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Introduction: Mathematical model can be used to model complex biological
processes, and have shown potential in describing apoptosis in chondrocytes.

Method: In order to investigate the regulatory mechanisms of TNF signaling
pathway in regulating chondrocyte apoptosis, a fractional-order differential
equation model is proposed to describe the dynamic behavior and mutual
interaction of apoptosis-related genes under the activation of TNF signaling
pathway. Compared with the traditional molecular biology techniques, the
proposed mathematical modeling has advantages to providing a more
comprehensive understanding of the regulatory mechanisms of TNF signaling
pathway in chondrocyte apoptosis.

Result: In this paper, differentially expressed genes induced by IL-1β in human
chondrocyte apoptosis are screened using high-throughput sequencing. It is
found that they were significantly enriched in the TNF signaling pathway.
Therefore, a mathematical model of the TNF signaling pathway is built. Using
real-time PCR experiments, mRNA data is measured and used to identify the
model parameters, as well as the correlation coefficient. Finally, the sensitivity of
the model parameters is discussed by using numerical simulation methods, which
can be used to predict the effects of different interventions and explore the
optimal intervention strategies for regulating chondrocyte apoptosis.

Discussion: Therefore, fractional-order differential equation modeling plays an
important role in understanding the regulatory mechanisms of TNF signaling
pathway in chondrocyte apoptosis and its potential clinical applications.

KEYWORDS

chondrocyte apoptosis, TNF signal pathway, mathematical model, parameter estimate,
sensitive analysis

OPEN ACCESS

EDITED BY

Jin Liu,
Hong Kong Baptist University, Hong Kong
SAR, China

REVIEWED BY

Yongmei Su,
University of Science and Technology
Beijing, China
Wei Yang,
The University of Tokyo, Japan

*CORRESPONDENCE

Xiaojun Long,
11726067@zju.edu.cn

Xiuyun Su,
suxiuyun@sustech-hospital.com

Deshun Sun,
sun_deshun@hit.edu.cn

†These authors have contributed equally
to this work

RECEIVED 04 September 2023
ACCEPTED 12 October 2023
PUBLISHED 02 November 2023

CITATION

Wang Y, Liu J, Huang B, Long X, Su X and
Sun D (2023), Mathematical modeling
and application of IL-1β/TNF signaling
pathway in regulating
chondrocyte apoptosis.
Front. Cell Dev. Biol. 11:1288431.
doi: 10.3389/fcell.2023.1288431

COPYRIGHT

© 2023 Wang, Liu, Huang, Long, Su and
Sun. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Original Research
PUBLISHED 02 November 2023
DOI 10.3389/fcell.2023.1288431

https://www.frontiersin.org/articles/10.3389/fcell.2023.1288431/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1288431/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1288431/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1288431/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2023.1288431&domain=pdf&date_stamp=2023-11-02
mailto:11726067@zju.edu.cn
mailto:11726067@zju.edu.cn
mailto:suxiuyun@sustech-hospital.com
mailto:suxiuyun@sustech-hospital.com
mailto:sun_deshun@hit.edu.cn
mailto:sun_deshun@hit.edu.cn
https://doi.org/10.3389/fcell.2023.1288431
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2023.1288431


1 Introduction

Osteoarthritis (OA) is a chronic degenerative joint disease
characterized by articular cartilage destruction, subchondral bone
remodeling, osteophyte formation, and inflammatory changes in
periarticular tissues, which seriously affects the quality of life of
patients. According to statistics, the incidence of osteoarthritis is
50% in people over 50 years old, 80% in people over 60 years old, and
the disability rate is as high as 53% (Wang et al., 2019).
Osteoarthritis is the first chronic disease that causes disability in
adults, and it is also one of the most common diseases in the world
(Frank et al., 2015; Yuan et al., 2016). With the aggravation of
population aging in China, the prevalence of OA will show an
increasing trend, so the research on OA is becoming more and more
urgent. In the process of OA, the apoptosis of chondrocytes is the
main pathological feature of OA. Studies have found that the content
of IL-1β in OA patients is significantly increased. When the content
of IL-1β is increased, it will activate the TNF signaling pathway, and
TNF-α and IL-1β in the TNF signaling pathway can promote each
other to absorb and degrade articular cartilage, aggravating the
degree of OA. The higher the content of IL-1β, the more severe
the OA, and there is a positive correlation between them.

However, for the treatment of OA, the current goal is mainly to
relieve pain and improve joint function, and there is no specific drug.
Therefore, exploring an intervention that can effectively delay the
progress of OA and improve the OA condition in the early stage is
considered to be a very potential treatment strategy that can
effectively reduce the development process of OA patients (Yuan
et al., 2016). Studies have shown that chondrocyte apoptosis plays a
key role in the occurrence and development of osteoarthritis, and its
number is positively correlated with the severity of osteoarthritis
(Gu et al., 2016; Toshihisa, 2016). Therefore, preventing and
reducing chondrocyte apoptosis is an effective method for the
treatment of osteoarthritis (Zahoor et al., 2017).

The signal transduction pathway of chondrocyte apoptosis is
very complex, and the signal pathways involved mainly include TNF
signaling pathway (Wang et al., 2005; Qiu et al., 2007). MAPK
signaling pathway (Yoon and Kim, 2004; Ma and Ren, 2012; Gao
et al., 2014; Cai and Li, 2019; Liu et al., 2020), JAKS/STAT signaling
pathway (Li et al., 2016; Liu et al., 2016), Wnt/β-catenin signaling
pathway (Hu et al., 2019; Kalamakis et al., 2019; Liu et al., 2020) and
NF-κB signaling pathway (Rigoglou and Papavassiliou, 2013; Ji et al.,
2017; Zhao and Gong, 2019) are the hot topics at home and abroad.
Tumor necrosis factor-alpha (TNF-α) in the TNF signaling pathway
is a cytokine with pleiotropic biological effects. The biological effects
of TNF are triggered by two TNF receptors (TNFR) on the cell
surface, and its signal transduction pathways mainly include caspase
family-mediated apoptosis, adaptor protein TRAF-mediated
activation of transcription factor NF-κB and JNK protein kinase
(Wang et al., 2005). When TNF-α level is increased, JNK signaling
pathway is activated and starts to participate in chondrocyte
apoptosis, which also leads to a significant decrease in the
expression of apoptosis inhibitor protein Bcl-2 (Yoon and Kim,
2004). In addition, JNK is also involved in inhibiting the expression
of Sox-9 and blocking the apoptosis of chondrocytes induced by NO,
while SP600125, an inhibitor of JNK, can significantly inhibit the
pathological damage of cartilage (Gao et al., 2014), providing
another direction for the treatment of OA.

