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Triggering receptor expressed on myeloid cells 2 (TREM2), a pattern recognition
receptor abundantly expressed on microglia, has been identified as one of the risk
factors for Alzheimer’s disease (AD). Several studies have already demonstrated
the relationship between TREM2 and Tau. TREM2 mutations and altered
expression play an important role in Tau phosphorylation. Furthermore, the
level of Tau phosphorylation is correlated with soluble TREM2 (sTREM2).
However, in different stages of AD, TREM2 seems to have varying effects on
Tau pathology. The explicit interaction between TREM2 and Tau, as well as how
they affect AD pathology, remains unclear, and there is much evidence to the
contrary that requires rational interpretation. Reviewing the dual roles of TREM2 in
AD will help identify a more appropriate development strategy for targeting
TREM2 to treat AD. Therefore, this review focuses on the interplay between
Tau and TREM2 in relation to AD.
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1 Introduction

Alzheimer’s disease (AD), a major cause of dementia, is characterized by the
accumulation of amyloid-β peptide (Aβ), as well as the aggregation of
hyperphosphorylated Tau protein (Wilson et al., 2023). The triggering receptor
expressed on myeloid cells 2 (TREM2), a transmembrane receptor abundantly expressed
on microglia, has been identified as one of the risk factors for AD (Hashioka et al., 2020).
Studies have shown that mutations and polymorphisms of the TREM2 gene are associated
with a significant increase in the risk of AD (Jonsson et al., 2013; Cuyvers and Sleegers, 2016).
In particular, the R47H variant is associated with a decrease in the number of receptors and
loss of function (Guerreiro et al., 2013; Gussago et al., 2019; Sayed et al., 2021). Additionally,
soluble TREM2 (sTREM2) is a potential AD biomarker (Brosseron et al., 2020) and can be
detected in cerebrospinal fluid (CSF) in both healthy individuals and AD patients (Carmona
et al., 2018), elevated sTREM2 levels noted in the CSF of AD patients (Yang et al., 2020).
Moreover, apolipoprotein E (ApoE), TAR DNA-binding protein 43 (TDP-43), and other
proteins closely associated with AD serve as ligands for TREM2 (Atagi et al., 2015; Xie et al.,
2022).

Studies have found that the lack of TREM2 increases the hyperphosphorylation and
aggregation of Tau and induces activation of microglia in the h-Tau mouse model as well
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(Bemiller et al., 2017). In P301S mice (an animal model of tau
pathology), TREM2 overexpression promotes a corresponding
increase in the protein levels of pro-inflammatory factors tumor
necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6
(IL-6), transforming microglia into M2 type and then inhibiting
neuroinflammation, partly by weakening the effect of tau kinase,
that is, reducing the activity of Tau kinase GSK3β and CDK5 (the
activity of PP2A remains unchanged) and reducing the
phosphorylation level of Tau, thereby alleviating Tau pathology
and playing a neuroprotective effect (Jiang et al., 2016). Similarly, in
a mouse model of TREM2 haploinsufficiency, TREM2 deficiency
can exacerbate Tau pathology (Sayed et al., 2018). However, it has
also been shown that TREM2 deficiency attenuates
neuroinflammation and prevents neurodegeneration in a mouse
model of tauopathies (Leyns et al., 2017). Additionally, long-term
chronic activation of TREM2 may exacerbate Aβ-induced Tau
pathology (Jain et al., 2023).

Although it has been generally understood that TREM2 plays an
important role in the pathogenesis of AD, the relationship between
TREM2 and the phosphorylation of Tau protein remains
controversial. Recent studies investigating the effects of activating
antibodies against TREM2 in AD have encountered obstacles (Jain
et al., 2023; van Lengerich et al., 2023). Therefore, there is an urgent
need to explore the specific mechanisms linking TREM2 and Tau
in AD.

