplifier.
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Introduction

TheMyc gene was first identified in the early 1980s as a cellular homolog of the retroviral
v-Myc oncogene (Duesberg et al., 1977; Sheiness et al., 1978; Conacci-Sorrell et al., 2014). Its
discovery led to intense research efforts to understand its function and deregulation in
cancer. MYC deregulation was soon associated with genomic rearrangements including
translocations in Burkitt lymphoma, gene amplification and chromosomal circles in
leukemia and carcinoma, and deregulation by HPV insertion in cervical carcinoma
(Dalla-Favera et al., 1982; Taub et al., 1982; Spencer and Groudine, 1991; Wasylishen
and Penn, 2010; Adey et al., 2013). Subsequently, mutations that stabilize MYC protein and
mRNA were recognized in malignancy (Dang, 2012). Because all these situations occur in an
oncogenic setting, thousands of studies explored the cellular consequences of MYC
overexpression. Upon discovering that the basic-helix-loop-helix (bHLH) protein MYC
dimerizes with its bHLH partnerMyc-associated factor-X referred to asMAX and binds with
E-boxes (5′-CACGTG-3′) and presumed to activate transcription, the principal focus of
studies to define the pathologic role of MYC revolved upon the identification of its
transcriptional targets (Blackwood and Eisenman, 1991; Grandori and Eisenman, 1997;
Eilers and Eisenman, 2008; Dang, 2012). The notion was that MYC programmed the
expression of a discrete set of mRNAs that bypassed normal growth control leading to
unrestrained proliferation. Most of these studies exploited a variety of transformed and
tumor cell lines to explore pathologic MYC function. Fewer studies focused on physiological
role of MYC. In the untransformed, non-oncogenic situation, MYC was found to be an
immediate early gene, turned off during the G0-stationary phase of the cell cycle, but
upregulated transiently during the transition to G1/S (Kelly et al., 1983; Armelin et al., 1984;
Wang et al., 2008). Upon entering steady-state cell-cycle growth, MYC was stably expressed
at lower levels until growth once again arrested. Survey of mRNA expression indicated that
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while MYC upregulated the expression of many genes involved in
cell cycle progression, it also repressed a small number of cell-cycle
antagonists (Bretones et al., 2015). Sustained high level expression of
MYC elicited apoptosis in non-transformed cells and so could not be
maintained (Evan et al., 1992; Murphy et al., 2008). In the bulk of
this review, we will consider the biological mechanisms and
functions of MYC in non-transformed cells, tissues, and
organisms. A description of this physiology is essential to
distinguish whether the oncogenic actions of MYC arise due to
an exaggeration of its normal functions or whether high level
expression conjures new modes and mechanisms of MYC activity
otherwise unseen.

MYC domain organization and function

The MYC family of proteins consists of three paralogs, MYC
(c-MYC), MYCN (N-MYC) and MYCL (L-MYC) (Brodeur et al.,
1984; Kohl et al., 1984; Nau et al., 1985). Although MYC family
genes encode proteins with similar structural architecture and
function, each MYC paralog is located on a different
chromosome (MYCL, MYCN and MYC are in chromosomes
1, 2, and 8 respectively) and expressed at distinct times and
locations during cellular differentiation (Dalla-Favera et al.,
1982; Schwab et al., 1984; Zelinski et al., 1988; Ruiz-Pérez
et al., 2017; Llombart and Mansour, 2022). MYCN and MYCL
have tissue-specific function. MYCL is expressed and functions in
dendritic cells, gastrointestinal cells, and lung cells. MYCN is
expressed in neural and neuroendocrine tissue and is critical for
the development of nervous system (Llombart and Mansour,
2022). MYC is composed of 439 amino acids and contains an
N-terminal transactivation domain (TAD), and a C-terminal
DNA-binding domain. The TAD (residue 1-143) forms an
intrinsically disordered domain and is necessary for biological
activity of MYC and MYC-mediated transcriptional activation
(Kato et al., 1990). The C-terminal domain comprises
~80 residues and consists of a bHLH -leucine zipper (bHLH-
ZIP) segment from residues 357-439. The bHLH-ZIP domain
forms specific heterodimers with MAX (Blackwood and
Eisenman, 1991; Amati et al., 1992; Amati et al., 1993; Kato
et al., 1992). This interaction facilitates the ability of MYC’ to
bind DNA with preference, but not absolute specificity, for
binding to the canonical E-box (5′-CACGTG-3′) (Blackwood
and Eisenman, 1991; Guo et al., 2014; Carroll et al., 2018). Besides
sequence recognition, a major component of MYC recruitment to
the DNA are its interactions with the transcription machinery at
accessible promoters (Guo et al., 2014). Initially MYC seemed to
bind a wide range (2,500–25,000) of sites throughout the genome
that varied according to cell type (Cawley et al., 2004).
Classification and functional assessment of the programs
regulated by MYC between different tissues and cells seemed
complex and somewhat incoherent. The number of MYC peaks
was significantly affected by the arbitrary threshold chosen to
distinguish real peaks from the background and experimental
conditions that most often lacked an internal control, such as
“spike” chromatin from a heterologous genome, to improve
quantitation (Bonhoure et al., 2014). Moreover, the
normalization of gene mRNA output obscured the observation

of global transcription amplification by MYC, with sensitivity to
the artificial threshold used to differentiate “real” from non-
specific binding (Lovén et al., 2012).

Upon binding at promoters, the transregulatory domains of
MYC and its isoforms, are believed to project its influence onto
target genes through patches of amino acids that share high
sequence homology among the three MYC isoforms. These
patches are referred to as MYC boxes (MBs). From the amino-
to carboxyl terminus, there are six conserved MBs: MB0, I, II, IIIa,
IIIb, and IV. They are generally unstructured and can adopt
specific conformations induced upon partner-protein binding.
The degree of plasticity for each MB upon complexing with
different partners has not been explored. The inventory and
functional roles for MB-interacting partners that have been
most intensively investigated are involved in transcription and
chromatin process, or control MYC turnover, has recently been
reviewed (Das et al., 2023).