In the IL-1β-induced primary human chondrocytes, baicalin
downregulated the mRNA and protein expression of MMP1 and
MMP13, and promoted the expression of collagen type II and
Aggrecan. Baicalin significantly inhibits cartilage degradation in
DMM-induced OA mice, suggesting that breviscapine may be a
potential drug for OA treatment (Liu et al., 2020). In addition,
breviscapine inhibited the migration of β-catenin and the
phosphorylation of p38 into the nucleus, which is associated with
the regulation of MAPK signaling pathway.

Studies have found that (Hu et al., 2019), OA chondrocytes were
transfected with miR-320c and its inhibitor β-catenin-siRNA, and
the results suggested that MiR-320c was decreased and β-catenin
was increased in the late stage of OA chondrocytes formation.
Overexpression of miR-320c and knockdown of β-catenin had
similar effects on cartilage specific gene expression and
hypertrophy related gene expression in OA chondrocytes.
Injection of mmu-miR-320-3p attenuated OA progression in a
mouse model of OA, indicating that miR-320c inhibits
osteoarthritis chondrocytes degeneration by inhibiting the
canonical Wnt signaling pathway, and miR-320c has the
potential as a new drug for osteoarthritis treatment. Hu et al.
(2020) reported that pretreatment with Loureirin A significantly
inhibited IL-1β-induced production of NO, PGE2, COX-2, TNF-α,
iNOS, and IL-6 in mouse articular chondrocytes. In addition,
Loureirin A significantly inhibited IL-1β-mediated AKT
phosphorylation and NF-κB entry into the nucleus in
chondrocytes in signaling pathway studies; therefore, Loureirin A
may be a potential therapeutic candidate for OA. Wu et al. (2018)
found that after the activation of Notch signaling pathway by the
specific activator Jagged1 protein in rat knee joint, Bax protein was
upregulated and Bcl-2 protein was downregulated through the
apoptotic pathway, thereby promoting chondrocyte apoptosis and
aggravating OA. After the Notch signaling pathway was inhibited by
the injection of γ-secretase inhibitor DAPT (GSI-IX), the Bax
protein was downregulated and the Bcl-2 protein was
upregulated through the apoptotic pathway, thereby inhibiting
the apoptosis of chondrocytes and alleviating the development
of OA.

In summary, the signaling pathways involved in the regulation
of articular chondrocyte apoptosis are diverse and extremely
complex, but the most significant signaling pathway regulating
chondrocyte apoptosis is still unclear, and the most critical
signaling molecules in the signaling pathway are also unclear.
Therefore, it is urgent to screen the signaling pathways that most
significantly affect chondrocyte apoptosis and discover the most
critical signaling molecules in this signaling pathway. The
mathematical modeling of signaling pathways through high-
throughput sequencing is the key to solve the above problems.

Dynamic modeling and analysis of biological systems can
simplify the biological system into a mathematical model for
analysis and numerical simulation, thus replacing the actual
complex, long-term, expensive and even impossible experiments,
greatly improving the research efficiency, and studying the influence
of artificially imposed control conditions on the operation process of
biological systems. For example, infectious disease modeling (Sun
and Liu, 2017; Sun and Liu, 2018; Sun et al., 2020) and signaling
pathway modeling (Liu et al., 2017), etc. Kinetic modeling based on
signaling pathways by relevant scholars mainly includes:
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In 2003, Matsuno et al. (2003), based on the Notch signaling
pathway to regulate the formation mechanism of Drosophila large
intestine boundary cells, used Hybrid functional Petri net (HFPN)
for modeling. In 2009, Manu et al. (2009) used gene regulatory
networks to elucidate interactions between four target genes in the
early embryonic period. The equilibrium point, stability and
branching of the system were analyzed by using the dynamics
theory of ordinary differential equations. Based on the qualitative
characteristics of the dynamic system, the complex mechanism of
the channel formation and pattern formation of Drosophila germ
layer was further understood. Immediately following this,
Nakamasu et al. (2009) proposed a system of diffusion
differential equations with three factors. This model takes into
account cell spreading and computationally simulates models of
the wild-type pigment production mode as well as other models of
mutant production modes.

In the above study, although Manu et al. (2009) calculated the
equilibrium point, stability and Hopf branching, they only studied the
model theoretically and did not combine the experimental
phenomenon with the theoretical results. Although some progress
has been made in the system of diffusion differential equations with
three factors proposed by Nakamasu et al. (2009), it does not consider
that model organism development is susceptible to the influence of
external environment such as temperature, especially the interference of
random factors. In addition, fluctuations in the level of gene products
can generate noise at the molecular level, which not only affects the
accuracy of the signal gradient but also reduces the output of the target.
Fully considering the above reasons and current situation, the applicant
established a deterministic model of Drosophila large intestine border
cell formation relying on Delta-Notch signaling pathway (Liu et al.,
2017), and added white noise to study the effect of random factors on
Drosophila large intestine border cell formation. Themodel is as follows:

dDi

dt
� λ

1 + Δ · Ai
− d1Di − ∑

NG i( )
f1 ·Di, 1≤ i≤NC,

dNi

dt
� λN − d2Ni + ∑

j∈NG i( )
f2 ·Dj − aNi

bDi +Ni
,

dAi

dt
� −d3Ai + aNi

bDi +Ni
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Differential equation dynamics theory was used to study the
equilibrium point and its stability when the Delta gene was not
expressed and overexpressed. The different phenotypes of the
deterministic system are calculated by means of numerical
simulations, which are in good agreement with the experimental results.