2 TREM2 and it’s main ligands

TREM2 is comprised of three parts: the extracellular domain,
transmembrane domain, and intracellular domain (Qin et al., 2021).
Among these domains, the extracellular domain can bind to related
ligands. TREM2 has a variety of ligands, mainly free negatively
charged molecules bound to the plasma membrane (Kober and
Brett, 2017), such as heat shock protein 60 (Hsp60) (Stefano et al.,
2009), ApoE (Atagi et al., 2015), Aβ (Zhao et al., 2018), galectin-3
(gal3) (Boza-Serrano et al., 2019), sphingosine-1-phosphate (S1P)
(Xue et al., 2022) and TDP-43 (Xie et al., 2022), among others
(Table 1). Recent studies have also shown that TREM2 can prevent
complement-mediated synapse loss by binding to complement C1q
(Zhong et al., 2023). The TREM2-APOE pathway is an important
mediator in regulating the functional phenotype of microglia, and
TREM2 deficiency may lock microglia in homeostasis and hinder
the defense function of microglia (Krasemann et al., 2017). Disease-

associated microglia (DAM) activation occurs in two stages, the first
stage is TREM2-independent, and the second stage is TREM2-
dependent. This finding supports that the loss of Trem2 in
microglia in the late stage of AD but not in the early stage will
aggravate the disease manifestations, which has certain significance
for grasping the timing of AD treatment (Keren-Shaul et al., 2017).
In addition, another study has found that in non-demented
individuals at risk for AD, higher concentrations of disease-
associated microglia stage 2 (DAM2) are associated with reduced
tau aggregation and alleviated cognitive decline, indicating that
activation of microglia to DAM2 can delay the progression of
AD (Pereira et al., 2022).

Most of these ligands are markers of tissue damage. In the
physiological state, the activity of TREM2 is limited to specific
tissues, while in the pathological state, the TREM2 signaling
pathway becomes an important immune signaling hub for
sensing tissue damage (Deczkowska et al., 2020).

After binding to the ligand, TREM2 mainly recruits tyrosine-
protein kinase SYK and phosphatidylinositol 3-kinase (PI3K)
through its intracellular adaptors DAP12 and DAP10,
respectively (DAP12 to SYK, DAP10 to PI3K). This transmits
signals into the cell to enable microglia to play roles related to
proliferation, phagocytosis, and inflammation (Ulland and Colonna,
2018).

3 TREM2 is a potential AD biomarker

Because TREM2 can recognize a variety of ligands closely
related to AD and is one of the key regulators of microglial
phenotype switching, it plays an important role in the
progression of neuroinflammation (Tamburini et al., 2023).
Therefore, TREM2 has been extensively studied as a potential
AD biomarker. Some studies have found that TREM2 promotes
non-inflammatory neuron phagocytosis (Wang and Weaver,
2022), which is different from others who believe that
TREM2 acts on neuroinflammation by regulating microglial
activation. The full-length TREM2 protein will be cleaved by a
disintegrin and metalloproteinase (ADAM), among others, to
produce soluble TREM2 (sTREM2). AD variants, specifically
rs7922621, are potent variants among other designated variants
that control the expression of TSPAN14 (which promotes
ADAM10 maturation and trafficking to the cell surface) in the
same Candidate cis-regulatory elements (cCREs), exhibiting

TABLE 1 TREM2 and it’s main ligands.

Ligand Main results Ref

Hsp60 Binding of TREM2 to Hsp60 exposed at the surface of cells closely interacting with microglia Stefano et al. (2009)

ApoE ApoE-TREM2 interaction in microglia plays critical roles in modulating phagocytosis of ApoE-bound apoptotic neurons Atagi et al. (2015)

Aβ TREM2 as a microglial Aβ receptor transducing physiological and AD-related pathological effects associated with Aβ Zhao et al. (2018)

gal3 Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in AD Boza-Serrano et al. (2019)

S1P Sphingosine-1-phosphate, a novel TREM2 ligand, promotes microglial phagocytosis to protect against ischemic brain injury Xue et al. (2022)

TDP-43 TREM2 interacts with TDP-43 and mediates microglial neuroprotection against TDP-43-related neurodegeneration Xie et al. (2022)