A sampling of the MYC-interactome shows MB0 interactions
with general transcription factor TFIIF (Kalkat et al., 2018). MBI and
MBII reside within the TAD and are critical for transcriptional and
cell-transforming functions of MYC. MYC box I controls its
proteasome mediated degradation of MYC proteins (Farrell and
Sears, 2014). Aurora A, independent from its kinase activity,
interacts with MBI to stabilize MYC (Dauch et al., 2016). MBII
plays a crucial role in recruiting MYC transactivation coactivators
such as TRRAP, GCN5, TIP48, TIP49, TIP60, CBP/p300, and SKP2
(Adhikary and Eilers, 2005; Conacci-Sorrell et al., 2014; Tu et al.,
2015; García-Gutiérrez et al., 2019). Because TRRAP is a protein that
participates in multiple large protein complexes engaged in
chromatin remodelling and histone acetylation (Zhang et al.,
2014), it may impart multiple functions when joined with a
promoter-bound MYC. The central region of MYC containing
MBIII and MBIV starts with a proline-rich PEST segment,
followed by a calpain cleavage site (CAPN); the N-terminal
fragment of this cleavage, known as “MYC-nick,” lacking the
nuclear localization signal (NLS) situated to the C-terminal side
of the cleavage site, resides in the cytoplasm and participates in
interactions and functions of the cytoskeleton (Conacci-Sorrell et al.,
2010; Anderson et al., 2016). MBIII is important for transcriptional
repression (Kurland and Tansey, 2008; Garcia-Sanz et al., 2014), but
also interacts with WDR5 (a scaffolding protein that nucleates the
assembly of histone modifier complex) and facilitates histone
H3 Lys4 (H3K4) methylation which is thought to increase the
interaction of MYC with active promoters (Thomas et al., 2015).
MBIV is necessary for transcriptional activity of MYC and induction
of apoptosis (Cowling et al., 2006) and has been shown to interact
with the transcriptional coregulator HCF-1 (Thomas et al., 2016).
Although each of the MBs interact with multiple partners and have
been shown to modulate MYC activity, the precise role of individual
MBs has not been fully ascribed.

MYC, an amplifier of transcription

Transcription activation involves the binding of transcription
factors to specific DNA sequences, which recruit the transcriptional
machinery, coactivators, and chromatin modifiers to form a
transcriptional complex that initiates gene transcription.
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Transcription factors can recruit coactivators such as CBP/p300,
which possess histone acetyltransferase activity and can acetylate
histones to promote an open chromatin structure that allows for
gene transcription. In addition, transcription factors can recruit
chromatin modifiers such as SWI/SNF, which can remodel
chromatin to allow access to the transcriptional machinery
(Bannister and Kouzarides, 2011). Unlike transcription activation,
transcription amplification refers to the process by which
transcription factors globally enhance the expression of all active
genes in the cell (Lin et al., 2012; Nie et al., 2012; Li et al., 2013).
Transcription amplification is different from gene amplification
where the number of copies of a specific gene increases without
an increase in the transcription output of each copy. Gene
amplification can result from DNA replication errors,
chromosome translocations or gene rearrangements (Albertson,
2006; Beroukhim et al., 2010; Matsui et al., 2013; Schaub et al.,
2018). In contrast, transcription amplification occurs through the
recruitment of coactivator complexes or other factors that enhance
the efficiency of transcriptional reinitiation and elongation, and so
increase the number of RNA polymerases (RNAP) that are engaged
in transcription (Wolf et al., 2015). Transcription amplification
enhances the expression of a gene beyond what would be
expected based on the level of transcription factor binding alone.
While it was initially believed that MYC acted as a sequence-specific
transcription factor, turning on genes via E-boxes (Blackwell et al.,
1990; Halazonetis and Kandil, 1991; Kerkhoff et al., 1991;
Prendergast and Ziff, 1991), an alternate model has been posed
in which MYC acts as a global amplifier of all active genes (Lin et al.,
2012; Lovén et al., 2012; Nie et al., 2012; Nie et al., 2020; Wolf et al.,
2015).

When viewed a transcriptional activator, the expectation and
goal were to identify specific, direct MYC target genes to provide
insights into the crucial downstream targets and biological processes
responsible for mediating the physiological functions and oncogenic
pathology of MYC. Numerous studies were undertaken to identify
MYC-regulated genes by employing techniques such as microarray
or next-generation sequencing to compare RNA expression profiles
and genome-wide mapping of MYC-bound chromatin. The notion
that MYC and MYC-MAX complexes regulate a limited and well-
defined set of target genes for their various roles has been largely
challenged (Orian et al., 2003; Ji et al., 2011; Lee et al., 2012; Hurlin,
2013; Sullivan et al., 2022). Studies aimed to establish a universal
signature of MYC target genes across cell types have been
unsuccessful (Lee et al., 2012; Sullivan et al., 2022). Investigations
across various cell types consistently revealed the presence of MYC
proteins at nearly all promoters located in open chromatin regions
(Chen et al., 2008). Moreover, a strong correlation between MYC
binding and the presence of histone marks associated with open
chromatin, particularly H3K4Me3 and H3K27Ac was observed (Nie
et al., 2012). Conversely, MYC was excluded in the regions
exhibiting repressive histone modifications. These results argued
against the role of MYC as selective target (E box-dependent)
transcription activator and led to further consideration of the
transcription amplifier model, where MYC acts to globally
enhance the expression of transcriptionally active genes in a
nonlinear manner (Figure 1) (Lin et al., 2012; Nie et al., 2012).
The transcriptional response of an active gene rises until output at
the affected promoter saturates. This amplification is more efficient
on highly transcribed genes, effectively raising their expression
ceilings. MYC exhibited widespread binding to all promoters

FIGURE 1
MYC is an amplifier of transcription. Schematic representation of the role of MYC as transcription amplifier is depicted. MYC exerts its influence on
actively transcribed genes in the presence of activators, rather than being involved in transcriptional processes at silent genes. WhenMYC is not involved,
activator can start transcription albeit with low outputs. Participation ofMYC leads to an augmentation of gene expression beyondwhatwould be typically
anticipated solely based on the binding of transcription factors.
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associated with RNAP II activity, resulting in a significant
enhancement of transcription for a diverse repertoire of genes.
MYC action does not entail the activation of novel genes;
instead, it amplifies the expression levels of transcribed genes and
so accelerates and amplifies ongoing cellular programs. Highly
expressed MYC target genes tend to harbor canonical E boxes,
but this is not obligatory and there is no strict correlation between
MYC binding and the presence of E boxes for MYC- amplified genes
in non-transformed cells (Nie et al., 2012).

