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Dendritic cells (DCs) are the most powerful antigen presenting cells (APCs), they
are considered one of the key regulatory factors in the liver immune system. There
is currently much interest in modulating DC function to improve transplant
immune response. In liver transplantation, DCs participate in both the
promotion and inhibition of the alloreponse by adopting different phenotypes
and function. Thus, in this review, we discussed the origin, maturation, migration
and pathological effects of several DC subsets, including the conventional DC
(cDC), plasmacytoid DC (pDC) and monocyte-derived DC (Mo-DC) in liver
transplantation, and we summarized the roles of these DC subsets in liver
transplant rejection and tolerance. In addition, we also outlined the latest
progress in DC-based related treatment regimens. Overall, our discussion
provides a beneficial resource for better understanding the biology of DCs and
their manipulation to improve the immune adaptability of patients in transplant
status.
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1 Introduction

In the early 1970 s, Ralph Steinman and others discovered a morphologically and
functionally distinct, previously uncharacterized population of cells in their experiments.
They called the cells “dendritic cell” (DC) due to their “stellate” or “dendritic” morphology
(Steinman and Cohn, 1973). In the liver, DCs are preferentially found in the periportal and
pericentral space (Rahman and Aloman, 2013; Eckert et al., 2015). They account for about
1% of non-parenchymal cells and are related to innate and adaptive immunity by promoting
and regulating T cell immunity, which are considered to be one of the key regulators in liver
immune system (Hsu et al., 2007; Thomson et al., 2020; Bošnjak et al., 2022). DCs
continuously flow into the liver from the blood, and circulating DCs are recruited to the
hepatic sinusoids by hepatic Kupffer cells in a c-type lectin-dependent manner (Kudo et al.,
1997; Uwatoku et al., 2001). Liver normally contains more interstitial dendritic cells than
other parenchymal organs (Steptoe et al., 2000), which may be the result of the pathogen
associated molecular pattern (PAMP) in portal blood.

Liver transplantation is the most effective treatment for various end-stage liver diseases.
The liver is an immune preferential organ (Demetris et al., 2016). In addition to patients
undergoing transplantation for autoimmune liver diseases (such as primary cholangitis,
primary sclerosing cholangitis, and autoimmune hepatitis), clinically more than 30% of
patients can get rid of the use of immunosuppressant (IS) and achieve a state of immune
tolerance (Clavien et al., 2017). In liver transplantation, DCs participate in both the
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promotion and inhibition of the alloreponse by adopting different
phenotypes and function. Here, we discussed the origin, maturation,
migration and pathological effects of several DC subsets, including
the conventional DC (cDC), plasmacytoid DC (pDC) and
monocyte-derived DC (Mo-DC), and we summarized the roles of
these DC subsets in liver transplant rejection and tolerance. In
addition, we also outlined the latest progress in DC-based related
treatment regimens.

2 The characteristics of DC

2.1 The subgroups of DC

According to the current novel, ontogenetic, and functionally
relevant simplified classification system, DCs are classified into cDC,
pDC, Mo-DC, and Langerhans cell (LC) (Satpathy et al., 2012). cDC
can be further divided into two subsets: conventional DC type 1
(cDC1) and conventional DC type 2 (cDC2). cDC can maintain
immune homeostasis, simultaneously rapidly respond to local
damage, and initiate and guide innate and adaptive immunity
(Cabeza-Cabrerizo et al., 2021). pDC act as both innate antiviral
effectors and inducers and regulators of adaptive immunity
(Fonteneau et al., 2003), regulating the induction and/or
maintenance of tolerance to hematopoietic stem cells (HSCs) or
allogeneic organ grafts (Rogers et al., 2013). Mo-DC is considered to
be the main inflammatory cell type during infection (Geissmann
et al., 2003; Serbina et al., 2003). Monocytes differentiate into Mo-
DC during inflammation or infection, which cooperate with cDC to
induce T cell-mediated immune responses (Bošnjak et al., 2022).

Traditionally, LC has been considered a DC population in the
epidermis (Schuler and Steinman, 1985; Romani et al., 1989;
Wilson and Villadangos, 2004). Therefore, this article will focus
on cDC, pDC, and Mo-DC.

2.2 DC development

Human and mouse DC develop from progenitor cells in the
bone marrow and then differentiate into distinct subpopulations
that are spread across multiple tissues (Durai and Murphy, 2016;
Guilliams et al., 2016). HSCs in bone marrow can give rise to
granulocytes, monocytes, and DC progenitor cell (GMDP), which
in turn give rise to monocyte and macrophage DC progenitor cell
(MDP). They give rise to a common DC progenitor (CDP) and a
common monocyte progenitor (cMoP) (Fogg et al., 2006; Hettinger
et al., 2013). CDP produces classical/conventional DC precursor cell
(pre-cDC) and pDC, both cDC1 and cDC2 are derived from pre-
cDC and can be found in blood and bone marrow. cMoP produces
monocytes in the bone marrow, then enters the peripheral blood,
enters the tissue during inflammation or infection and further
differentiates into Mo-DC (Hettinger et al., 2013; Que et al.,
2020). The development of DC is depicted in Figure 1.