In addition to the Notch signaling pathway mentioned above, in
2018, Frederik et al. established a corresponding mathematical
model based on the mechanism of WNT signaling pathway
regulating adult hippocampal nerves, and revealed age-related
changes in the nervous system of adult hippocampus (Ziebell
et al., 2018; Alahdal et al., 2021). In 2019, Georgios et al. used
mathematical kinetic modeling to study that inflammatory signaling
and WNT antagonist sFRP5 induce quiescent neural stem cells to
regulate the maintenance and regeneration ability of stem cells in the
aging brain (Kalamakis et al., 2019).

However, there are few studies on the mathematical modeling of
chondrocyte apoptosis based on signal pathways. Accurate
mathematical models can quantitatively analyze the mechanism

of each signal molecule in the signaling pathway regulating
chondrocyte apoptosis at the system level. Therefore, it is
particularly urgent to screen the signal pathways that most
significantly affect chondrocyte apoptosis, and to establish a
kinetic model of chondrocyte apoptosis regulated by this signal
pathway from the perspective of mathematical biology.

2 High-throughput sequencing and
enriched signaling pathway

Knee Human chondrocyte was collected from the Shenzhen
Second People’s Hospital (The First Affiliated Hospital of Shenzhen
University). Written informed consent was obtained from all
patients. The study has been approved by the Shenzhen Second
People’s Hospital (The First Affiliated Hospital of Shenzhen
University), China. The method to deal with the cartilage in
order to obtain the proper chondrocytes is as follows:

After scraping the cartilage tissue with a blade, rinse it three times
with physiological saline containing 3% PS. Use a two-step digestion
method to separate the articular chondrocytes. Transfer the cartilage
tissue to a sterile culture dish and wash it three times with PBS
containing 3% PS. Carefully remove any attached soft tissue or
synovial fluid, and use ophthalmic scissors to crush it into pieces
smaller than 1mm3. Transfer the crushed tissue to a new 50 mL
centrifuge tube and add 5 times the volume of 0.25% trypsin. Digest
for 20 min and then wash the remaining tissue three times with low
glucose DMEM medium. Add 5 times the volume of a solution
containing 0.2% type II collagenase and digest gently on a shaking
bed at 37°C for 4-5 times, 25 min each time. After each digestion, collect
the cells in the supernatant and culture the cells using low glucose
DMEM medium containing 20% fetal bovine serum.

In the early stage, normal chondrocytes were stimulated with IL-
1β at a concentration of 10 ng/mL. The results showed that
chondrocytes began to apoptosis at 6h, reached the peak at 18h,
and then the degree of apoptosis decreased (Figure 1).

Therefore, in this study, the experiments are divided into three
groups: 1) normal chondrocytes served as blank control, 2) normal
chondrocytes were stimulated with IL-1β (10 ng/mL) for 6 h, and 3)
normal chondrocytes were stimulated with IL-1β(10 ng/mL) for
18 h. The cells were collected and subjected to high-throughput
sequencing.

The results of sequencing showed that the significant difference
value was p = 3.21e-09 for TNF signaling pathway, p = 5.76e-05 for
NF-κβ signaling pathway, p = 1.23e-04 for Cytokine-cytokine
receptor interaction signaling pathway. The significant difference
value for T-cell receptor signaling was p = 1.77e-04. The detailed
results are shown in Table 1.

The results of the above high-throughput sequencing suggest
that the most significant signaling pathway regulating chondrocyte
apoptosis under IL-1β-stimulated conditions is the TNF signaling
pathway. Therefore, this project proposes a scientific hypothesis:
Through the mathematical modeling of IL-1β/TNF signaling
pathway screened by high-throughput sequencing, the regulatory
effect of signal molecules in the IL-1β/TNF signaling pathway on
chondrocyte apoptosis can be systematically analyzed, and new
targets for the treatment of osteoarthritis can be further explored
through the sensitivity analysis of parameters.
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3 Mathematical model

According to the signaling molecular transduction
mechanism of TNF signaling pathway regulating chondrocyte
apoptosis, we use differential equations to model the dynamics of
chondrocyte apoptosis. Firstly, the signal molecule transduction
map of TNF signaling pathway regulating chondrocyte apoptosis
was drawn by Portable Pathway Builder Tool 2.0 (as shown in
Figure 2).

Here, x1(t), x2(t), ..., xn(t) is utilized to denote the relative
concentrations of mRNA for each of the signaling molecule at
time t. The differential equation governing changes in signal
molecule concentration is expressed as follows.

dxi t( )
dt

� vi,production − vi,deg radation (2)

where vi,production and vi,deg radation denote the production and
degradation rates of the ith signaling molecule, respectively. The IL-
1β/TNF signaling pathway can be modeled as a system of differential
equations, with each signaling molecule’s dynamic changes represented
by its own equation. In this paper, the variables x1(t), x2(t), x3(t),
x4(t), x5(t), x6(t), x7(t), x8(t), x9(t), x10(t), x11(t), x12(t), x13(t),
x14(t), x15(t), x16(t), x17(t), x18(t) and x19(t) represents the relative
concentration of mRNA expressed by the signaling molecule IL-1β,
IRAK1/4, TNFα, TNFR1, TRADD, TRAF2/5, RIP1, NIK, TAK1, IKKs,
MKK4/7, FADD, JNK1/2, NF-κB, ITCH, Caspase10, c-FLIP,

Caspase8 and Caspase3/7 at time t, respectively. Parameter a1 is
used to denote the growth rate of IL-1β expressed mRNA and d1
the degradation rate of IL-1β. Therefore, the differential equation about
the rate of mRNA change of IL-1β at time t is given as
dx1(t)
dt � a1 − d1x1(t). Similarly, parameter a2 denotes the growth