The complexity of transcription amplification can be influenced
biologically by input signals, cis-elements, other transcription
factors, and analytically by the algorithms and pipelines used for
analysis. These factors can highlight or obscure the relationship
between MYC binding and promoter output in omics studies. To
exclude such interfering or biased factors, minimal promoter and
the reporter-based assay was designed to interrogate MYC function
(Nie et al., 2020). Basal reporter expression was insensitive to MYC,
and an initial activator signal was required to sensitize the promoter
to MYC amplification to achieve increased transcriptional output.
MYC boosted reporter gene expression to much higher levels than
was attainable solely with saturating levels of transactivators.
Further, MYC-mediated transcription amplification was severely
attenuated by mutations in MBI and MBII but augmented by
mutations in MBIII. This suggests that the MB regions
coordinate with various proteins to control the chromatin
opening and progression through the transcription cycle to
achieve transcription amplification. The amplifier model for

MYC functions is supported by the observation that MYC
promotes transcription elongation by recruiting P-TEFb, PAF1c
and super-elongation complexes (Jaenicke et al., 2016; Chen et al.,
2017; Endres et al., 2021; Aoi et al., 2022). Increased MYC
occupancy consequently led to increased P-TEFb with elevated
levels of Serine 2 phosphorylation at RNAP II (a modification
linked to elongation), escalated levels of elongating RNAP II, and
augmented mRNA levels for active genes. Therefore, the main
consequence of increased MYC is the amplification of
transcription (Figure 2) (Rahl et al., 2010).

Although, it has been suggested that the binding of transcription
factors to enhancer elements, super-enhancers, or other regions that
drive the recruitment and activity of the transcription machinery
plays a critical role in the non-linear mode of transcriptional
amplification (Hnisz et al., 2016), the direct mechanism/s how
MYC increases the output of expressed genes demands further
investigation. A new report argues that a DNA-binding
independent function of MYC helps it to function as a global
amplifier (Guan et al., 2023). These authors report that MYC
regulates P-TEFb availability through the inhibition of
CDK9 sumoylation. CDK9 interacts with UBC9 and the PIAS
family E3 ligase, specifically PIAS1, to promote
CDK9 sumoylation. This modification impedes the binding
between CDK9 and Cyclin T1, leading to the disruption of active
P-TEFb assembly. MYC, through its independent interaction with
CDK9 and UBC9/PIAS1, inhibits the association between
CDK9 and UBC9/PIAS1, thereby preventing CDK9 sumoylation

FIGURE 2
Current model for factors involved in transcription amplification by MYC. MYC interacts with essential transcription regulators involved in critical
events at promoters, either coincidently or through regulated processes. MYC recruits key activators such as general transcription factors, Mediator,
PAF1c, P-TEFb, DSIF, and exosome (other components omitted for simplicity). Once transcription starts, pausing factors interact with RNAP II near the
start site, causing it to pause around 50 bp downstream from the initiation site. Together with cofactors like BRD4, MYC recruits P-TEFb which
phosphorylates the pausing factors and RNAP II. MYC suppresses CDK9 sumolyation, facilitating active P-TEFb formation. MYC also recruits PAF1c and in
association with HUWEI1-mediated ubiquitylation of MYC, PAF1c is transferred to RNAP II. These events collectively trigger the release of the paused
transcription complex and initiate transcription elongation. Moreover, torsional stress generated due to transcription elongation is resolved by the MYC-
Topoisome complex. It activates the catalytic activity of both TOP1 and TOP2A, helping tomaintain DNA supercoiling homeostasis. MYC also extends the
duration of residence times of transcriptionmachinery like TBP, SPT5 and RNAP II and this leads to the extension of transcriptional bursts (gene ON time).
These events help to explain the role of MYC as an amplifier of transcription.
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(Figure 2). By facilitating the formation of the P-TEFb complex,
MYC enhances the phosphorylation of Ser2 on the RNAP II CTD,
promoting global transcription amplification through
transcriptional elongation (Figure 2). The full extent of
transcriptional functions of MYC depends on both its local and
global effects, as well as its interactions with various transcriptional
cofactors. In addition, the differences in transcriptional profiling and
transformation potency observed between full-length MYC and
truncated MYCs (Yu et al., 2018; Guan et al., 2023). MYC also
indirectly amplifies transcription by inducing the expression of
GCN5 that acetylates histones (chromatin opening) and
PRPS2 that promotes nucleotide biosynthesis (McMahon et al.,
1998; McMahon et al., 2000; Knoepfler et al., 2006; Cunningham
et al., 2014).

A recent report (Patange et al., 2022) investigated the
transcriptional kinetics and mechanisms through which MYC
enhances gene expression in living cells. A light-controlled MYC
protein was translocated from the cytoplasm to the nucleus upon
blue light illumination, thereby controlling MYC activity in human
cells. Photo-activation and RNA imaging enabled precise
measurements of gene regulation and the MYC action on
transcription factor dynamics and transcription amplification.
Single-molecule fluorescence in situ hybridization (smFISH) in
fixed cells and MS2-tagging of RNA in live cells were used to
assess the immediate impact of MYC on transcription bursting.
The findings demonstrate that MYC influences the length of time
that other core transcriptional factors reside at promoters. Elevated
MYC levels uniquely influence the dwell time of various
transcriptional machinery complexes. The glucocorticoid receptor
(GR) remained unchanged, while SPT5, TBP, and RNAP II
exhibited increased dwell time, and MED1, a mediator
component, showed decreased dwell time. Elevated MYC
enhanced RNA output from its target genes and alterations in
burst duration were attributed to changes in the residency of
transcriptional machinery and hence altered transcription output.
Overall, MYC universally extended the duration of transcriptional
bursts (increased gene ON time, i.e., transcriptionally active state),
without altering their frequency (Figure 2) (Patange et al., 2022).
Although bursting duration was preferentially enhanced for genes
with lower expression, it should be noted that the highly expressed
genes, most likely, were pre-saturated with endogenous MYC.

MYC is primarily associated with transcription amplification,
however, many reports have revealed that it also represses several
genes. Most repression may represent an algorithmic artefact of
RNA normalization by programs such as DE-seq2 when comparing
samples. Yet a small number of MYC repressed targets survive the
normalization correction and are truly repressed. The precise
mechanism underlying transcriptional repression of MYC is not
fully understood. However, it seems that MYC uses surrogates to
affect repression. For example, MYC exploits transcription factors
like MIZ-1 (Myc-interacting zinc-finger protein 1) or SP1 that
recruit corepressor, or changes in chromatin accessibility driven
by epigenetic modifications which lead to the displacement of DNA-
bound coactivators to ultimately achieve gene repression (Seoane
et al., 2001; Kurland and Tansey, 2008; Wiese et al., 2013; Walz et al.,
2014; Lourenco et al., 2021). Further, interaction of MYC with
PAF1c forms a repressive complex, inhibiting function of PAF1c as
an elongation factor (Jaenicke et al., 2016). It is important to rule out

the potential involvement of indirect mechanisms of repression that
involve ability of MYC to amplify the expression of negative
regulators of transcription, such as repressor genes and other
repressive components such as microRNAs (Wolf et al., 2015;
Poole and van Riggelen, 2017). Consequently, the activation of
these repressive components could ultimately result in the
repression of target genes. For instance, MYC has been shown to
repress p53 by targeting p53-MDM2-ARF (Kung andWeber, 2022).
MYC activates the expression of SENEBLOC, a lncRNA that acts as
a scaffold to facilitate the binding of MDM2 with p53, leading to the
downregulation of p53 (Xu et al., 2020). Furthermore, MYC also
drives the expression of MILIP, another lncRNA that represses
p53 by promoting p53 turnover by reducing p53 sumoylation (Feng
et al., 2020). Therefore, it is essential to consider the indirect effects
mediated by MYC-induced transcription amplification when
studying the repression of MYC target genes (Lin et al., 2012;
Nie et al., 2012).