2.3 Markers for DC identification

DC subsets differ in the expression of surface markers and
transcription factors (Table 1). Mouse cDC could be divided into
two subsets: cDC1 was identified as lineage (Lin)− major

FIGURE 1
Origin and development of dendritic cells. HSC, hematopoietic stem cells; MDP, monocyte-macrophage DC progenitor; CDP, common dendritic
cell progenitor; CLP, common lymphoid progenitor; cMoP, common monocyte progenitors; Mo-DC, monocyte-derived DC.
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histocompatibility complex Class II (MHC-II)+cluster of
differentiation (CD)11c+CD103+CD11b−. cDC2 was identified as
Lin−MHC-II+CD11c+CD103−CD11b+. Human cDC can be
subdivided based on the expression of CD1c+ [also known as
blood dendritic cell antigen (BDCA)1] and CD141+ (BDCA3)
(Haniffa et al., 2012; Guilliams et al., 2014; Pulendran, 2015).
CD141+ cDC differentiate and mature under the influence of INF
regulatory factor 8 (IRF8), express XC-chemokine receptor 1
(XCR1)+, C-type lectin domain containing 9A (CLEC9A)+ and B-
and T-lymphocyte attenuator 4 (BTLA4)+, secrete interleukin 12
(IL-12) to promote T helper 1 cell (Th1) differentiation, and also
cross-present intracellular antigens (Murphy et al., 2016), these
functions are similar to those of cDC1 in mice. CD1c+ cDC
differentiate and mature under the influence of IRF4, express
high levels of CD1b+, CD14+, and signal-regulatory protein alpha
(SIRPα)+, and may further differentiate through Krüppel-like factor
4 (KLF4) to promote T helper 2 cell (Th2) differentiation or Notch
signaling pathway to promote IL-23, thereby contributing to T
helper 17 cell (Th17) differentiation. These functions are similar
to those of cDC2 in mice.

The phenotype of mouse pDC was identified as MHC-
IIintCD11cintB220+lymphocyte antigen 6 (Ly6)C+ bone marrow
stromal antigen (BST)2+Sialic acid-binding immunoglobulin-type
lectin (Siglec)-H+ (Colonna et al., 2004). The phenotype of human
pDC was identified as human leukocyte antigen–DR isotype (HLA-
DR)+CD11c−CD4+ BDCA2+BDCA4+CD123+ (Liu, 2005). Like pDC
in mice, human pDC also can secrete type I interferon (IFN-I) and
initiate antiviral immunity (Haniffa et al., 2012). The development
of pDC depends on FMS-like tyrosine kinase 3 (FLT3) and its ligand
FMS-like tyrosine kinase 3 ligand (FLT3L) (Schmid et al., 2010), and
macrophage colony-stimulating factor (M-CSF) may also support
the generation of pDC (Fancke et al., 2008). Transcription factor 4
(TCF4)(E2-2), IRF8, B-cell lymphoma/leukemia 11A (BCL11A),
Zinc finger E-box-binding homeobox 2 (ZEB2), and Spi-B play
important roles in the development and maintenance of the pDC
phenotype (Reizis, 2019).

The phenotype of mouse Mo-DC was identified as MHC-
II+CD11c+CD11b+CD64intLy6Cint C-C chemokine receptor 2
(CCR2)+CD209+ (Schlitzer et al., 2015; Menezes et al., 2016). The
phenotype of human Mo-DC was identified as HLA-

DR+CD11c+CD14intCD206+CD1c+ (Segura et al., 2013; Tang-
Huau and Segura, 2019). Monocyte differentiation into Mo-DC
depends on some key regulators, such as PU.1, IRF4, aryl
hydrocarbon receptor (AHR), nuclear receptor 4A3 (NR4A3),
and nuclear receptor co-repressor 2 (NCOR2) (Lehtonen et al.,
2005; Briseño et al., 2016; Menezes et al., 2016; Goudot et al., 2017;
Sander et al., 2017; Boulet et al., 2019).

2.4 DC migration and activating T cells

2.4.1 DC migration
A study (Lämmermann et al., 2008) used live cell imaging

devices to directly observe the movement of DC sensing and
entering afferent lymphatic vessels through wide-field microscopy
in amouse ear skin explant model. DCmigrationmainly depends on
two chemokines: C-C motif ligand 19 (CCL19) and CCL21
(Lämmermann et al., 2008). The chemokine CCL21 is
constitutively expressed by lymphatic endothelial cells (LECs)
(Saeki et al., 1999; Russo et al., 2016), while its corresponding
chemokine receptor CCR7 is induced in mature DC (Sallusto
et al., 1998). They are expressed in LECs and lymph node T cell
regions and bind to CCR7, which is upregulated on DC after
activation (Förster et al., 1999). After approaching the lymphatic
vessel, DCs dock with the lymphatic endothelium and enter the
lumen. The docking and transport process is mediated by the
interaction between lymphatic vessel endothelial hyaluronan
receptor 1 (LYVE-1) on the LECs and the hyaluronic acid
coating on the surface of the DC bound and organized by CD44
(Johnson et al., 2017; Johnson et al., 2021). Some researchers have
used an intravital microscope (IVM) to prove that Rho-associated
protein kinase (ROCK) is involved in the process of DC crawling
and overall migration in lymph (Nitschké et al., 2012). After entering
the initial lymphatic vessels, DCs use lamellipodia to crawl along the
lymphatic endothelium and enter downstream by sensing lymphatic
flow, and once DCs reach the collecting vessels, they begin to drift
freely in lymphocytes (Tal et al., 2011). In vivo studies in mice, two-
photon microscopy showed that after mature DC entered the lymph
node parenchyma, there was a strong directional migration of DC to
the T cell area, which was dependent on the expression of CCR7

TABLE 1 Human and mouse DC subsets with markers and transcription factors.

DC subset Development, growth
and transcription factors

Surface markers
mouse

Surface markers human References

Conventional
DC1

FLT3L, GM-CSF, IRF8, ID2,
NFIL3, BATF3

Lin−MHC-II+ CD11c+

CD103+ CD11b− XCR1+

CLEC9A+

Lin− HLA-DR+ BDCA3/CD141+

XCR1+ CLEC9A+ BTLA4+
Bachem et al. (2010), Crozat et al. (2010), Edelson
et al. (2010), Poulin et al. (2012), Merad et al.
(2013), Guilliams et al. (2016), Anderson et al.