C1q TREM2 receptor protects against complement-mediated synaptic loss by binding to complement C1q during neurodegeneration Zhong et al. (2023)
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reduced ADAM10 on the microglia surface and shedding of
sTREM2. H1-differentiated microglia-like cells with the
rs7922621 risk allele (A/C) had lower levels of cell surface
ADAM10 compared with isogenic microglia homozygous for
the non-risk allele (Yang et al., 2023). sTREM2 may be used as
a bait receptor to competitively bind with the TREM2 ligand,
which can weaken the effect of TREM2, thus leading to nerve
injury or protection (Piccio et al., 2008; Zhong et al., 2017).
Although the endogenous function of sTREM2 itself is not very
clear, it serves as a marker of the TREM2 signaling pathway
(Morenas-Rodríguez et al., 2022). sTREM2 can be detected in
the CSF in healthy individuals and AD patients (Carmona et al.,
2018), while the level of sTREM2 in the CSF of AD patients is
higher (Yang et al., 2020). Existing studies show that this
association with AD is reflected in the CSF rather than plasma
(Piccio et al., 2016). sTREM2 in plasma may be associated with
other diseases, such as white matter lesions (Tsai et al., 2021).
Although sTREM2 can serve as a potential biomarker for AD,
sTREM2 levels alone may not be sufficient for an accurate
diagnosis of AD, and sTREM2 in CSF is complexly associated
with other AD biomarkers (Tamburini et al., 2023). Studies have
shown that the levels of sTREM2 are positively correlated with the
levels of classical CSF markers total Tau (t-Tau) and
phosphorylated-Tau (p-Tau), but not with the concentration of
CSF Aβ42 (Heslegrave et al., 2016; Piccio et al., 2016). Furthermore,
individuals with different TREM2 gene variants also have different
levels of sTREM2 in the CSF. Individuals with variants associated
with autosomal recessive early-onset dementia show lower levels of
CSF sTREM2. In contrast, R47H carriers have significantly higher
sTREM2 levels in the CSF than non-carriers (Piccio et al., 2016).

Additionally, it’s worth noting that there is a certain relationship
between sTREM2 and the progression of AD. Studies show that very
early Aβ seeding triggers the production of sTREM2 even before
amyloid PET imaging detects any Aβ plaque deposition (Morenas-
Rodríguez et al., 2022). This may subsequently manifest as
inflammatory hyperglucose metabolism and may contribute to
subsequent increases in p-Tau181 in the earliest stages of AD
(Biel et al., 2023). Furthermore, sTREM2 may serve as a potential
predictive biomarker for the conversion of mild cognitive
impairment (MCI) to AD (Zhao et al., 2022a).

4 Effects of TREM2 mutations and
altered expression on Tau
phosphorylation

TREM2 and microglia play important roles in limiting the
development of Tau pathology around plaques. Studies have
shown that reduced TREM2 signaling can decrease the response
of microglia to pathological Tau (Lee et al., 2021b), and to some
extent, reduce the ability of microglia to promote Tau diffusion (Lee-
Gosselin et al., 2023). However, it has also been shown that the loss
of Trem2 can enhance Tau diffusion through microglial exosomes
(Zhu et al., 2022). Moreover, partial or normal function of
TREM2 can cause Tau disease and Tau-mediated damage,
whereas complete loss of function can reduce Tau-mediated
brain damage (Gratuze et al., 2018). Similar to the effect of the
TREM2 R47H variant, TREM2 deletion can also prevent P301Smice

from atrophy and reduce inflammation, while in the Tau
TREM2 haploinsufficiency mouse model, TREM2 deficiency can
exacerbate Tau pathology (Jiang et al., 2015; Sayed et al., 2018).
However, in the presence of Aβ pathology, the absence of
TREM2 will further aggravate the accumulation and spread of
Tau, and promote brain atrophy. This effect may be related to
the process of TREM2 reducing Aβ itself to promote Tau pathology
(Lee et al., 2021a). Notably, there is a complex interplay between
ApoE4 and TREM2, and TREM2 deficiency further exacerbates
neurodegeneration in Tau mutant mice expressing human ApoE4
(Gratuze et al., 2023). Additionally, TREM2 loss-of-function
increases amyloid seeding but reduces plaque-associated ApoE
(Parhizkar et al., 2019).