Role of MYC in embryogenesis, cell
cycle, proliferation, and apoptosis

As discussed above, MYC is an integral part of transcription
progression, acting as a global amplifier, it is indispensable for both
embryonic development and the maintenance of self-renewing
tissues in adults (Yoshida, 2018). MYC proteins exert crucial
functions mostly during embryogenesis and in tissue regenerative
programs in adults (Dang, 2013; Asami et al., 2022; Asami et al.,
2023). MYC was absolutely required for the immediate embryonic
gene activation (iEGA). Inhibiting MYC during iEGA resulted in
acute developmental arrest and caused a failure in activating
approximately 95% of the upregulated genes. Further, it also
changes the morphology of the embryo, and hindered the
process of cytokinesis (Asami et al., 2023). In the absence of
MYC, the failure of activation of 95% upregulated genes supports
the notion that MYC acts as a global amplifier in developmental
contexts (Lin et al., 2012; Nie et al., 2012; Nie et al., 2020). Studies
have shown that knockouts of either MYC or MYCN do not survive
embryonic development, whereas mice lackingMYCL are fertile and
appear to develop normally (Charron et al., 1992; Stanton et al.,
1992; Davis et al., 1993; Hatton et al., 1996). Mouse embryos lacking
MYC experience prenatal mortality at E10.5 due to placental defects
(Davis et al., 1993). However, whenMYCwas deleted in epiblast, the
embryos demonstrate normal growth and survive until E11.5, and
later develop hematopoiesis and die (Dubois et al., 2008). MYC is
typically expressed at low levels, and elevated expression is almost
always transient in normal cells (Levens, 2013). Deletion of certain
enhancer regions that regulate MYC expression (discussed in
regulation section) have examined a role for MYC in
embryogenesis (Dave et al., 2017). Upon deletion of an enhancer
region, MYC levels reduce by approximately 50%, but are still
sufficient for normal development and tissue growth suggesting
that the deleted regions were dispensable for MYC function in the
placenta development and during early hematopoiesis. These mice
were resistant to tumor formation suggesting that tumors demand
elevated MYC levels (Dave et al., 2017). Moreover, the enhancer
region known as BENC that regulates MYC abundance, plays a
crucial role in precisely regulating hematopoiesis (Bahr et al., 2018).
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These results support that physiological levels of MYC are a crucial
factor in regulating embryogenesis.

MYC helps to regulate the cell-cycle and determine the rate of
proliferation. Low MYC promotes growth of quiescence cells and
controls cell cycle entrance and exit. The G1 and G2 phases of the
cell cycle are lengthened in MYC-deficient rat fibroblasts compared
to wild-type cells (Mateyak et al., 1997). MYC depletion using
antisense oligodeoxynucleotides in human lymphoid and myeloid
cells hinders entry into S-phase (Heikkila et al., 1987; Wickstrom
et al., 1988). Depletion of MYC using short-hairpin RNA (sh-RNA)
led to cell-cycle arrest in the G0/G1 phase in all non-transformed
cells, whereas barring few, most transformed cells showed arrest in
either the S phase or the G2/M phase (Wang et al., 2008). MYC
regulates the expression of genes involved in cell-cycle control by
activating the expression of positive regulators of cell-cycle such as
Cyclin D, CDK (CDK1, 2, 4, 6), Cyclin E, Cyclin B. MYC also
activates E2F target genes (Bretones et al., 2015; García-Gutiérrez
et al., 2019). In addition, MYC also exerts its effect by inhibiting the
negative regulators of the cell cycle, such as p15, p21, and p27
(Bretones et al., 2015; García-Gutiérrez et al., 2019). MYC represses
p15 by forming a repressor complex with SP1 and SMAD in the
presence of TGF-β (Seoane et al., 2001; Feng et al., 2016). Another
prominent target of MYC is p21. The Interaction between MYC and
MIZ-1 leads to the displacement of the transcriptional coactivators,
resulting in the inhibition of MIZ-1 target genes like p21 (Wiese
et al., 2013; Walz et al., 2014). Further, MYC induces the bHLH-LZ
transcription factor AP4 which binds to p21 promoter and facilitates
the transcriptional repression of p21 (Jung et al., 2008). It also
represses p21 by activating the expression of microRNA miR-17-92
(Wong et al., 2010). MYC represses p27 at both the transcriptional
and post-transcriptional levels reviewed in Ahmadi et al., 2021.
MYC induces the expression of D-type cyclin, CDK4, CDK6, and
components of the SCFSKP2 ubiquitin ligase complex, which direct
the phosphorylation, degradation, and proteasome-mediated
turnover of p27 (Montagnoli et al., 1999; Keller et al., 2007;
Bretones et al., 2011). It should be noted that in no case has
MYC been shown to directly block the expression of a cell-cycle
repressor other than in specific combination with other
transcription factors. Mostly simply, MYC regulates the cell-cycle,
growth, and proliferation as a general amplifier of preexisting
transcriptional programs inducing the expression of required
genes in a timely manner.

Beyond its role in cell cycle growth and proliferation, MYC also
plays a part in apoptosis. The involvement of MYC in apoptosis first
became apparent in a study where elevated MYC led to apoptosis of
growth factor-deprived fibroblasts (Evan et al., 1992). MYC controls
apoptosis by modulating the balance between pro-survival and pro-
apoptotic signals in the BCL pathway (McMahon, 2014). While
modest increases in MYC levels led to increased cellular
proliferation, higher MYC levels provoked apoptosis (Murphy
et al., 2008). Even in normal physiological contexts, endogenous
MYCwas found to be an essential factor for apoptosis of self-reactive
lymphocytes (Shi et al., 1992). Further, it has been shown that
endogenous MYC is required for p53-mediated apoptosis in
intestinal epithelial cells of mice (Phesse et al., 2014). These
studies highlighted that endogenous levels of MYC maybe
sufficient to induce apoptosis and based on cellular
demands, nutrient levels, growth factors, etc. MYC can activate

both p53-dependent and -independent apoptosis (Topham et al.,
2015). In situations where pro-apoptotic genes are silent, the
transcription of those pro-apoptotic genes must be primed before
MYC further amplify their expression leading to apoptosis (Lin
et al., 2012; Nie et al., 2012; 2020).