(2018)

Conventional
DC2

FLT3L, GM- CSF, IRF4, Notch2 Lin− MHC-II+ CD11b+

CD11c+ CD103- SIRPα+
Lin− HLA-DR+ BDCA1/CD1c+

SIRPα+ XCR1- CLEC9A-

Lewis et al. (2011), Merad et al. (2013), Satpathy
et al. (2013), Yin et al. (2021)

Plasmacytoid
DC

FLT3L, M-CSF, TCF4(E2-2),
IRF8, BCL11A, ZEB2, Spi-B

MHC-IIint CD11cint B220+

Ly6C+ BST2+ SiglecH+

HLA-DR+ CD11c− CD4+

BDCA2/CD303+

BDCA4CD304+ CD123+

Colonna et al., 2004; Liu (2005), Cisse et al. (2008),
Grajkowska et al. (2017), Reizis (2019)

Monocyte-
derived DC

GM-CSF or IL-4 PU.1, IRF4,
AHR, NR4A3, NCOR2

MHC-II+ CD11C+ CD11b+

CD64int Ly6Cint CCR2+

CD209+

HLA-DR+ CD11c+ CD14int

CD206+ CD1c+
Lehtonen et al. (2005), Segura et al. (2013),
Schlitzer et al. (2015), Briseño et al. (2016),

Menezes et al. (2016), Goudot et al. (2017), Sander
et al. (2017), Boulet et al. (2019), Tang-Huau and

Segura (2019)
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(Braun et al., 2011), and possibly depend on the presence of CCL21
(Schumann et al., 2010). LECs, derived from the top of the
subcapsular sinus (SCS) of lymph nodes, express atypical
chemokine receptor 4 (ACKR4), which is a clearance receptor for
CCR7 ligands and a few other chemokines. By scavenging
CCR7 ligands in the SCS lumen, CCL21 gradients are actively
created and drive DC exit from SCS into the lymph node
parenchyma (Ulvmar et al., 2014). Imaging of these
compartments revealed that ACKR4-expressing LECs create a
chemokine gradient through local clearance of CCL19 and
CCL21, which triggers directional DC migration (Ulvmar et al.,
2014). Within lymph nodes, DCs process and present exogenous
peptides in MHC I and II, and these MHC-peptide complexes are
recognized by CD8+ T cells and CD4+ T cells through T cell
receptors, respectively (Corse et al., 2011).

DCsmigrate to the liver from the lymphatic or blood circulation.
After entering the liver, Kupffer cells selectively capture DCs and
transport them to the draining hepatic lymph nodes through the
liver sinus-lymph pathway (Matsuno et al., 1996; Kudo et al., 1997;
Matsuno and Ezaki, 2000). Blood-derived DCs are attracted by
CCL3 on Kupffer cells and extravasate from the endothelial pores of
liver sinus into the Disse space (Sato et al., 1998). The DCs then
migrate to the portal vein area through the CCR7-CCL21 system
and interact with T cells to create portal tract-associated lymphoid
tissue (PALT) (Yoneyama et al., 2001). IL-1 receptor antagonist (IL-
1RA), derived from hepatocytes, directly activates the IL-1 receptor
(IL-1R)/toll-like receptor (TLR) signaling pathway of activated DCs
to regulate this migration by inducing the expression of CCR7
(Iizasa et al., 2005).

2.4.2 Activating T cells
DC carrying antigen in lymph node T cell area can be effectively

scanned by naive T cells. When naive T cells encounter cognate
antigens in MHC-peptide complexes on the surface of DCs, naive
T cells are activated and begin to proliferate rapidly (Bošnjak et al.,
2022). The priming of T cells generated in lymph nodes occurs in
three distinct stages, which can be distinguished by contact time and
migration speed (Mempel et al., 2004; Miller et al., 2004). The first
stage occurs approximately 8 h after T cells enter the lymph nodes,
and the contact time between T cells and DCs are very short, usually
nomore than 30 min, and this stage is characterized by short contact
between T cells and many DCs, mainly around high endothelial
blood vessels. Chemokine CCL21 and intercellular adhesion
molecule 1 (ICAM-1) played an important role in their brief
contact (Bromley and Dustin, 2002; Friedman et al., 2006). The
second stage occurs between approximately 8 h and 24 h, and the
binding formed by T cells and DCs is stable and lasts for more than
1 h, and this stage is characterized by the formation of mature
synaptoid contact areas between T cells and DCs. Adhesion
molecules such as CD2 (Binder et al., 2020), lymphocyte function
associated 1 (LFA-1) and ICAM-1 (Bromley and Dustin, 2002), as
well as cytokines (Mempel et al., 2004) such as CD40L, IL-2 and
interferon gamma (IFN-γ) play a role in the formation of mature
synaptoid contact areas. The third stage occurs 24 h after the T cells
enter the lymph nodes, the T cells separate from the DC, and the
T cells rapidly migrate and proliferate, while continuing to make
short contact with the DC. Cytokines (Mempel et al., 2004) such as
CD40L, IL-2 and IFN-γ play a role in their short contact. The

scavenger molecule Clever-1 (also known as Stabilin-1 and FEEL-1)
expressed by LECs was shown to affect the migration of DC from the
skin to the draining lymph node (dLN), the maturation state of the
migrating DC and its ability to induce T-cell proliferation (Tadayon
et al., 2021). Moreover, DC contributes to creating a cytokine
environment (such as IL-10, IL-12, IL-17, IL-22, IL-23, IFN-I,
tumor necrosis factor [TNF]) that drives naive T cells to
differentiate into different types of effector T cells (Satpathy
et al., 2012).