Mutations and polymorphisms of the TREM2 gene are
associated with a significant increase in the risk of AD (Jonsson
et al., 2013; Cuyvers and Sleegers, 2016), but it will not increase the
risk of Amyotrophic Lateral Sclerosis (ALS) and PD (Zhang et al.,
2020). Among the various variants, the R47H variant is particularly
noteworthy (Sayed et al., 2021) Moreover, experiments have found
that the CSF sTREM2 level in carriers of R47H variants is
significantly higher than that in non-carriers (Deming et al.,
2019). The concentration of t-Tau and p-Tau in the CSF of
patients with p.Arg47His was significantly higher than that in
patients without p.Arg47His (Carmona et al., 2018). Additionally,
silencing TREM2 in the brains of P301S mice significantly increases
the activity of GSK-3β and CDK5, both of which are important
factors in Tau hyperphosphorylation (Ballatore et al., 2007; Jiang
et al., 2016; Singh et al., 2019).

These findings emphasize the crucial role of TREM2 in the
pathogenesis of AD, especially its complex interplay with Tau, which
is extensively discussed and studied in relation to AD. The
development of anti-AD drugs targeting TREM2 warrants
attention and further investigation.

4.1 TREM2 variants

TREM2 variants are risk factors for AD and other
neurodegenerative diseases (NDDs), and diverse type of
TREM2 variants are associated with different NDD risk (Jay
et al., 2017b). Variants such as R47H, R62H, or H157Y are more
susceptible to AD (Zhou et al., 2019; Li et al., 2021). The most
prominent and well-studied of these is the R47H variant, which has
been shown to increase AD risk nearly threefold (Guerreiro et al.,
2013). The R47H variant is associated with a reduction in the
number of receptors, loss of function, and potentially an earlier
onset of AD (Li et al., 2021). However, it’s contradictory that another
study found that the R47H variant was strongly associated with late-
onset AD, showing an effect size similar to that of ApoE4 in
Drosophila melanogaster (Sekiya et al., 2018; Hashioka et al.,
2020). Furthermore, the R47H variant may exert neuroprotective
effects by reducing brain atrophy, synapse loss, Tau
phosphorylation, microglial activation, and phagocytosis of
postsynaptic elements in P301S mice. Impaired TREM2 signaling
reduces microglia-mediated neurodegeneration in tauopathies
(Gratuze et al., 2020). Interestingly, the knockout of TREM2 or
TREM2 R47H in APP/PS1 mice reduced microglial proliferation
around Aβ plaques and promoted Tau seeding and spreading. These
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results suggest that TREM2 and its mutations exhibit distinct effects
on Tau in the presence and absence of Aβ (Leyns et al., 2019).

The role of TREM2 may depend on Aβ pathology and the stage
of the disease (Figure 1). TREM2 lies at the critical intersection of Aβ
and Tau pathology (Leyns et al., 2019). In the early stages, the R47H
variant can reduce the proliferation of microglia around senile
plaques, thereby increasing their numbers and promoting the
spread of Tau (Gratuze et al., 2020; Perea et al., 2020). In
contrast, in the advanced later stages of the disease, when Tau
pathology is evident, this variant attenuates the loss of Tau-
dependent synapses by reducing the phagocytosis of microglia
(Gratuze et al., 2020; Perea et al., 2020). Does this mean that in
the early stages of AD, when Tau pathology is not as evident, the
R47H variant reduces the maturation of TREM2, preventing the
shedding of ADAM protease, which creates more sTREM2? A large
amount of sTREM2 weakens the phagocytic activity of cells
expressing TREM2, thereby reducing microglial expression. As
AD progresses, the microglial barrier around neurofibrillary
tangles (NFTs) breaks, releasing Tau and promoting its spread.
Furthermore, the increasing amount of Tau will decrease the
phagocytic activity of microglia, further exacerbating the spread
of Tau. Additionally, the decrease in TREM2 will activate GSK-3β
and CDK5, generating more p-Tau and forming a vicious cycle.