MYC in transcription and replication

MYC binds the genes transcribed by all three RNAPs- I, II, and
III although with relatively lower binding to rRNA promoters
(Gomez-Roman et al., 2003; Grandori et al., 2005; Oskarsson and
Trumpp, 2005). MYC regulates the expression of non-coding
transcripts by RNAP I and III, and most prominently mRNA
expression by RNAP II (Baluapuri et al., 2019). The chromatin
landscape of MYC binding sites indicates that it tends to bind
primarily to active promoters or promoters linked to a preoccupied
basal transcription apparatus. MYC exhibits a strong association
with factors regulating RNAP II activity, including both promoter
recruitment and activation of the polymerase. It directly binds to the
TATA-binding protein (TBP), an essential component of the TFIID
complex responsible for promoter recognition and pre-initiation
complex assembly at the transcriptional start site (Wei et al., 2019).
This interaction suggests a potential mechanism for TBP
recruitment to MYC targets lacking a TATA box.

The rate-limiting step of transcriptional initiation, which
involves the phosphorylation of Ser5 in the RNAP II C-terminal
domain, is regulated by the recruitment of SPT5/SPT6, the two
components of DSIF, through the influence of MYC. MYC interacts
with SPT5, facilitating its recruitment to promoters and subsequent
CDK7-dependent transfer to the RNAP II prior to transcription
elongation. This process enables SPT5-loaded RNAP II to efficiently
generate full-length transcripts through fast, continuous, and
directed transcription (Baluapuri et al., 2019). When MYC is low
(quiescent cells), the recruitment of SPT5 at RNAP II is insufficient,
leading to a loss of directionality and processivity in RNAP II, which
results in elevated production of antisense and abortive transcripts.
However, it remains to elucidate the biological consequence of these
antisense and abortive transcripts.

Further, MYC facilitates the formation of the P-TEFb complex
and phosphorylation of Ser2 on the RNAP II CTD, to promote
transcription elongation (Yu et al., 2018; Guan et al., 2023). MYC-
dependent transcription activation also requires ubiquitination of
MYC. It was shown that ubiquitylation of MYC is required to
transfer of the PAF1c from the MYC to transcription elongation
complex (otherwise repressive complex) onto RNAP II (Jaenicke
et al., 2016). However, it remained unclear whether MYC
ubiquitination alone was sufficient for the transfer or if it also
required the involvement of P-TEFb. Excitingly, recently it has
been shown that MYC recruits the PAF1c complex, and in
conjunction with HUWE1-mediated ubiquitylation of MYC at
the promoter, facilitates the transfer of PAF1c from MYC to
RNAP II (Figure 2). This event triggers promoter escape and
enables continuous elongation, which occurs downstream of the
P-TEFb-dependent release of RNAP II from NELF inhibition
(Endres et al., 2021). The elimination of MYC from genes is
facilitated by E3-directed poly-ubiquitin pathways, which could
be closely linked to its role in regulating transcription activation
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and amplification. A recent study proposes that increased MYC
leads to its invasion of super-enhancers (See et al., 2022). MYC
utilizes various members of the KLF/SP transcription factor family,
such as MAZ, ZBTB17, and EGR2 at super-enhancers. MYC
interaction with super-enhancers increased the chromatin contact
frequency across TADs boundaries. Further, increased MYC levels
strengthen chromatin interactions between MYC binding sites at
promoters and enhancers.

With MYC-driven transcription amplification, torsional stress
builds up. If torsional stress is not resolved, it would quickly hinder
the movement of RNAP II and stop bursts of transcription, as in
bacteria (Chong et al., 2014). To maintain a high level of
transcription, it is crucial to promptly reduce torsional stress (Jha
et al., 2022). If MYC-driven transcription were accompanied by an
increase in torsional resistance, the speed of transcription would
slow down or even stop, counteracting any efforts made by MYC to
boost transcription output. MYC topoisome, a recently discovered
complex is a crucial regulator for the maintenance of transcription-
induced torsional stress in such situations. MYC interacts with
TOP1 and TOP2A and forms the MYC topoisome complex
(Figure 2) in which the catalytic activities of both TOP1 and
TOP2A are increased to facilitate transcription (Das et al., 2022).
NotablyMYCN forms a distinct topoisome incorporating TOP1 and
TOP2B.

Apart from torsional stress, MYC-driven transcription
amplification can also increase the chance of transcription-
replication conflict. A recent finding shows that MYC forms
multimers, which suppress transcription-replication conflicts
(T-R conflicts) and DNA damage (Solvie et al., 2022). Through
super-resolution microscopic analysis of the MYC distribution in
cells revealed foci of MYC multimers. These multimers consisted of
a dense MYC shell surrounding a weakly stained core. Regulators of
proteasome inhibition, ubiquitylation, splicing, and transcription
elongation were found to influence the formation of MYC
multimers. MYC multimers drive away SPT5 from RNAP II,
attenuating MYC-dependent transcription. FANCD2 and BRCA1,
associated with stalled replication forks in multimers were localized
near replication forks to prevent T-R conflicts. Further, HUWE1-
mediated MYC polyubiquitylation drove multimerization,
suppressing antisense transcription, replication-fork degradation,
and double-strand DNA break formation (Solvie et al., 2022).

MYC has been shown to regulate rDNA transcription. MYC
interacts with components of the SL1 complex, enhancing the
association of TBP and TAF complex with the promoter and
recruiting HATs to facilitate RNAP I recruitment and
transcription at rDNA promoters. Consequently, the upregulation
of UBF expression mediated by MYC positively influences the
transcriptional activity of RNAP I, ultimately resulting in
enhanced rRNA synthesis (Grandori et al., 2005; Grewal et al.,
2005; Oskarsson and Trumpp, 2005). Sumoylation of MYC has been
shown to regulate the MYC-mediated transcription by RNAP I as
well. Sumoylation marks MYC for degradation through the
proteasome pathway (Peng et al., 2019), this degradation
mechanism counteracts the potential transcriptional MYC-
mediated activation of RNAP I. It has been speculated MYC
functions as a coordinator during differentiation, aligning the
pool of active rRNA genes with the levels of RNAP I factors to
tightly regulate rDNA transcription. This orchestration of gene

expression ensures the proper synthesis of ribosomes to meet the
changing needs of the cell throughout its differentiation process
(Poortinga et al., 2011).