2.5 DC subpopulations in liver homeostasis

In the liver under homeostasis, hepatic DCs account for
approximately 1% of the non-parenchymal hepatic cells and are
a diversified population of hepatic APCs linked to innate and
adaptive immunity and considered as key modulator of hepatic
immune system (Hsu et al., 2007). The conventional hepatic DCs
located at the periportal region and central veins, whereas the
plasmacytoid hepatic DCs are located within the liver
parenchyma (Jomantaite et al., 2004). The cDCs primarily serve
as APCs, aiding in the activation and regulation of hepatic immune
responses. The pDCs can generate a large amount of IFN-I [IFN-
alpha (IFN-α) and IFN-beta (IFN-β)], which are crucial in inhibiting
viral replication and promoting antiviral immune responses
(Villadangos and Young, 2008; Haniffa et al., 2012). Additionally,
pDCs can modulate the functions of other immune cells by
producing cytokines and chemical mediators, such as activating
NK cells and T cells (Brewitz et al., 2017). What’s more, Mo-DCs
play important roles in immune regulation, anti-inflammatory
effects, and immune surveillance in the liver homeostasis (León
et al., 2007; Mildner et al., 2013; Plantinga et al., 2013). They also
contribute to maintaining immune balance and protecting the liver
from infection and damage (Boyette et al., 2017; Wolf et al., 2019).

3 cDC in the liver transplantation
immune response

3.1 cDC in the liver transplant rejection

Acute cellular rejection (ACR) occurs in up to 30% of patients
within the first year after liver transplantation, and the occurrence of
ACR is associated with an increased risk of graft failure, graft failure-
related death, and all-cause death (Levitsky et al., 2017). ACR is
mainly a cellular immune response mediated by T cells after liver
transplantation. DCs, as the most important APCs in priming
T cells, they present allogeneic antigens to the cognate T-cell
receptor (TCR) to activate them, thus initiating cellular immune
responses (Yu et al., 2012; Ueta et al., 2021). Under homeostatic
conditions, hepatic DCs exhibit an immature/anti-inflammatory
phenotype, T cells are barely activated, and are less immunogenic
(Bamboat et al., 2009). However, after liver transplantation, DC
gradually matured under the stimulation of inflammatory factors
such as TNF alpha (TNF-α), IFN-β, IFN-γ, IL-6, and prostaglandin
E2 (PGE2). The mature DCs initiate immune responses by inducing
T cell proliferation and activation (Reis e Sousa, 2006). Mature DCs
are characterized by high expression of MHC-II molecules,
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costimulatory molecules (such as CD80, CD86 and CD40),
chemokine receptors (such as CCR7), adhesion molecules (such
as CD62L), and enhanced producing proinflammatory cytokines
(such as TNF- α, IL-12) (Penna et al., 2002; Steinman and
Banchereau, 2007; Colvin et al., 2008). The production of
proinflammatory cytokines due to ischemia-reperfusion injury
(IRI) during transplantation is considered to be a key factor
involved in the maturation of donor DCs and their migration to
recipient secondary lymphoid tissues (Lechler et al., 2001). After
transplantation, danger signals mediated by pattern recognition
receptors (PRRs) immediately activate DCs, leading to
maturation, upregulation of costimulatory molecules, secretion of
proinflammatory cytokines, and cytotoxicity (LaRosa et al., 2007).

After liver transplantation, the MHC-peptide complex on donor
DC is presented to the host T cells, inducing T cell activation to
initiate the immune response, which is a key step leading a donor-
direct alloresponse (Hughes et al., 2020; Ronca et al., 2020). It is
currently believed that there are three ways of allorecognition
(Duneton et al., 2022): the direct pathway is that the donor-
derived DC presents the donor MHC-antigen complex to the
recipient T cells, the indirect pathway is that the recipient DCs
capture donor antigen and present it to the recipient T cells, the
semi-direct pathway refers to the presentation of the intact donor
MHC I-antigen complex to recipient CD8+T cells in secondary
lymphoid organs by “cross-modifying” receptor-derived DCs (it
means that recipient DCs have acquired MHC-antigen complexes).

Extracellular vesicles (EVs) with the characteristics of exosomes
plays an important role in the semi-direct pathway (Liu et al., 2016;
Marino et al., 2016). Exosomes are 70–120 nm EV originated in the
endocytic compartment of living cells, which have been shown to
transfer proteins and RNAs between cells (Colombo et al., 2014;
Robbins and Morelli, 2014). The previous view was that acute graft
rejection was related to the migration of immunogenic passenger DCs
to recipient lymphoid tissues (Lechler et al., 2001), now the exosomes,
as a new mode of intercellular communication, have been shown to
participate in IRI and immune regulation early after organ
transplantation (Liu et al., 2016; Zheng et al., 2018; Hughes et al., 2020).

3.2 cDC in the liver transplant tolerance

In addition to initiating immune responses, cDC also plays a role
in inducing and preserving immune tolerance. Lutz et al. suggested
that cDC that induces tolerance is in a semi-mature state, while the
induction of T cell responses requires complete DC maturation
(Lutz and Schuler, 2002). DCs have been shown to be essential for
maintaining central and peripheral tolerance through immune bias,
inducing T cell weakness, promoting T cell apoptosis, and inducing
regulatory T cells (Tregs) (Baroja-Mazo et al., 2016). Allogeneic
organ transplantation can produce high frequency of allogeneic
T cells, and the loss of donor reactive T cells is the key to induce
transplantation tolerance. DCs can eliminate donor reactive T cells
by inhibiting signaling or producing apoptotic factors (Lu et al.,
1994; Süss and Shortman, 1996; Lu et al., 1999).