rate of IRAK1/4 mRNA expression, while b2 represents the
activation rate of IL-1β on IRAK1/4. Furthermore, considering the
time delay effect of IL-1β on IRAK1/4 activation, a delay term denoted
by τ is incorporated in this study. Additionally, d2 signifies the
degradation rate of IRAK1/4. Therefore, the differential equation
governing the change in mRNA level of IRAK1/4 at given time t is
expressed as: dx2(t)dt � a2 + b2x1(t − τ)x2(t − τ) − d2x2(t). a3 and d3
represent the growth rate and degradation rate of TNFα, respectively. a4
and d4 represent the growth rate and degradation rate of TNFR1, b4
represents the activation rate of TNFα on TNFR1. a5 and d5 represent
the growth rate and degradation rate of TRADD, b5 represents the
activation rate of TNFR1 on TRADD. a6 and d6 represent the growth
rate and degradation rate of TRAF2/5, b6 represents the activation rate
of TRADD on TRAF2/5. a7 and d7 represent the growth rate and
degradation rate of RIP1, b7 represents the activation rate of TRAF2/
5 on RIP1. a8 and d8 represent the growth rate and degradation rate of
NIK, b8 represents the activation rate of TRAF2/5 on NIK. a9 and
d9 represent the growth rate and degradation rate of TAK1, b9
and c9 represents the activation rate of IRAK1/4 and TRAF2/5 on
TAK1. a10 and d10 represent the growth rate and degradation rate
of IKKs, b10, c10 and f10 represents the activation rate of RIP1,

FIGURE 1
The mRNA expression levels of Caspase-3, BCL-2 and Bax were detected by real-time PCR.
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NIK and TAK1 on IKKs, respectively. a11 and d11 represent the
growth rate and degradation rate of MKK4/7, b11 and c11
represents the activation rate of TAK1 and NF-κB on IKKs.
a12 and d12 represent the growth rate and degradation rate of
FADD, b12 represents the activation rate of TRADD on FADD.
a13 and d13 represent the growth rate and degradation rate of
JNK1/2, b13 represents the activation rate of MKK4/7 on JNK1/
2. a14 and d14 represent the growth rate and degradation rate of
NF-κB, b14 represents the activation rate of IKKs on NF-κB. a15
and d15 represent the growth rate and degradation rate of ITCH,
b15 represents the activation rate of JNK1/2 on ITCH. a16 and
d16 represent the growth rate and degradation rate of
Caspase10, b16 represents the activation rate of FADD on
Caspase10. a17 and d17 represent the growth rate and
degradation rate of c-FLIP, b17 represents the activation rate

of IKKs on c-FLIP and c17 represents the inhibiting rate of ITCH
on c-FLIP. a18 and d18 represent the growth rate and
degradation rate of Caspase8, b18 represents the activation
rate of c-FLIP on Caspase8 and c18 represents the inhibiting
rate of FADD on Caspase8. a19 and d19 represent the growth rate
and degradation rate of Caspase3/7, b19 and c19 represents the
activation rate of Caspase10 and Caspase8 on Caspase3/7.
Subsequently, a comprehensive mathematical model for the
entire system is established. The time delay of activation or
inhibition of downstream signaling molecules varies among
different signaling molecules. However, for the sake of
convenience in calculation and simulation, a uniform time
delay τ is adopted in this study. In subsequent mathematical
modeling, different time delays will be utilized. In this paper,
the Eq. 2 was operated by Matlab 2020b.

TABLE 1 High-throughput sequencing Significance table of each signaling pathway affecting chondrocyte apoptosis.

# Pathway DEGs in term (256) All gene in term Richfactor p-value QValue Pathway ID

1 TNF signaling pathway 17(6.64%) 137(1.11%) 0.1241 3.207e-9 8.115e-7 Ko04668

2 NF-kappa B signaling pathway 10 (3.91%) 104 (0.84%) 0.0962 5.764e-5 7.291e-3 Ko04064

3 Cytokine-cytokine receptor interaction 16 (6.25%) 264 (2.14%) 0.0606 0.000123 9.534e-3 Ko04060

4 T cell receptor signaling pathway 11 (4.3%) 142 (1.15%) 0.0775 0.000177 9.534e-3 Ko04660

5 Legionellosis 8 (3.13%) 79 (0.64%) 0.1013 0.000222 9.534e-3 Ko05134

6 Apoptosis 11 (4.3%) 146 (1.18%) 0.0753 0.000226 9.534e-3 Ko04210

7 Epstein-Barr virus infection 14 (5.47%) 229 (1.85%) 0.0611 0.000226 1.079e-2 Ko05169

8 SNARE interaction in vesicular transport 5 (1.95%) 34 (0.28%) 0.1471 0.000299 1.974e-2 Ko04130

9 Pathway in cancer 22 (8.59%) 501 (4.05%) 0.0439 0.000624 2.074e-2 Ko05220

10 MAPK signaling pathway 7 (2.73%) 81 (0.66%) 0.0864 0.000738 3.598e-2 Ko04013

11 Mineral absorption 5 (1.95%) 45 (0.36%) 0.1111 0.001422 5.048e-2 Ko04978

12 Intestinal immune network for IgA production 6 (2.34%) 66 (0.53%) 0.0909 0.002278 5.048e-2 Ko04672

13 Protein processing in endoplasmic reticulum 10 (3.91%) 173 (1.4%) 0.0578 0.003236 6.024e-2 Ko04141

14 Amyotrophic lateral sclerosis 5 (1.95%) 50 (0.4%) 0.1 0.003633 6.024e-2 Ko05014

15 B cell receptor signaling pathway 6 (2.34%) 72 (0.58%) 0.8333 0.003716 6.024e-2 Ko04662

16 Small cell lung cancer 10 (3.91%) 177 (1.43%) 0.0565 0.003809 6.024e-2 Ko05222

17 Non-alcoholic fatty liver disease 9 (3.52%) 155 (1.25%) 0.0580 0.004972 7.400e-2 Ko04932

18 HTLV-1 infection 11 (5.47%) 313 (2.53%) 0.0447 0.005706 8.021e-2 Ko05166

TABLE 2 Real-time PCR reaction system.