MYC proteins are intrinsically disordered proteins (IDPs). They
tend to interact with different proteins simultaneously and has been
speculated that MYC forms liquid-liquid phase separation when
present at high concentration (Ann Boija et al., 2018). It has been
reported that MYCN can form condensates that may be
transcriptionally active, and the IDR and DNA binding domain
of MYCN seem to be critical for such condensates in neuroblastoma
cells (Yang et al., 2022). However, the impact of MYCN condensates
on the transcriptome appears to be limited, as fewer than 6% of
genes were altered among the numerous transcripts dependent on
MYCN. Overall, further investigation is warranted to determine
mechanisms involved for MYC condensate formation and explore
its effect on gene regulation, and involvement in disease conditions
if any.

Regulation of MYC

Due to its relatively unstable mRNA and protein, MYC acts as a
highly efficient regulator of rapid cellular responses. MYC has one of
the shortest mRNA half-lives, approximately 10–20 min (Dani et al.,
1984) and protein half-lives, approximately 20 min (Hann and
Eisenman, 1984), there are various mechanisms that have been
shown to regulate MYC level. The regulation of MYC expression
involves signalling pathways that operate at the transcriptional,
post-transcriptional, and protein levels by a range of upstream
and downstream mechanisms (Figure 3) (Levens, 2013). The
MYC gene is transcribed from multiple promoters (P0, P1, P2,
and P3), and uses different initiation sites, alternative
polyadenylation sites, and the production of antisense transcripts
(Nepveu et al., 1987; Chung and Levens, 2005). The mRNA
transcribed by the P1 promoter represents 10%–25% of all myc
mRNA transcripts, while the P2 promoter accounts for 75%–90% of
the transcripts (Figure 3). Promoter P2 requires the presence of
specific elements for initiating c-myc gene transcription (Hay et al.,
1987; Moberg et al., 1991; Liu and Levens, 2006). The regulation of
the c-myc locus involves DNA-level modulation through alternate
non-B DNA structures (Levens, 2010). In the typical cellular
environment, DNA primarily adopts the B-form, which is a
classical right-handed double helix. However, a variety of non-B
DNA structures have been reported both in vitro and in vivo with
evident regulatory potential (Zaytseva and Quinn, 2018). One such
example includes the Far Up Stream Element (FUSE) of the human
MYC gene, the FUSE in the MYC promoter responds to negative
supercoiling forces during transcription (Figure 3). Dynamic
changes in DNA conformation are coupled with promoter output
and are recognized by transcriptional factors, FIR (FUBP interacting
repressor) and FUSE-binding protein (FUBP1). Transcription-
generated DNA supercoiling induced melting of the FUSE
region, recruits FUBP1 and the FIR to regulate the advancement
of the transcription machinery through TFIIH activation. As
transcription levels increase, FUBP1 facilitates progression
through pausing, while further melting of FUSE recruits FIR,
ultimately restoring MYC expression to basal levels (Figure 3)
(Liu et al., 2006; Kouzine et al., 2008). Apart from FUBP1-FIR
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mediated regulation, the negative supercoiling generated during
transcription can induce dynamic changes and facilitate the
formation of G-quadruplexes (G4s) in the CT element region of
the MYC promoter. G4 structure forms in the MYC promoter
region and may impede MYC transcription by obstructing the
binding of transcriptional factors, including double-stranded
factor SP1, single-stranded factors CNBP, and hnRNPK
(Figure 3) (Michelotti et al., 1996a). A study shows that DDX5, a
potent resolvase of DNA and RNA G4s structures, unfold G4 at the
MYC promoter and hence increases the MYC transcription in the
cell (Wu et al., 2019, PNAS). However, the role of G4 is uncertain as
it has also been claimed to activate MYC transcription (Hänsel-
Hertsch et al., 2016).

These multiple transcription factors and chromatin regulators
have been shown to regulate MYC expression in response to
various signals. Fine-tuned control of MYC expression is

dependent on sets of enhancers positioned both upstream and
downstream of the gene. The c-myc gene is positioned within
approximately a 3 Mb region that lacks other protein-coding genes
and corresponds to a single topologically associating domain
(MYC-TAD). The MYC-TAD harbors a multitude of super-
enhancer regions that intricately regulate the expression of the
MYC (Sur et al., 2012; Kieffer-Kwon et al., 2013; Uslu et al., 2014;
Yashiro-Ohtani et al., 2014). These enhancers include tissue-
specific enhancers that respond to diverse stimuli, along with
super-enhancers (Lancho and Herranz, 2018). Removal of an
enhancer present over half a megabase of DNA upstream of the
c-myc gene (one of several different regions that have been called
super-enhancers) led to a ~50% reduced MYC level (Dave et al.,
2017). A MYC super-enhancer located approximately 1.7 Mb
downstream of the transcription start site plays a critical role in
tightly controlling MYC expression and promoting increased

FIGURE 3
Regulation of MYC. Schematic depicting the various layers in regulation of MYC cellular levels. At the transcription level, multiple promoters (P0, P1,
P2 and P3, not drawn on scale) participate inmyc transcription. Primarymyc transcription predominantly initiates from two major promoters, P1 and P2,
contributing to roughly 10%–25% and 75%–90% of myc mRNA, respectively. The MYC promoter is regulated by two noncanonical cis-regulatory
elements: FUSE and the CT element, induced by negative supercoiling generated during transcription activation. The FUSE element is located 1.7 kb
upstream of P2, while the CT element is located between −100- and −150 bp upstream of P1. The FUSE element, which is AT-rich, melts in response to
torsional stress caused by transcription activation. FUSE melting facilitates sequence-specific FUBP1 binding. Dynamic changes in DNA supercoiling
regulates FUBP1 and FIR binding to the FUSE element with FUBP1 positively (Green arrow) and FIR negatively (Red dotted line) influencing myc
transcription. The CT element which is GC-rich, facilitates the formation of alternate DNA structures. Numerous transcription factors like SP1, NM23H2,
CNBP, HNRNPK, and DDX5 bind to CT element and regulate MYC transcription. Non-B DNA structures, such as G-quadruplex can form at CT elements
and negatively regulate myc transcription. The binding of BRD4 throughout the promoter regions positively regulates myc transcription. Factors like
Brg1 and BRD4 regulatemyc transcription by influencing the interaction between enhancer and promoter regions. The binding of p53 to a distal region of
MYC repress myc transcription. Multiple factors including RNA, RNA binding proteins and long noncoding RNAs (as indicated), regulate post-
transcriptional regulation of myc mRNA. MYC levels are further regulated by various factors (as listed) and post-transcriptional modifications. MYC
phosphorylation by known or unknown kinases at specific site sets the stage for MYC degradation. Phosphorylation of indicated sites recruit FBW7 dimer
and forms the SCF complex consisting of Skp1, Cul1 and Rbx1 proteins followed by polyubiquitination of MYC and degradation by the 26s proteosome.
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chromatin accessibility (Shi et al., 2013; Mifsud et al., 2015; Bahr
et al., 2018; Jia et al., 2019). The enhancer region (termed BENC) is
required for MYC expression, it consists of enhancer modules that
are specific to cell lineages. When these modules are deleted, it
results in the downregulation of MYC expression in a cell-type-
specific manner precisely correlating with gene expression (Bahr
et al., 2018).