In the liver microenvironment, the promotion of tolerance by
cDCs may be associated with hepatic stellate cells, which activate
multiple immunosuppressive circuits in cDCs by secreting cytokines
and chemokines (such as IL-6, CCL2, and CCL3) and all trans

retinoic acid (ATRA) (Bhatt et al., 2014). These cytokines and
chemokines activate the signal transducer and activator of
transcription 3 (STAT3) signaling pathway in cDCs and promote
apoptosis elimination and tolerance induction of effector T cells by
upregulating indoleamine 2,3-dioxygenase (IDO) in a programmed
death-ligand 1 (PD-L1)-independent manner (Sumpter et al., 2012).
IDO inhibits effector T cells and supports Treg cells by decomposing
tryptophan, leading to local tryptophan deficiency and secretion of
kynurenine (Mellor et al., 2002; Favre et al., 2010; Higashitani et al.,
2013). In addition, ATRA can induce arginase 1 (ARG1) and
inducible nitric oxide synthase (iNOS) in cDCs, and both
arginine catabolism and nitric oxide (NO) secretion can inhibit
T cells (Bhatt et al., 2014).

Under homeostatic conditions, mouse and human hepatic DCs
are tolerant (Rastellini et al., 1995; Thomson and Lu, 1999; Bamboat
et al., 2009). Compared with DCs from extrahepatic tissues, hepatic
DCs exhibit an immature phenotype with low expression of MHC-II
and costimulatory molecules (Lu et al., 1994), and they exhibit lower
endocytic capacity and are poor stimulators of T cells (Lukacs-Kornek
and Schuppan, 2013). In addition, hepatic DCs also exert tolerance
through the production of anti-inflammatory PGE2, which can
upregulate IDO, enhance the secretion of IL-10 and induce the
generation of Tregs (Raïch-Regué et al., 2014). Graft infiltrated
host DCs expressed high levels of PD-L1, leading to depletion of
CD8+ T cells and induction of immune tolerance, suggesting that
hepatic DCs have a tolerogenic function after liver transplantation,
which was confirmed in a liver transplantation model (Ono et al.,
2018). Hepatic cDCs are also less mature in phenotype and function
than secondary lymphoid tissues DC. In vivo experiments in mice,
cDCs from the liver showed reduced ability to activate allogeneic naive
T cells (Pillarisetty et al., 2004; De Creus et al., 2005; Abe et al., 2006).
In addition, hepatic cDCs can also induce immune tolerance by
affecting the function of T cells. In mouse experiments, hepatic
cDCs were injected into allogeneic recipients and found to induce
IL-10 secretion of T cells (Khanna et al., 2000). Interestingly,
exosomes can also exhibit immunosuppressive effects to affect the
immunogenicity of allografts in liver transplantation (Mastoridis et al.,
2021). In this study, the cross-dressed sEVs (exosomes) showed the
ability to inhibit the proliferation of CD8+ T cells in liver
transplantation. In addition, DCs cocultured with exosomes from
liver transplant patients can induce lower costimulatory molecule
(CD40) expression, and produce less IL-6 and more IL-10, so they
have higher ability to induce DC inhibitory phenotype. In a mouse
liver transplantation model (Ono et al., 2018), graft infiltrating DCs
cross-dressed by donor exosomes expressed high levels of PD-L1 and
significantly inhibited the proliferation of donor reactive CD8+ T cells
by inducing an exhaustion phenotype. In another rat model of liver
transplantation (Ma et al., 2016), exosomes derived from immature
DCs have been shown to amplify Tregs and prevent acute rejection.

4 pDC in the liver transplantation
immune response

4.1 pDC in the liver transplant rejection

It is well known that pDCs can rapidly secrete large amounts of
IFN-I in response to viral infection. In addition to secreting IFN-I,
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pDCs can express MHC-II molecules and costimulatory molecules
CD40, CD80, and CD86, and can present antigens to CD4+ T cells,
although not as effective as cDCs (Villadangos and Young, 2008;
Reizis et al., 2011). Furthermore, pDCs can also regulate the survival
of natural killer (NK) cells, DCs and macrophages through IFN-I,
and expand CD4+ T cells and CD8+ T cells (Cervantes-Barragan
et al., 2012; Brewitz et al., 2017). pDCs are considered to be a key
factor in allograft rejection, but the underlying mechanism is still
unclear. Ruben et al. demonstrated that pDC is an effective APC that
can coordinate alloimmune responses and may play a key role in
inducing chronic rejection in kidney transplantation (Ruben et al.,
2018). The role of pDCs in solid organ rejection remain elusive.
Experimental transplantation models have demonstrated that pDCs
have the ability to present alloantigen (Björck et al., 2005; Ochando
et al., 2006; Koyama et al., 2009). Another study showed that there
was a large influx of pDCs in the renal tubulointerstitium at the time
of rejection compared with the renal biopsy at the time of
transplantation (Zuidwijk et al., 2012). In mice liver
transplantation, if the donor is injected with FLT3L before
transplantation to stimulate the generation of hepatic DCs
(Drakes et al., 1997; Kingham et al., 2007), acute allograft
rejection will occur in mice receiving liver transplantation
without immunosuppression (Steptoe et al., 1997). This may be
due to the fact that both cDCs (Steptoe et al., 1997) and pDCs
(Kingham et al., 2007) mobilized by FLT3L increased the expression
of CD80, CD86 and MHC-II molecules and enhanced the
stimulatory ability of allogeneic T cells compared with normal
hepatic DCs.