4.2 Expression of TREM2 and dual roles of
TREM2 in AD

In some research related to TREM2 and microglia in AD,
microglia and TREM2 appear to play contradictory roles in the
pathogenesis of AD. Microglia, like a double-edged sword in AD, on
the one hand, gather around NFTs in the brains of AD patients,

engulf Aβ (Hickman et al., 2008), Tau (Luo et al., 2015), and
abnormal synapses (Hansen et al., 2018), thereby exerting a
neuroprotective effect. On the other hand, they produce
proinflammatory mediators such as IL-1β, IL-6, and TNF-α,
contributing to neurodegenerative changes in AD (Griffin et al.,
1998; Paganelli et al., 2002; Uslu et al., 2012). Moreover, treatment
strategies that regulate microglial metabolism programs have
demonstrated neuroprotective effects, reducing amyloid and Tau
load, and improving cognitive deficits (Fairley et al., 2021). As for
TREM2, the role of TREM2 in tau pathology in early and late stages
of AD disease seems contradictory what have mentioned previously.
Well, study shows that some effects of TREM2 on Aβ pathology may
be disease-stage-dependent, too (Jay et al., 2017a). Additionally,
sTREM2 levels are elevated in the early stages of AD patients’ CSF,
and these levels are positively correlated with the levels of classic CSF
markers t-Tau and p-Tau (Yang et al., 2020), but are unrelated to Aβ
or ApoE4 status or gender (Knapskog et al., 2020).

Similarly, the expression of TREM2 also plays a controversial
role in the development of AD. AD mice deficient in
TREM2 showed both an increase (Wang et al., 2015) and a
decrease (Jay et al., 2015) in the number of hyperphosphorylated
Tau markers around the plaque. In APP/PS1 mice, upregulation of
TREM2 can inhibit GSK-3β, the major kinase involved in Tau
hyperphosphorylation in AD, by activating the PI3K/Akt
signaling pathway, thereby inhibiting the phosphorylation of Tau
protein, and has similar effects in SH-SY5Y cells (Peng et al., 2023).
In BV2 cells, TREM2 can inhibit LPS-mediated neuronal apoptosis
by downregulating inducible iNOS (M1) and upregulating Arg-1
expression in BV2 microglia (Ni et al., 2022). Another study found
that LP17, the synthetic peptide blocker of TREM1, inhibited 6-
hydroxydopamine-induced locomotor defects and iNOS messenger
RNA expression in rat and zebrafish PD models (Feng et al., 2019).

FIGURE 1
A simplified schematic diagram representing in the different stages of AD, TREM2 have varying effects on Tau pathology.
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In terms of activating TREM2 to restore microglial activity, AL002 is
a humanized monoclonal IgG1 antibody that can bind to the
TREM2 microglial receptor and activate signaling, increase the
phosphorylation of the TREM2 downstream effector Syk, and
induce microglia. Glial cell proliferation. In in vivo studies,
activation of TREM2 by AL002 reverses amyloid, promotes
microglia recruitment, and improves neurological function
(Wang and Weaver, 2022). In a TBI mouse model established by
controlled cortical shock (CCI), the TREM2 agonist
COG1410 alleviated neural damage by activating the Akt/CREB/
BDNF signaling axis in microglia after CCI, and improved the
neurobehavior and neurobehavior of mice after CCI Brain
electrophysiological activity (Yan et al., 2022). Similarly,
activating TREM2 can improve neurological function after
intracerebral-hemorrhage (ICH) and reduce neuroinflammation
and neuronal apoptosis through the GSK-3β-PI3K/Akt pathway
(Chen et al., 2020). In aged TgF344-AD rats, levels of
phosphorylated Tau and the Tau kinase Akt3 were significantly
increased, while TREM2 was reduced (Bac et al., 2023).

TREM2 exhibits varying effects—protective or nerve-
damaging—depending on the context. It may also damage
neurons in the following ways: 1. The TREM2 R47H variant
promotes the seeding and spreading of Tau aggregates in nerve
plaques (Wang et al., 2016). 2. TREM2 deficiency prevents microglia
from aggregating around Aβ deposits, causing senile plaques to
spread more and thus increasing neuronal damage (Griciuc and
Tanzi, 2021). This raises questions about the diversity of functions of
TREM2 and microglia, which may be closely related to the TREM2-
DAP12 pathway, TREM2 mutations, and other factors. Regional
specificity of TREM2 expression in a postmortem analysis of
primarily non-Hispanic whites, where cortical TREM2 levels were
positively associated with AD diagnosis, cognitive decline, and
amyloid beta neuropathology, and caudal TREM2 Levels are
inversely related to AD neuropathology, indicating that the
association of trem2 with Tau burden may depend on disease
status (Winfree et al., 2023).