Reagent 10 (μL)system 20 (μL)system Final concentration

cDNA template 1 2

Forward Primer (10 μM) 0.4 0.8 0.4 μM

Reverse Primer (10 μM) 0.4 0.8 0.4 μM

2×TSINGKE® Matser qPCR Mix (SYBR Green I) 5 10 1×

50×ROX Reference Dye II 0.2 0.4 1×

ddH2O 3 6
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dαx1 t( )
dt

� a1 − d1x1 t( ),
dαx2 t( )

dt
� a2 + b2x1 t − τ( )x2 t − τ( ) − d2x2 t( ),

dαx3 t( )
dt

� a3 − d3x3 t( ),
dαx4 t( )

dt
� a4 + b4x3 t − τ( )x4 t − τ( ) − d4x4 t( ),

dαx5 t( )
dt

� a5 + b5x4 t − τ( )x5 t − τ( ) − d5x5 t( ),
dαx6 t( )

dt
� a6 + b6x5 t − τ( )x6 t − τ( ) − d6x6 t( ),

dαx7 t( )
dt

� a7 + b7x6 t − τ( )x7 t − τ( ) − d7x7 t( ),
dαx8 t( )

dt
� a8 + b8x6 t − τ( )x8 t − τ( ) − d8x8 t( ),

dαx9 t( )
dt

� a9 + b9x2 t − τ( )x9 t − τ( ) + c9x6 t − τ( )x9 t − τ( ) − d9x9 t( ),
dαx10 t( )

dt
� a10 + b10x7 t − τ( ) + c10x8 t − τ( ) + f10x9 t − τ( )[ ]x10 t − τ( ) − d10x10 t( ),

dαx11 t( )
dt

� a11 + b11x9 t − τ( )x11 t − τ( ) + c11x14 t − τ( )x11 t − τ( ) − d11x11 t( ),
dαx12 t( )

dt
� a12 + b12x5 t − τ( )x12 t − τ( ) − d12x12 t( ),

dαx13 t( )
dt

� a13 + b13x11 t − τ( )x13 t − τ( ) − d13x13 t( ),
dαx14 t( )

dt
� a14 + b14x10 t − τ( )x14 t − τ( ) − d14x14 t( ),

dαx15 t( )
dt

� a15 + b15x13 t − τ( )x15 t − τ( ) − d15x15 t( ),
dαx16 t( )

dt
� a16 + b16x12 t − τ( )x16 t − τ( ) − d16x16 t( ),

dαx17 t( )
dt

� a17 + b17x10 t − τ( )x17 t − τ( ) − c17x15 t − τ( )x17 t − τ( ) − d17x17 t( ),
dαx18 t( )

dt
� a18 + b18x17 t − τ( )x18 t − τ( ) − c18x12 t − τ( )x18 t − τ( ) − d18x18 t( ),

dαx19 t( )
dt

� a19 + b19x16 t − τ( )x19 t − τ( ) + c19x18 t − τ( )x19 t − τ( ) − d19x19 t( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

4 Real-time PCR experiment

4.1 Extract total RNA by Trizol method

(1) Pre-processing of samples

Cell: Add 1mL Trizol reagent, mix thoroughly by pipetting, transfer
to a RNase-free 1.5 mL EP tube, and incubate for 10 min to lyse the cells.

(2) Add 200 μL chloroform, vigorously shake the tube several
times, and let it stand at room temperature for 5 min.

(3) Centrifuge at 4°C and 12,000 rpm for 15 min to separate the
sample into three phases: the upper phase (RNA), the middle
phase (protein), and the lower phase (DNA).

(4) Transfer the upper aqueous phase (approximately 400 μL) to a
new 1.5 mL EP tube, add 400 μL isopropanol, mix thoroughly,
and let it stand at room temperature for 10 min.

(5) Centrifuge at 4°C and 12,000 rpm for 10 min, and a white RNA
pellet should be visible at the bottom of the tube.

(6) Discard the supernatant, add 1 mL 75% ethanol without
RNase, vortex, and centrifuge at 4°C and 10,000 rpm for 5 min.

(7) Repeat step 6 once.
(8) Discard the supernatant, air-dry the RNA pellet for 5–10 min,

and dissolve the pellet in 20 μL DEPC water.

(9) Measure the OD260, OD280, and OD260/OD280 values of the
RNA using a micro spectrophotometer, and calculate the
purity and concentration of the RNA. Estimate the RNA
quality based on the OD260/OD280 ratio, which should be
between 1.8 and 2.0 for experimental requirements. Calculate
the total RNA concentration (μg/μL) using the following
formula: Total RNA concentration = OD260 × 40×10−3.

(10) Store the total RNA at −80°C for future use.

4.2 Reverse transcribed into cDNA

4.2.1 Genomic DNN removal reaction
Melt the RNA template, NASe-free Water, and 10× gDNA

Remover Buffer on ice. In a nuclease-free micro centrifuge tube,
prepare a reaction system (10 μL) on ice according to the table
below. The reaction system is shown in Supplementary Table S1.

Subsequently, the mixed system was blown and briefly
centrifuged using a pipettor, and the reaction was carried out on
a PCR instrument. The procedure is given as follows:

The cells were incubated at 42°C for 2 min and at 60°C for 5 min.

4.2.2 Reverse transcription reaction
Following the preceding reaction, the system was rapidly chilled

on ice and subsequently subjected to a brief centrifugation. The
addition of specific components was then carried out based on the
desired detection index (Supplementary Tables S2, S3).

Subsequently, employing a liquid motion beat blending system
and brief centrifugation, the sample was added to the PCR reaction
with the following program: incubation at 25°C for 10 min, followed

FIGURE 2
Signal molecule transduction diagram of TNF signaling pathway
regulating chondrocyte apoptosis.
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TABLE 3 Gene relative expression of IRAK1 (x2), TNF-α (x3), TRADD (x5), RIP1(x7), NIK (x8), TAK1 (x9), IKK-β (x10), MKK4(x11), FADD (x12), ITCH (x15), Caspase-8 (x18) and
Caspase-3 (x19) with the interval was 6 h from 0 h to 72 h.