4.2 pDC in the liver transplant tolerance

Like cDCs, pDCs exhibit dual functions of immunogenicity and
tolerance based on receptor connectivity and activation status. pDCs
act as both innate antiviral immune effectors and inducers and
regulators of adaptive immunity (Fonteneau et al., 2003), including
hepatic T cell responses (Swiecki and Colonna, 2010). They drive the
development of natural Tregs (Martín-Gayo et al., 2010), induce and
maintain antigen-specific Tregs (Moseman et al., 2004; Palomares
et al., 2012). Compared with lymphoid tissue pDCs, donor derived
hepatic pDCs express high levels of DNAX-activating protein of
12 kDa (DAP12), triggering receptor expressed on myeloid cells 2
(TREM2) and a high proportion of T cell coinhibitory molecule PD-
L1: costimulatory molecule CD80/86, which can attenuate graft
infiltrating T effector cell responses, enhance forkhead box P3
(FOXP3)+Treg, and promote spontaneous tolerance of liver
allograft in mice (Nakano et al., 2021). Compared with spleen-
derived pDCs, mouse liver-derived pDCs exhibit an immature
phenotype and lower levels of IL-12p70 secretion, and therefore,
they exhibit reduced ability to present antigens or activate T cells
(Kingham et al., 2007; Tokita et al., 2008). In addition, compared
with spleen pDCs, liver pDCs secrete lower levels of IFN-I after
cytosine phosphate guanosine (CpG) stimulation (Castellaneta et al.,
2009), which can be explained by their relatively high expression of
nucleotide-binding oligomerization domain-containing protein 2
(NOD2), a member of the nucleotide-binding oligomerization
domain-like receptor (NLR) family. NOD2 can inhibit DC
maturation and its ability to induce the proliferation of allogeneic

T cells by inhibiting TLR signaling (Manicassamy and Pulendran,
2011). NOD2 can also interfere with TLR4 and TLR9 signaling
pathways in pDCs through its ligands, but not in cDCs, resulting in
decreased secretion of pro-inflammatory cytokines (IL-6, IL-12p70,
TNF-α, and IFN-γ) (Castellaneta et al., 2009). What’s more,
NOD2 ligation upregulated the coinhibitory PD-L1 expression on
pDCs, resulting in its reduced ability to stimulate T cell proliferation
(Castellaneta et al., 2009). pDCs promote tolerance in vivo by
inducing energy deficiency or deletion of circulating T cells
(Thomson and Knolle, 2010). Studies have shown that pDCs can
induce the expression of IL-10 in Tregs, as well as release IFN-I
(IFN-α/β) and IDO to attenuate the activation of allogeneic T cells
(Cella et al., 1999; Munn et al., 2004; Ito et al., 2007). IDO has been
shown to skew the development of naive CD4+ T cells toward the
Treg lineage (Fallarino et al., 2006), which relies on cell-cell contact
mediated mechanisms (Sharma et al., 2007). The expression of
highly inducible co-stimulator ligand (ICOS-L) endows mature
pDC with the ability to suppress effector T cells and increase IL-
10-producing Treg cells (Campana et al., 2015).

5 Mo-DC in the liver transplantation
immune response

Monocytes can be divided into two main types in mice and
humans (Auffray et al., 2007; Yona et al., 2013; Guilliams et al.,
2018): classical or inflammatory monocytes (Ly6ChiCX3CR1int in
mice and CD14hiCD16- in human), nonclassical or patrolling
monocytes (Ly6ClowCX3CR1hi in mice and CD14lowCD16+ in
human). At steady state, classical monocytes are stored in the
bone marrow and other extramedullary sites, such as the spleen
(Wolf et al., 2019). They can maintain the stability of tissue-resident
macrophages in multiple organs, as well as the conversion to
nonclassical monocytes (Guilliams et al., 2018). During infection
and inflammation, classical or inflammatory monocytes can
immediately deploy to infected or injured tissues to control
infection, limit inflammatory damage and initiate tissue repair by
producing macrophages or Mo-DCs (Boyette et al., 2017; Wolf et al.,
2019). Nonclassical or patrolling monocytes are characterized by
patrolling the circulation, clearing cellular debris and repairing the
endothelium in homeostasis (Hanna et al., 2011; Carlin et al., 2013).

Most of our knowledge about Mo-DC comes from infection
models. Under inflammatory conditions, classical monocyte-
derived DC can become a large population that complements the
range of steady-state DCs (Serbina et al., 2003; Le Borgne et al., 2006;
León et al., 2007). Mo-DCs upregulate CD11c and MHC-II, but
generally retain expression of monocyte markers such as Ly6C,
Ly6B, CD64 (León et al., 2007; Rosas et al., 2010; Plantinga et al.,
2013). They mediate effector functions through the production of
Th1 cytokines TNF-α and IL-12, as well as direct cytotoxicity
through NO production (Serbina et al., 2003; León et al., 2007;
Goldszmid et al., 2012; Plantinga et al., 2013). In addition, Mo-DCs
have phagocytic activity and the ability to process antigens,
participating in the initiation of naive T cells or the reactivation
of antigen experienced T cells (Mildner et al., 2013). Furthermore, it
has been found in some tumor studies that the presence ofMo-DC is
associated with the activation of CD8+ T cells and treatment success
in some tumors (Rich et al., 2012; Kuhn et al., 2013;
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Kuhn et al., 2015). Mo-DC based vaccination also plays a role in
various malignant tumors (Frankenberger et al., 2005; Javed et al.,
2016; Van den Bergh et al., 2017).