It has been shown that p53 (tumor-suppressor) regulates the
expression of MYC by binding to ~50 kb downstream of the c-myc
locus. It has been suggested that p53 binding at this site represses MYC
through the involvement of a MYC enhancer (Figure 3) (Porter et al.,
2017). A recent study shows that ATM represses MYC expression by
promoting transcriptional-induced DNA repair at the MYC enhancer
region (Najnin et al., 2023). Further, MYC regulation through enhancers
appears to be a complex process and involves multiple regulatory
elements, chromatin remodeling factors, RNA, and RNA binding
proteins (Figure 3). For instance, FXR1 (RNA binding protein) binds
to the AU rich elements (ARE) within the 3′ UTR of myc mRNA and
improves its stability (George et al., 2021). The RGG domain of
FXR1 interacts with eIF4A1 and eIF4E and facilitates recruitment of
the eIF4F complex to translation initiation sites for cMYC translation
ultimately increasing the total level of MYC in the cells (George et al.,
2021). Another RNA binding protein, IGF2BP, can recognize and bind
m6Amodified-mycmRNA to regulate its translation (Huang et al., 2018).
MTAR1, a long noncoding RNA has been shown to facilitate IGF2BP-
meditated MYC translation (Gao et al., 2022). Further, a point mutation
within the intron of long noncoding RNA CCDC26 plays a role in
regulating MYC expression (Yanchus et al., 2022). A risk SNP allele in a
brain specific enhancer almost 2 megabase 3’ of MYC, rs55705857(G),
disrupts OCT2/4 binding that otherwise decreases interactions with the
MYC promoter. Consequently, this SNP positively influences the
regulation of MYC expression (Yanchus et al., 2022). The RNA-
binding protein Argonaute 2, known for its involvement in the RNA-
induced silencing complex, has been found to directly bind and stabilize
myc mRNA (Zhang et al., 2020). RNA-binding protein hnRNPK, also
controls MYC expression by directly binding to the CT-element and
interacting with the transcription machinery (Figure 3) (Michelotti et al.,
1996a; Michelotti et al., 1996b). Further, a recent study shows that RNA
molecules originating from both MYC enhancers and promoter interact
with the hnRNPK. Through its oligomerization, hnRNPK brings the
MYC enhancer and promoter in proximity, thereby facilitating the
elevated level of MYC (Cai et al., 2020).

TheMYC amplifier role is dependent on cellularMYC levels. Slight
increases inMYC levels have been shown to release cells from cell-cycle
arrest, promote proliferation or trigger apoptosis.MYC levels have been
observed to show an inverse correlation with cell cycle length and a
direct correlation with organism size within a species (Murphy et al.,
2008; Shachaf et al., 2008). Studies utilizing genetic approaches in
Drosophila have demonstrated using developmental compartments
containing a mixture of normal cells with cells expressing either
double or half the normal levels of MYC, elimination of the lower
MYC cells. High-MYC cells then expand, refill the compartment, and
undergo normal development (De La Cova et al., 2004; Moreno and
Basler, 2004; Johnston, 2014; Topham et al., 2015). The elimination of
low-MYC cells in favor of high-MYC cells is termed supercompetition
and underscores the critical importance of MYC levels in determining
cellular fate. A recent study using exogenously expressed MYC tagged
with the fluorescent protein mNeonGreen (mNG) showed that MYC

expression is pulsatile, heterogeneous, and dependent on MAPK and
Wnt signaling pathways (Liu et al., 2023). The heterogeneous
expression of MYC leads to variable gene transcription and variable
cell-cycle progression rates. Cells with high MYC, progress to S-phase
rapidly and cells with low MYC have increased G0/G1 length, and so
transcriptome diversity arises in the previously homogenous
population. MYC, which regulates G0/G1 length and other
processes, influences sensitivity to chemotherapy drugs. Reduction
in MYC protein levels during doxorubicin (a chemotherapeutic
agent that target topoisomerase II) treatment increased the number
of surviving cells. Cells with transiently low MYC levels at the time of
drug treatment weremore likely to survive and proliferate. Even among
cells that remained in G0/G1 throughout drug treatment, those with
lowerMYC immediately after treatment had higher chances of survival
and proliferation. This indicates that low MYC levels limit DNA
damage during gene expression. It is suggested that increasing
heterogeneity of MYC may be advantageous for cancers (Liu et al.,
2023). However, whether normal cells also possess heterogeneity in
MYC expression and the consequences of that heterogeneity in normal
physiological conditions is a matter of investigation.