(h) IRAK1 TNFα TRADD RIP1 NIK TAK1 IKKβ MKK4 FADD ITCH Caspase8 Caspase3

(x2) (x3) (x5) (x7) (x8) (x9) (x10) (x11) (x12) (x15) (x18) (x19)

0 1.00 ±
0.073

1.00 ±
0.104

1.00 ±
0.071

1.00 ±
0.098

1.00 ±
0.062

1.00 ±
0.06

1.00 ±
0.069

1.00 ±
0.066

1.00 ±
0.077

1.00 ±
0.098

1.00 ± 0.09 1.00 ± 0.051

6 1.01 ±
0.106

1.00 ± 0.04 1.01 ±
0.051

1.18 ±
0.116

1.63 ±
0.09

1.87 ±
0.081

0.97 ±
0.096

1.18 ±
0.051

1.20 ± 0.12 1.03 ±
0.097

0.80 ± 0.042 1.04 ± 0.13

12 14.49 ±
1.397

19.89 ±
1.524

12.40 ± 1.6 1.09 ±
0.097

2.28 ±
0.126

2.20 ±
0.108

0.99 ±
0.051

1.36 ±
0.08

11.67 ±
0.512

1.52 ±
0.017

1.04 ± 0.075 1.11 ± 0.119

18 21.28 ±
2.411

30.26 ±
2.36

12.60 ±
1.05

1.28 ±
0.107

2.39 ±
0.072

2.38 ±
0.207

1.15 ±
0.056

1.38 ±
0.02

16.06 ±
0.529

1.42 ±
0.142

1.23 ± 0.1 1.02 ± 0.085

24 22.71 ±
0.371

38.05 ±
2.385

21.88 ±
0.97

1.56 ±
0.105

2.36 ±
0.218

2.12 ±
0.105

1.90 ±
0.085

1.19 ±
0.061

20.00 ± 2.3 1.43 ±
0.11

1.30 ± 0.14 1.00 ± 0.08

30 58.85 ±
4.031

36.51 ±
2.032

21.06 ±
2.221

2.30 ±
0.075

2.42 ±
0.11

3.37 ±
0.195

2.01 ±
0.146

1.18 ±
0.11

19.77 ±
1.451

1.96 ±
0.128

1.41 ± 0.094 0.95 ± 0.093

36 18.72 ±
0.953

37.50 ±
1.059

26.89 ±
1.846

1.87 ±
0.052

1.54 ±
0.141

1.60 ±
0.159

2.43 ±
0.256

1.72 ±
0.094

15.76 ±
1.773

0.73 ±
0.077

1.22 ± 0.147 1.01 ± 0.046

42 15.79 ±
0.829

14.28 ±
0.979

15.03 ±
1.029

2.24 ±
0.116

2.47 ±
0.118

3.33 ±
0.257

1.90 ±
0.082

1.90 ±
0.071

14.26 ±
0.852

0.93 ±
0.084

0.87 ± 0.047 1.05 ± 0.127

48 14.43 ±
0.606

12.98 ±
1.364

9.67 ±
0.905

1.81 ±
0.142

3.21 ±
0.202

3.08 ±
0.213

2.10 ±
0.232

2.41 ±
0.11

12.49 ±
0.973

1.21 ±
0.132

0.98 ± 0.035 1.12 ± 0.033

54 13.77 ±
0.453

8.70 ±
0.259

6.30 ±
0.445

1.47 ±
0.133

3.81 ±
0.294

6.89 ±
0.39

1.53 ±
0.176

2.33 ±
0.103

6.41 ±
0.278

1.83 ±
0.198

1.34 ± 0.052 1.40 ± 0.115

60 6.59 ±
0.487

7.54 ±
0.752

7.24 ±
0.963

1.45 ±
0.165

3.43 ±
0.186

3.75 ±
0.226

1.19 ±
0.071

1.36 ±
0.108

6.50 ±
0.661

1.43 ±
0.108

0.97 ± 0.136 1.71 ± 0.176

66 5.08 ±
0.684

6.02 ±
0.703

4.70 ±
0.437

1.27 ±
0.071

1.74 ±
0.077

2.36 ±
0.212

1.18 ±
0.135

1.17 ±
0.091

3.46 ±
0.222

1.51 ±
0.116

1.02 ± 0.104 1.28 ± 0.138

72 5.44 ±
0.451

5.26 ±
0.522

4.85 ±
0.491

1.08 ±
0.095

1.73 ±
0.038

1.81 ±
0.147

1.06 ±
0.104

1.12 ±
0.104

3.24 ±
0.318

1.36 ±
0.153

1.17 ± 0.093 1.30 ± 0.05

TABLE 4 The estimated parameters of stage 1 for numerical simulation.

Param Value Param Value Param Value Param Value Param Value

a1 0.0139 a6 0.92 a10 1.0549 b13 0.684 g17 0.1843

d1 0.1028 b6 0.04 b10 0.15 d13 2.4042 d17 2.4042

a2 0.08 d6 1.2661 g10 0.25 a14 0.093 a18 0.5

b2 0.51 a7 1.15 f10 0.1395 b14 0.2843 b18 0.8

d2 0.105 b7 0.27 d10 1.9 d14 2.4042 g18 0

a3 8.254 d7 1.1789 a11 0.99 a15 1.07 d18 1.4042

d3 0.660 a8 1.2 b11 0.2 b15 1.2 a19 2.4

a4 2.117 b8 0.2 g11 0.2 d15 2.4042 b19 0.2843

b4 0.017 d8 0.9 d11 1.2661 a16 0.093 g19 0.33

d4 1.9 a9 2.1655 a12 5.6 b16 0.1 d19 2.0

a5 1.2639 b9 0.02663 b12 0.073 d16 2.4042

b5 0.06 g9 0.2663 d12 1.8 a17 2.093

d5 0.13 d9 1.8661 a13 2.293 b17 0.843
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by incubation at 50°C for 15 min and then further incubated at 85°C
for an additional 5 min. The reverse transcription product was
subsequently placed on ice or refrigerated as required.

4.3 Real-time PCR detection

The Real-time PCR reaction system is shown in Table 2.
Subsequently, the mixed system was blown with a pipette and
briefly centrifuged, and then placed on a fluorescent quantitative
PCR instrument for amplification detection, the procedure is given
in Supplementary Table S5.

The operation data was obtained, and the final data was analyzed
by 2-△△Ct method (as shown in Table 3). A more intuitive bar graph
is shown in Supplementary Figure S1.

5 Parameter estimate and numerical
simulations

According to the expression of various signaling molecules in
the TNF signaling pathway, we divided parameter estimation into
three stages. The first stage was from 0th h to 36th h, the second stage
was from 36th h to 60th h, and the third stage was from 60th h to

TABLE 5 The estimated parameters of stage 2 for numerical simulation.