There is also controversy surrounding targeting TREM2 for AD
treatment. Studies have shown that TREM2-activating antibodies
have favorable effects in enhancing microglial migration and
phagocytosis towards amyloid plaques, reducing endogenous Tau
hyperphosphorylation, and improving cognitive function (Zhao et al.,
2022b). However, it has also been shown that sustained activation of
microglia via TREM2, without robust amyloid removal, may
exacerbate Aβ-induced Tau pathology (Jain et al., 2023). Therefore,
we should exercise caution in considering the activation or inhibition
of TREM2 in research and the development of anti-AD drugs.

5 TREM2 and other neurodegenerative
diseases

Besides its strong association with AD, TREM2 also exerts a
significant impact on other neurodegenerative conditions. Since the
earliest discovery that the DAP12/TREM2 signaling pathway in
human microglia and osteoclasts is associated with NHD (Bianchin
et al., 2004; Kaneko et al., 2010). It has been found that
TREM2 mutations not only a risk factor for AD, but also for
FTD, PD, and ALS (Ogonowski et al., 2023), but so far, no

definite conclusion has been drawn. Frontotemporal dementia, an
insidious neurodegenerative clinical syndrome, is a common type of
dementia characterized by progressive impairment of behavior,
executive function, and language (Bang et al., 2015). In a meta-
analysis, rs75932628 was confirmed to be associated with FTD
susceptibility, while, it was not significantly associated with PD
when not divided into races, but in distinguishing North American
and European subgroups rs75932628 was significantly associated
with PD risk in North America. However, the relationship between
SNP and Europeans was not statistically significant, but the meta-
analysis included limited samples, which may have certain
limitations (Zhou et al., 2019). In 2013, a correlation between
p. Arg47His and Parkinson’s disease risk was identified (Bird,
2013). In the TREM2 research analysis of PD blood and CSF, it
was found that tau protein positive group levels were associated with
sTREM2. Another study found that sTREM2 in CSF had no
significant difference between the healthy group and PD patients,
but it had a certain effect on predicting cognitive decline in PD. So,
they speculated that CSF sTREM2might be a promising predictor of
cognitive decline in PD, but not a diagnostic biomarker (Qin et al.,
2022). Despite numerous studies suggesting that TREM2 plays a
significant role in the pathogenesis of neurodegenerative diseases,
the exact mechanisms and causative relationships between
TREM2 and these diseases remain unclear. As a result, further
in-depth research is urgently needed to fully understand the
biological processes involved in TREM2-related neurodegeneration.

6 Conclusion

Over time, studies have focused on the roles of TREM2 variants
in regulating microglial responses to Aβ deposition and Tau
pathology. However, there are still some shortcomings in current
research on TREM2 in the pathogenesis of AD, including: 1. Limited
understanding of the underlying mechanisms: although TREM2 has
been identified as an important player in the pathogenesis of AD, the
exact mechanisms by which it contributes to the disease process are
not yet fully understood. 2. Lack of clear causal relationships:
although TREM2 has been shown to be associated with an
increased risk of AD, it is not yet clear whether this association
is causal or simply a marker of disease severity. 3. Variability in
findings: some studies have reported conflicting results regarding
the role of TREM2 in AD, making it difficult to draw definitive
conclusions. 4. Limited clinical implications: despite the promising
findings on TREM2, there are currently no approved therapeutic
agents targeting this protein, limiting its clinical usefulness.

In our review, we concluded that the effects of Tau pathology
and TREM2 on AD and their recent links may provide directions for
future treatment-related targets and research. For the future, many
questions remain that require further investigation, such as: 1. Is it
possible to reduce the production of sTREM2 by promoting the
shedding of ADAM, thereby reducing Tau seeding and spreading? 2.
Given the complexity of the role of TREM2 in Tau, choosing the
appropriate subtype or indication for the development of drugs
targeting TREM2 for AD treatment will be a significant challenge.
Addressing these issues will enhance our understanding of the
TREM2 signaling pathway in AD and aid in the development of
new treatment strategies. More studies with adequate follow-up are
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needed to further evaluate these findings and elucidate the
underlying mechanisms.
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