Unlike classical monocytes, which play a major role in the site of
inflammation (Serbina et al., 2003), nonclassical monocytes play a
major role in sterile inflammation (for instance, in atherosclerotic
plaques (Tacke et al., 2007)). In organ transplantation, the
synergistic effect of allogeneic non-self and sterile inflammation
may trigger the differentiation of nonclassical monocytes into DCs
(Zhuang et al., 2016), nonclassical monocyte-derived DCs may also
arise in the context of transplanted organs and may be involved in
inducing allograft rejection (Chow et al., 2016). In a study of heart
and kidney transplantation in mice, it was found that donor DCs
would be rapidly replaced by recipient DCs after transplantation.
Recipient nonclassical monocyte derived DCs played an important
role in rejection by promoting the proliferation and survival of
effector T cells in the graft (Zhuang et al., 2016). In another
experimental study in mice, Mo-DCs was rapidly recruited after
experimental heart and kidney transplantation, allogeneic grafts
elicited persistent differentiation of monocytes to mature DCs
that express IL-12, stimulate T cell proliferation and IFN-γ
production, and precipitate graft rejection (Oberbarnscheidt
et al., 2014). Similarly, Zecher et al. injected allogeneic
splenocytes into the ear pinnae of recombination activating gene
(RAG)−/− mice, resulting in significantly greater skin swelling and
infiltration by host bone marrow cells compared with injection of
syngeneic splenocytes. This response is mediated by Gr-1 (Ly6C)int

monocytes, suggesting that they are able to discriminate between self
and nonself tissue to initiate effector responses (Zecher et al., 2009).
In another study, it was also observed that intravenous injection of
allogeneic splenocytes in mice could stimulate the rapid (within
1 day) accumulation of splenic Mo-DCs more than syngeneic
splenocytes or nothing injection. These findings suggest that
(Chow et al., 2016) Mo-DCs have a potentially important role in
responding to allogeneic stimuli, such as those occurring in the
context of organ transplantation. In addition, in mouse pancreas
transplantation, Mo-DCs can impair the early graft function after
islet allograft transplantation, and the graft function of recipients
with Mo-DC removed is improved as early as the first day after
transplantation, which strongly suggests that Mo-DCs can
participate in the early injury of islet allografts (Chow et al.,
2017). In an experimental study of bone marrow transplantation
(Asiedu et al., 2002), non-human primate (NHP) mature Mo-DCs
can be genetically engineered as an alloantigen specific cellular
immunosuppressant, which has the potential to promote the
induction of allograft tolerance in vivo. What’s more, In a recent
study (Lee et al., 2021), due to the relatively simple culture process
and more efficient Treg expansion capacity of stimulated mature
Mo-DCs, they may be a viable alternative for producing alloreactive
Tregs for clinical use. But until recently, experimental research on
Mo-DC in liver transplantation was extremely rare. In a study of
human liver transplantation (Shariat et al., 2014), researchers found
that compared with healthy individuals, the gene expression of IL-12
and TLR2 secreted by Mo-DCs in liver transplant patients were
significantly increased. Signaling through TLR2 can induce DCs to
mature in a myeloid differentiation primary response 88 (MyD88)
dependent or independent manner, ultimately leading to the release
of proinflammatory cytokines (Chinen and Buckley, 2010). In

addition, the increase of TLR2 and TLR4 levels can also be used
for the early prediction of acute rejection after liver transplantation
(Deng et al., 2007). IL-12 can induce the development and
inflammatory process of Th1 cells in transplanted patients
(Goriely and Goldman, 2008), which may contribute to the
occurrence of liver transplantation rejection. Overall, although
the role of Mo-DC in infection and inflammation has been
increasingly understood, their special role in organ
transplantation, especially in the case of liver transplantation, still
needs more research to explore.

6 The latest progress of DC based
treatment

The use of donor or host-derived tolerogenic dendritic cell (Tol-
DC) or in situ targeted DC for cell therapy to promote its tolerance is
an emerging method to reduce the use of systemic IS in transplant
patients and promote donor-specific tolerance (Ochando and Braza,
2017; Marín et al., 2018). Tol-DC refers to some DCs that can inhibit
immune responses, including immature DC (imDC), regulatory DC
(DCreg), maturation resistant or alternatively activated DC (Morelli
and Thomson, 2007). Tol-DCs are characterized by low expression
of MHC-II and co-stimulatory molecules CD80/CD86 and CD40,
high expression of anti-inflammatory cytokines such as IL-10 and
transforming growth factor beta (TGF-β), and low expression of
pro-inflammatory cytokines such as IL-12p70 (Maldonado and von
Andrian, 2010; Marín et al., 2018). In addition, Tol-DCs also have
low antigen-presenting function and participate in immune
tolerance by inducing reactive T cell weakness and apoptosis
(Choo et al., 2017; Spiering et al., 2019). Tol-DC has been
extensively studied in preclinical models and is very effective in
limiting autoimmune diseases (Hilkens et al., 2010) or allograft
rejection in transplantation (Ochando et al., 2020; Chen et al., 2023).