The level of MYC in cells is also controlled by post-
translational mechanisms such as MYC phosphorylation
which plays a crucial role in controlling its turnover and
degradation as recently reviewed (Sun et al., 2021). The highly
conserved serine and threonine residues in MBI T58, S62,
S64 and S67 undergo phosphorylation (Welcker et al., 2004).
ERK kinase phosphorylates S62 within the MYC transactivation
domain and enhances the stability of MYC. In contrast, GSK3β or
BRD4 kinases phosphorylates MYC at threonine 58 (T58)
promotes degradation of MYC (Sears et al., 2000). The dually
phosphorylated form of MYC, with both S62 and
T58 phosphorylation, is recognized by the phosphatase PP2A
which removes S62 phosphorylation, and this event primes the
recruitment of an E3 ubiquitin ligase called FBW7 (F-box/WD
repeat-containing protein 7). FBW7 recognizes phosphorylated
MYC and facilitates its ubiquitination, marking it for
proteasomal degradation (Sears et al., 2000; Yeh et al., 2004;
Arnold and Sears, 2006). However, this long-standing model for
MYC degradation has been countered by a recent finding, where
authors show phosphorylation of S62 does not stabilize MYC by
preventing FBW7 from binding to it (Welcker et al., 2022).
Instead, it enhances the interaction between MYC and FBW7,
leading to degradation of MYC. Furthermore, a previously
unknown dephosphorylated degron at residues T244/T248 was
identified that also promotes MYC binding to FBW7. This
additional degron acts alongside the T58/S62 phosphorylation
to regulate MYC protein levels (Figure 3) (Welcker et al., 2022).
This finding supports that stabilizing effects of pS62 may be
independent of FBW7 binding (Vaseva et al., 2018) and highlight
the complexity of MYC regulation and suggest that
S62 phosphorylation has multiple roles beyond FBW7 binding,
influencing MYC stability and function. BRD4 also regulates
MYC levels by both degradation and transcriptional activation
of MYC (Figure 3) (Devaiah et al., 2020). Given the significant
impact of MYC levels on cellular behavior, it is crucial to
understand the underlying mechanistic processes and how
MYC levels are regulated. These questions remain a subject of
intense investigation.
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Approaches to tackle MYC

MYC is elevated in most cancers and several other
pathological conditions, and so has been proposed as a drug
target for decades. However, due to MYC being a general
transcription amplifier in both normal and cancerous cells,
directly targeting it has proven challenging. Further, MYC has
“undruggable characteristics” such as the absence of an
enzymatic pocket for small molecules to bind, and its
predominantly nuclear localization hinders antibody access.
Recent promising studies highlighted that partial depletion or
inhibition of MYC may be sufficient for treatment of MYC-
dependent cancers and other diseases (Hofmann et al., 2015;
Wang et al., 2021). The current approaches to tackle MYC-
dependent pathogenesis fall into various categories such as
downregulating MYC at the transcriptional or post-
transcriptional levels, and hindrance of MYC-MAX interaction.

There are many approaches to inhibit MYC at the
transcription level. Inhibitors like QN-1, a difluoro-substituted
quinoxaline, APTO-253, a selective p21 inducer, and CX-3543,
quarfloxin, are G-quadruplex stabilizers. These inhibitors
specifically stabilize the G-quadruplex at the MYC promoter
and in turn repress MYC expression (Cercek et al., 2015;
Local et al., 2018; Hu et al., 2019; Paul et al., 2020). Although,
APTO-253 was in clinical trial for acute myeloid leukemia and
high-risk myelodysplastic syndrome, it was terminated due to it
lack efficacy in a phase 1. MYC expression can be targeted by
inhibiting factors that activate MYC transcription, such as
DDX5, BRD4, and SWI/SNF. DDX5 has been shown to
activate MYC transcription by resolving G-quadruplex
formation at the MYC promoter (Wu et al., 2019), thus
inhibiting DDX5 might have a favorable effect on MYC-
dependent diseases. Inhibitors like AZD5153, GSK525762,
JQ1, and dBET1 repress MYC expression by targeting BRD4
(Wang et al., 2021). Brg1, an ATPase subunit of SWI/SNF
positively regulates MYC expression by binding to an
enhancer region of MYC (Shi et al., 2013). Knockdown of
Brg1 or its inhibition with an ATPase inhibitor
BRM014 disrupts the BENC enhancer cluster and represses
MYC expression (Shi et al., 2013; Bahr et al., 2018; Rago et al.,
2022; Chambers et al., 2023). These results promise continued
development of SWI/SNF inhibitors in the treatment of MYC-
dependent cancers and other diseases.

Another approach is to target MYC protein by direct binding-
ligands. Despite, MYC lacking a precise ligand binding pocket, a recent
study has emphasized the effectiveness of covalent ligand compounds
that target IDR regions of MYC. For instance, EN4 is a compound that
primarily interacts with cysteine (C171) within the IDR region of MYC,
thereby reducing the thermal stability of MYC-MAX dimerization and
subsequently its function (Boike et al., 2021). MYC functions have been
indirectly challenged by targeting MYC- MAX heterodimerization. KI-
MS2-008 is a drug that stabilizes theMAXhomodimer to preventMYC-
MAX interaction (Struntz et al., 2019). Similarly, Omomyc (bHLH-zip
domain of MYC with 4 mutations) binds to MYC bHLH-zip domain
and prevents its interactions. MYCi975 is a small molecule inhibitor,
which binds MYC directly to disrupt MYC-MAX interaction and
increases the proteasomal degradation of MYC, and thus leads to
decreased tumor growth (Han et al., 2019; Truica et al., 2021).

Further, MYCi975 alters the binding of MYC as well as MYC
network proteins like MAX to chromatin (Holmes et al., 2022).
While the prospect of disrupting the MYC-MAX heterodimer, either
by dismantling it or occupying the binding interface between the two
proteins, holds promise as an alternative strategy for targeting MYC, it is
important to note that the complete inhibition of MYC function by
dimerization inhibition could have adverse effects on normal cells.
Therefore, another approach could be the targeting of the MYC-
partners that mediate its function. Recently, a specific TFIIS
N-terminal domains (TNDs) and unstructured TND-interacting
motifs (TIMs) binary interaction module has been established, and
this module is conserved for many transcription factors including
PP1-PNUTS5 (Cermakova et al., 2021; Cermakova et al., 2023).
MYC protein is stabilized by the PP1 phosphatase and its regulatory
subunit PNUTS. It has been shown that PNUTS interacts withMB0, and
controls MYC phosphorylation, chromatin eviction, and MYC
degradation. Disrupting the PNUTS-MYC interaction would enhance
MYC degradation (Wei et al., 2022). This could be a new avenue to
explore to limit MYC function and MYC-dependent pathological
activity.

Future perspective

MYC protein is a crucial transcription regulator that plays a
central role in regulating gene expression in different cellular
situations. Its capacity to amplify transcriptional responses
contributes to the precise control of cellular processes and the
maintenance of a balanced state within cells. It is not known
whether MYC exerts its pathological action from an
augmentation of its normal transcription amplifier role or
whether MYC neopathologic functions are elicited at
supraphysiological levels. It is important to understand
mechanistically how MYC regulates different kinetic steps of
transcription by all three RNAPs. A deeper understanding of the
mechanisms through which MYC amplifies transcription, and the
factors that influence this process in physiological and pathological
conditions will enhance our knowledge of gene regulation and offer
valuable insights for developing targeted therapeutic approaches for
MYC-related disorders.
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