Param Value Param Value Param Value Param Value Param Value

a1 0.0139 a6 0.92 a10 1.95 b13 0.6843 g17 0.1843

d1 0.1028 b6 0.04 b10 0.1 d13 2.4042 d17 2.4042

a2 0.08 d6 0.7661 g10 0.1 a14 0.093 a18 0.9

b2 0.46 a7 1.45 f10 0.12 b14 0.2843 b18 0.7

d2 0.105 b7 0.064 d10 1.9 d14 2.4042 g18 0.01

a3 6.9 d7 1.12 a11 0.99 a15 1.5 d18 1.95

d3 0.960 a8 0.072 b11 0.36 b15 0.46 a19 2.6

a4 2.117 b8 0.04 g11 0.22 d15 2.4042 b19 2.88

b4 0.017 d8 0.2 d11 1.12 a16 0.093 g19 0.001

d4 1.9 a9 2.1655 a12 5.6 b16 0.143 d19 2.5

a5 1.2639 b9 0.03663 b12 0.079 d16 2.4042

b5 0.03 g9 0.1863 d12 1.8 a17 2.093

d5 0.23 d9 1.9661 a13 2.293 b17 0.843

TABLE 6 The estimated parameters of stage 3 for numerical simulation.

Param Value Param Value Param Value Param Value Param Value

a1 0.0139 a6 0.92 a10 1.3 b13 0.6843 g17 0.2843

d1 0.1028 b6 0.04 b10 0.1 d13 2.4042 d17 1.4042

a2 0.08 d6 0.7661 g10 0.1 a14 0.093 a18 0.4

b2 0.4 a7 1.45 f10 0.12 b14 0.2843 b18 0.78

d2 0.115 b7 0.056 d10 1.8 d14 2.4042 g18 0.01

a3 6.554 d7 1.252 a11 0.5 a15 2.8 d18 1.45

d3 1.160 a8 0.072 b11 0.23 b15 0.5 a19 2.6

a4 2.117 b8 0.07 g11 1.1663 d15 2.4042 b19 2.88

b4 0.017 d8 0.2 d11 1.0 a16 0.093 g19 0.001

d4 1.9 a9 0.00655 a12 6.6 b16 0.2843 d19 2.2

a5 1.2639 b9 0.008663 b12 0.071 d16 2.4042

b5 0.03 g9 0.08663 d12 1.95 a17 2.093

d5 0.33 d9 0.3 a13 0.293 b17 0.2843

Frontiers in Cell and Developmental Biology frontiersin.org08

Wang et al. 10.3389/fcell.2023.1288431

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1288431


72nd h. The nonlinear least square method was programmed to
estimate the 62 parameters by Matlab 2020b and the parameters of
stage 1 are as follows (see Table 4):

The parameters of stage 2 are as follows (see Table 5):
The parameters of stage 3 are as follows (see Table 6):
Based on the model parameters obtained from three stages and

combined with mathematical model (2), we obtained simulation
results of 19 genes, as shown in Figures 3–7. The red dots with error
bars represent the real experimental data, while the deep blue curves
are numerical simulations of the model, and the light blue areas are
three times variance of fitted curves.

The correlation coefficient (R) was calculated to compare the
experimental findings with model stimulation. The results, as
presented in Table 7, demonstrate that all tested variables

exhibited relatively strong correlations, indicating the efficiency
of the model.

6 The sensitivity analysis of molecules
based on the mathematical model

Based on the accurate mathematical model obtained, the
influence of model parameter changes on the system will be
studied next, that is, the sensitivity of parameters in the model
will be analyzed. Given the positive correlation between
chondrocyte apoptosis and osteoarthritis severity, this project
aims to employ gene interference experiments to silence
related genes while making subtle adjustments to model

FIGURE 3
The gene relative expression of IL-1β, IRAK1, TNF-α and TNFR1 from 0 h to 72 h.

FIGURE 4
The gene relative expression of TRADD, TRAF2/5, RIP1 and NIK from 0 h to 72 h.
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parameters that significantly impact output. The ultimate goal
is to reduce chondrocyte apoptosis and identify new targets and
strategies for treating osteoarthritis. In this section, sensitivity
of molecules based on the mathematical model was analyzed by
numerical simulations. Because the severity of chondrocyte
apoptosis is positively correlated with the severity of
osteoarthritis, this project aims to greatly change the output
of the model by making subtle adjustments to the sensitive
parameters of the model, that is, to reduce chondrocyte
apoptosis, and to provide new targets and strategies for the
treatment of osteoarthritis. Therefore, in this study, the degree
of change in the mRNA expression of the gene Caspase-3 was
used as an indicator of parameter sensitivity. The simulation
results show that b4, a5, d5, a6, a10, b10, g10, f10, d10, b12, d12, a16,
b16, d16, a17, a18, b18, a19, b19, g19, d19 are sensitive parameters

and others are insensitive parameters. Below we randomly
selected a sensitive parameter (a5) and demonstrated its
simulation results. The results are as follows:

Similarly, an insensitive parameter (b7) was randomly selected
and the simulation results were demonstrated. The results are shown
in Supplementary Figures S2–S6.

In this section, all parameters in the model were numerically
simulated (see Supplementary Material). We randomly selected
parameter a5 to demonstrate the sensitivity of parameters on
Caspase-3. The numerical simulation results show that when
parameter a5 increases from 0.6 to 3.8 with a step size of 0.8, the
signaling molecules IL-1β, IRAK1, TNF-α, and TNFR1 show no
significant changes (as shown in Figure 8). This is because parameter
a5 represents the production rate of the signaling molecule TRADD,
which does not have a feedback regulatory effect on upstream

FIGURE 5
The gene relative expression of TAK1, IKK-β, MKK4 and FADD from 0 h to 72 h.