Extensive studies in rodent and NHP models have shown that
adoptively transferred regulatory immune cells can promote
transplant tolerance. DCreg is an important candidate for
adoptive cell therapy in organ transplantation (Moreau et al.,
2017; Thomson et al., 2019), which can suppress T cell
responses by inducing T cell weakness or apoptosis (Lu et al.,
1997; Lu and Thomson, 2002; Zahorchak et al., 2018). What’s
more, DCregs also have the potential to retain, expand or induce
Treg (Morelli and Thomson, 2007; Huang et al., 2010; Raker et al.,
2015). DCregs were generated in granulocyte-macrophage colony-
stimulating factor (GM-CSF) and IL-4 from rodent and human
bone marrow precursor cells or human circulating blood
monocytes in vitro (Zahorchak et al., 2023). In the culture of
DCreg, one or more agents, cytokines or growth factors or genetic
engineering (Bonham et al., 2002) methods are added to inhibit
DC maturation and enhance its tolerance (Hackstein and
Thomson, 2004). These agents include immunomodulatory
drugs [such as vitamin D3 (VitD3), corticosteroids, rapamycin,
cyclosporine, tacrolimus, and aspirin], cytokines or growth factors
[such as hepatocyte growth factor (HGF), vasoactive intestinal
peptide (VIP), thymic stromal lymphopoietin, PGE2, IL-10, and
TGF- β] (Raker et al., 2015; Thomson et al., 2019). However, there
is still no consensus on the best protocol for generating
clinical-grade human DCreg (Navarro-Barriuso et al., 2018;
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Thomson et al., 2019). DCreg infusion improves the incidence of
safe withdrawal of IS and operational tolerance in human liver
transplantation (Thomson et al., 2019). The safety, feasibility and
potential efficacy of autologous DCreg infusion has been
confirmed in the treatment of various diseases, including type-1
diabetes, rheumatoid arthritis, Crohn’s colitis, multiple sclerosis
(Giannoukakis et al., 2011; Jauregui-Amezaga et al., 2015; Bell
et al., 2017; Zubizarreta et al., 2019). Studies have described the
rationale for the first human trial of donor-derived DCreg injected
before living donor liver transplantation (LDLT) in combination
with triple IS (steroid hormones, mycophenolate mofetil and
tacrolimus) to promote operational tolerance (Zahorchak et al.,
2018). In another study (Macedo et al., 2021), infusion of donor
monocyte-derived DCregs in the first 7 days of LDLT can induce
changes in host APC, memory CD8+T cell and Treg, which may be
beneficial to regulate immune reactivity during transplantation,
thereby promoting operational tolerance. In the latest study of

manufacturing GMP grade DCreg for 27 liver transplant recipients
(Zahorchak et al., 2023), under GMP conditions, circulating
monocytes can easily produce high-purity DCreg that meets a
series of quality standards to attain the target cell number injected
into potential organ transplant recipients (Figure 2). Two clinical
trials of DCreg in liver transplantation (NCT03164265 and
NCT04208919) are ongoing to evaluate the safety and efficacy
of donor derived DCreg in LDLT through a single infusion. The
registered clinical trials targeting DC in transplantation are shown
in Table 2.

What’s more, a recent study have used the optimization of
physical and chemical properties of nanoparticles to design DC
targeted nanomedicines for immune tolerance in organ
transplantation and autoimmune diseases (Cifuentes-Rius et al.,
2021). Targeting specific receptors on DC using nanomedicines
not only helps to enhance absorption, but also has the ability of
antigen cross presentation, thereby promoting peripheral tolerance.

FIGURE 2
The culture of DCreg. Donor-derived monocytes are resuspended in DC culture media consisting of serum-free DC medium, 5% human serum
albumin, HEPES, and L-glutamine. GM-CSF, IL-4 and VitD3 are added on days 0 and 4. IL-10 is also added on day 4. On day 6, culturemedia is replenished
with DCmedia supplemented with GM-CSF and IL-4. DCreg products are harvested on day 7. Before infusion, DCreg products are subjected to rigorous
quality control testing to ensure purity, sterility, yield and viability.

TABLE 2 Registered clinical trials targeting DC in liver or kidney transplantation.

Cell type Conditions Intervention/treatment Trial id Status

Autologous tolerogenic dendritic
cell

living donor renal
transplantation

Autologous tol-DC treatment occurs the day before transplantation into
recipients also recipients of a living donor renal transplantation

NCT02252055 Completed

Donor blood monocyte-derived
regulatory dendritic cell

living donor renal
transplantation

single infusion of donor-derived DCreg 1 week before living donor renal
transplantation

NCT03726307 Recruiting

Donor blood monocyte-derived
regulatory dendritic cell

living donor liver
transplantation

single infusion of donor-derived DCreg 1 week prior to the initiation of
immunosuppression weaning

NCT04208919 Active, not
recruiting

Donor blood monocyte-derived
regulatory dendritic cell

living donor liver
transplantation

single infusion of donor-derived DCreg 1 week before living donor liver
transplantation

NCT03164265 Active, not
recruiting
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Despite its great potential, this method is still in its infancy, and its
persistence, safety, and complexity related to the immune system
and multiple mechanisms may limit the development of this
method.

7 Conclusion and future prospects

In this article, we described the subgroups, development,
phenotype, migration and function of DC, and the roles of these
DC subsets, including cDC, pDC, and Mo-DC in liver transplant
rejection and tolerance. During rejection, cDC plays an important
role in the initiation of immune rejection by presenting donor
antigens. pDC, as a weaker APC, cannot be overlooked as they
also enhance the stimulation ability of allogeneic T cells by
expressing MHC-II molecules and costimulatory molecules. Now,
increasingly evidence suggested the Mo-DC is the major mediator to
activate alloreactive T cell in the graft, but their role in liver
transplantation is not fully revealed. In the future, more effort is
needed to explore the role of Mo-DC in alloresponse in the liver
allograft.

By adopting an immature phenotype, both cDC and pDC
can promote T cell apoptosis and generate Tregs to promote
immune tolerance. Adoptive transfer of the DCreg or Tol-DC
exhibiting immature phenotype induces tolerance, but the best
clinical grade DCreg or Tol-DC production scheme is still
needed.

In conclusion, these discussions provide useful resources for
better understanding the biology of DC and improving the immune
adaptability of transplant patients by manipulating DC.
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