FIGURE 6
The gene relative expression of JNK1/2, NF-kB, ITCH and Caspase-10 from 0 h to 72 h.
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signaling molecules. From Figure 9, it can be clearly seen that as
parameter a5 increases from 0.6 to 3.8, the mRNA expression level of
TRADD gradually increases, and the growth amplitude is large. The
black, green, red, light blue, and dark blue curves represent the
dynamic trends of TRADD over time when a5 is 0.8, 1.4, 2.0, 2.6, 3.2,
and 3.8, respectively. Similarly, with the increase of a5, the mRNA
expression levels of TRAF2/5 and NIK also gradually increase, and
the increase is significant. Especially when a5 is 3.8, the mRNA
expression level of NIK is approximately 10 times that of a5 � 0.8.
As for RIP1, although the expression level increases with the increase

of a5, the increase is relatively small. From Figure 10, it can be seen
that when a5 increases from 0.8 to 3.2, the expression levels of TAK1,
IKK-β, and MKK4 only increase slightly, but when a5 increases to
3.8, the expression levels of TAK1, IKK-β, and MKK4 increase
significantly. The expression level of FADD also increases gradually
with the gradient increase of a5. Despite the large increase in a5 from
0.8 to 3.8, JNK1/2, NF-kB, and ITCH show no significant changes.
However, with the increase of a5, the mRNA expression level of
Caspase-10 gradually increases, and when a5 is 3.8, the mRNA
expression level of Caspase-10 is significantly higher than the other

TABLE 7 The correlation coefficient between experimental data and numerical simulation.

R2 R3 R5 R7 R8 R9 R10 R11 R12 R15 R18 R19

0.969 0.957 0.963 0.934 0.761 0.858 0.750 0.821 0.917 0.813 0.837 0.962

The bold values 0.969 means the largest correlation coefficient, 0.750 means the smallest correlation coefficient.

FIGURE 7
The gene relative expression of c-FLIP, Caspase-8 and Caspase-3 from 0 h to 72 h.

FIGURE 8
The dynamic trend of IL-1β, IRAK1, TNF-α and TNFR1 from 0 h to 72 h when the parameter a5 increases from 0.6 to 3.8, and the interval is 0.8.
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cases (as shown in Figure 11). From Figure 12, it can be seen that
when a5 increases from 0.8 to 3.2, the mRNA expression levels of
c-FLIP and Caspase-8 increase but not significantly, and the
mRNA expression level of Caspase-3 also increases with the
gradient increase of a5. However, when a5 increases to 3.8,
c-FLIP, Caspase-8, and Caspase-3 all undergo a stepwise
increase. For example, when a5 is 3.8, c-FLIP increases by
1.38 times, Caspase-8 increases by 1.8 times, and Caspase-3
increases by 1.27 times. Therefore, from the numerical
simulation results, it can be seen that small changes in
parameter a5 can significantly affect the mRNA expression of
downstream signaling molecules in the signaling pathway,
especially the indicator signaling molecule Caspase-3, which is

indicative of the severity of osteoarthritis. The mRNA expression
level also undergoes significant changes. Therefore, parameter a5
is a sensitive parameter that affects the progression of
osteoarthritis and is a potential therapeutic target for treating
osteoarthritis.

On the other hand, when parameter b7 increases from 0.04 to
0.12 with a step size of 0.02, only the mRNA expression level of
the signal molecule RIP1 in the entire signal pathway shows a
significant change, while the other signal molecules show no
significant changes. The numerical simulation results are shown
in Supplementary Figures S2–S6. Therefore, parameter b7 has no
significant impact on osteoarthritis and is considered an
insensitive parameter.

FIGURE 9
The dynamic trend of TRADD, TRAF2/5, RIP1 and NIK from 0 h to 72 h when the parameter a5 increases from 0.6 to 3.8, and the interval is 0.8.

FIGURE 10
The dynamic trend of TAK1, IKK-β, MKK4 and FADD from 0 h to 72 h when the parameter a5 increases from 0.6 to 3.8, and the interval is 0.8.
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7 Conclusion

Since most of the current research on the regulation of signal
pathways in chondrocyte apoptosis is based on molecular biology
methods, it can only focus on studying the signaling molecules in a
specific pathway, making it difficult to understand the mechanism of
signal transduction at a systemic level. In this study, high-
throughput sequencing is firstly used to screen for differentially
expressed genes involved in IL-1β-induced apoptosis in human
chondrocytes. The results show significant enrichment in the
TNF signaling pathway. Therefore, mathematical modeling
approach is adopted to quantitatively analyze the mechanism of
TNF signaling pathway in regulating chondrocyte apoptosis. Next,
qPCR experiments are performed to measure the mRNA expression
levels of IRAK1 (x2), TNF-α (x3), TRADD (x5), RIP1(x7), NIK (x8),

TAK1 (x9), IKK-β (x10), MKK4(x11), FADD (x12), ITCH (x15),
Caspase-8 (x18) and Caspase-3 (x19) at 0 h, 6 h, 12 h, 18 h, 24 h,
30 h, 36 h, 42 h, 48 h, 54 h, 60 h, 66 h, and 72 h. The 62 parameters
of the model are estimated by using the collected experimental data.
Since the process of chondrocyte apoptosis is time-dependent, the
parameter estimation was divided into three stages. The
effectiveness of parameter estimation is evaluated by calculating
the correlation coefficient between the experimental data and the
mathematical model, with a maximum correlation coefficient of
0.969 (See Table 7). Finally, numerical simulation are used to
calculate the sensitivity of the model parameters, and the results
show that parameters b4, a5, d5, a6, a10, b10, g10, f10, d10, b12, d12,
a16, b16, d16, a17, a18, b18, a19, b19, g19 and d19 are sensitive
parameters. These sensitive parameters significantly affect
chondrocyte apoptosis and further influence the severity of

FIGURE 11
The dynamic trend of JNK1/2, NF-kB, ITCH andCaspase-10 from 0 h to 72 hwhen the parameter a5 increases from 0.6 to 3.8, and the interval is 0.8.

FIGURE 12
The dynamic trend of c-FLIP, Caspase-8 and Caspase-3 from 0 h to 72 h when the parameter a5 increases from 0.6 to 3.8, and the interval is 0.8.
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osteoarthritis. Therefore, in future studies, we will design siRNA
interference experiments to validate the sensitive and insensitive
parameters at the cellular level, further explore the sensitive
factors that affect chondrocyte apoptosis, and potentially
identify new therapeutic targets for the treatment of
osteoarthritis at a systemic level.
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